加权余量法简介
- 格式:pptx
- 大小:554.67 KB
- 文档页数:23
第三章 有限元法基础通常将有限元法分为两大类:变分法和加权余量法。
两种方法的出发点不同,但最后都归结为:①离散化:用若干个子区域(即单元)代替整个连续区域,②算子解析方程,即偏微分方程转化为代数方程组:区域的物理性质可以用节点上有限个自由度来描述,再应用离散系统分析方法将其汇集在一起。
§3-1 算子方程及变分原理 3.1.1 算子的概念(1)静电场中,泊松方程 ρϕε-=∇⋅∇ 可以写为 ρϕ=L ,其中∇⋅-∇=εL 称为算子。
(2)稳态磁场中,双旋度方程 J A =⨯∇⨯∇μ1J LA =⇒(3)时变场中,波动方程 J H H 2⨯∇=-⨯∇⨯∇νννk J H ⨯∇=⇒νL3.1.2 泛函 1、泛函的概念泛函是函数空间H 中,函数到数的映像,如()()[]x y I x I =也可以说泛函是函数的函数,函数空间中的某一函数()x y 有一个I 值与之对应,变量I 就是D 空间的函数()x y 的泛函。
例如 求()x y 所表示的曲线长度及所围面积。
曲线长度 ()[]⎰⎪⎭⎫⎝⎛+=2121x x dx dx dy x y I曲线所围面积 ()[]()⎰=21x x dx x y x y I不同的()x y ,有不同的I 与之对应,不同的 图3-1 求曲线长度及所围面积()[]x y I 构成了函数空间H 。
2、泛函连续若对于()x y 的微小改变,有泛函()[]x y I 的微小改变与之对应,就称泛函是连续的。
3、线性泛函若泛函满足 ()[]()[]x y cI x cy I = c 为常数 或 ()()[]()[]()[]x y I x y I x y x y I 2121+=+ 则称其为线性泛函。
4、函数的变分y δ泛函()[]x y I 的宗量()x y 的变分y δ是()x y 的微小增量 ()()x y x y y 1-=δ 5、泛函的变分I δ对于宗量()x y 的变分y δ,泛函的增量为()[]()[]()[]()[]y ,x y o y ,x y L I I I x y I y x y I I δδδδδδ+=+++=-+=∆ 32式中,()[]y x y L δ,是对y δ的线性泛函,是I ∆的主要部分,称为一阶(或一次)变分()[]y x y L I δδ,=()[]y x y o δ,是误差项。
第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。
有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。
2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。
在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。
2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。
同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。
A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。
微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。
所以在以上两式中采用了矩阵形式。
以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。
加权余量法和变分法建立有限元方程 分片定义试函数和有限元法直接法只能用来推导比较简单的有限元方程。
例如假设温度、位移是线性变化的,因此在单元边界上热流、应力、表面力是常数,容易化成等效的节点热流和端点力。
直接法形式上把连续区域化为有限元网格,对每个有限元用直接法分析得到单元刚度矩阵再组合成总体刚度矩阵。
这种方法对计算结果的收敛性、误差和试函数选取的要求没有进行讨论。
0=+p ϕL 在D 内0=+γϕM 在Γ 上用加权余量方法,选取近似函数m Mm m a N ∑=+=≅1ˆψϕϕ建立加权余量公式()∫∫=+++ΓDl lW dD p W 0ˆ(ˆ)M L γϕϕ该方法在整个区域定义试函数和建立加权余量公式,只能求解比较简单的问题。
可以设想把整个求解区域 D 划分为若干个互相既不重合,也不分离的子区域e D 之和。
这些子区域叫做有限元。
然后在每个有限元内部分别构造近似函数e ϕˆ、选取加权函数。
当然在不同的有限元内部可用不同的方法构造近似函数,对整个区域建立的加权余量公式,就可以写成各个子区域公式之和,即()∑∫∫∑∫==+==Ee D eel DE e D eDel D l eedD p W dD R W dD R W 11ˆϕL()∑∫∫∑∫=ΓΓ=ΓΓΓΓ+=Γ=ΓEe e el Ee e el l eed W d R W d R W 11ˆγϕM 由于上式把全域的积分写成子域积分之和,所以对被积函数提出了一定的要求,要求被积函数在子域之间的边界上满足一定的连续性。
有限元法分片选取试函数,它们在各自的子区域中一般都具有足够的连续性,使被积函数满足要求,关键是在子区域之间的交界面上能否满足要求。
分片选取的试函数需要满足:1 如果在积分中只含未知数本身,不含导数,在有限元之间试函数本身可存在有限间断;2 如果在积分中对未知函数的最高阶导数是一阶,在有限元之间试函数本身连续,一阶导数可存在有限间断,称为C0阶问题;3 如果在积分中对未知函数的最高阶导数是二阶,在有限元之间试函数本身及其一阶导数连续,二阶导数可存在有限间断,称为C1阶问题;4 如果在积分中对未知函数的最高阶导数是 n 阶,在有限元之间试函数本身及直至其 (n-1) 阶导数连续,n 阶导数可存在有限间断,称为C n−1阶问题。
有限元软件ansys简介有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
ANSYS是一种广泛的商业套装工程分析软件。
所谓工程分析软件,主要是在机械结构系统受到外力负载所出现的反应,例如应力、位移、温度等,根据该反应可知道机械结构系统受到外力负载后的状态,进而判断是否符合设计要求。
一般机械结构系统的几何结构相当复杂,受的负载也相当多,理论分析往往无法进行。
想要解答,必须先简化结构,采用数值模拟方法分析。
由于计算机行业的发展,相应的软件也应运而生,ANSYS 软件在工程上应用相当广泛,在机械、电机、土木、电子及航空等领域的使用,都能达到某种程度的可信度,颇获各界好评。
使用该软件,能够降低设计成本,缩短设计时间。
ANSYS 软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛的用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。
该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS 参数设计语言扩展宏命令功能。
有限元分析有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
加权计算法加权计算法是一种常见的数学方法,它在各个领域中都有着广泛的应用。
在金融领域中,加权计算法被用来计算股票价格指数;在教育领域中,加权计算法被用来计算学生的平均成绩;在医学领域中,加权计算法被用来计算药物的剂量等等。
本文将对加权计算法进行详细介绍,包括其定义、公式、应用以及优缺点等方面。
一、加权计算法的定义加权计算法是一种计算平均数的方法,它将不同数据的权重考虑在内,从而得出更为准确的结果。
简单来说,加权计算法就是在计算平均数时,给不同数据设置不同的权值,以反映它们在整体中的重要性。
二、加权计算法的公式加权计算法的公式如下:加权平均数 = (数据1 × 权值1 + 数据2 × 权值2 + … + 数据n × 权值n) ÷ (权值1 + 权值2 + … + 权值n) 其中,数据1、数据2、…、数据n表示不同的数据,权值1、权值2、…、权值n表示对应的权值。
三、加权计算法的应用1. 股票价格指数的计算在股票市场中,经常使用加权计算法来计算股票价格指数。
例如,上证指数就是以上海证券交易所的所有A股为样本,按照市值加权计算出来的指数。
这样计算出来的指数更能反映整个市场的走势。
2. 学生成绩的计算在教育领域中,加权计算法被用来计算学生的平均成绩。
例如,某门课程的期末成绩由考试成绩、作业成绩和课堂表现成绩组成,那么可以根据不同的权值计算出学生的加权平均分数。
3. 药物剂量的计算在医学领域中,加权计算法被用来计算药物的剂量。
例如,某种药物的剂量应该根据患者的体重、年龄、病情等因素进行加权计算,以确定最合适的剂量。
四、加权计算法的优缺点1. 优点加权计算法能够更准确地反映不同数据在整体中的重要性,从而得出更为准确的结果。
2. 缺点加权计算法需要事先确定每个数据的权值,这个过程比较复杂,需要考虑多种因素。
同时,如果权值设置不当,可能会导致结果失真。
五、总结加权计算法是一种常见的数学方法,它在各个领域中都有着广泛的应用。