第一章 数字逻辑电路基础知识
- 格式:ppt
- 大小:1.91 MB
- 文档页数:25
数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。
它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。
下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。
3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。
常见的逻辑函数有与函数、或函数、非函数、异或函数等。
4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。
通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。
5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。
顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。
6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。
编码器和解码器可用于信号编码和解码,数据传输和控制等应用。
7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。
数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。
8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。
布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。
总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。
第一章数字逻辑电路基础知识1.1 数字电路的特点1.2 数制与转换1.3 二进制代码1.4 基本逻辑运算.本章重点1.数字电路的特点2.二进制、十进制、八进制、十六进制的表示3. 二进制、十进制、八进制、十六进制转换4.掌握BCD码编码方法5.了解ASCII码1.1 数字电路的特点数字电路的基本概念1. 数字量与数字信号模拟量:具有时间上连续变化、值域内任意取值的物理量。
例如温度、压力、交流电压等就是典型的模拟量。
数字量:具有时间上离散变化、值域内只能取某些特定值的物理量。
例如训练场上运动员的人数、车间仓库里元器件的个数等就是典型的数字量。
表示模拟量的电信号叫作模拟信号;表示数字量的电信号叫作数字信号。
正弦波信号、话音信号就是典型的模拟信号,矩形波、方波信号就是典型的数字信号。
数字信号通常又称为脉冲信号。
脉冲信号具有边沿陡峭、持续时间短的特点。
广义讲,凡是非正弦信号都称为脉冲信号。
数字信号有两种传输波形,一种称为电平型,另一种称为脉冲型。
010011010电平型信号脉冲型信号2. 数字电路及其优点模拟电路:产生、变换、传送、处理模拟信号的电路数字电路:产生、存储、变换、处理、传送数字信号的电数字电路主要具有以下优点:1)电路结构简单,制造容易,便于集成,成本低。
2)数字电路不仅能够完成算术运算,而且能够完成逻辑运算,因此被称为数字逻辑电路或逻辑电路。
3)数字电路组成的数字系统,抗干扰能力强,可靠性高,稳定性好。
数字集成电路的发展趋势大规模、低功耗、高速度、可编程、可测试、多值化1.2 数制数制1.数制数制:表示数值大小的各种方法的统称。
一般都是按照进位方式来实现计数的,称为进位计数制,简称进位制。
基数:数制中允许使用的数符个数;R进制的基就等于R。
权:处于不同位置上的相同数符所代表的数值大小。
2. 数制转换任意进制数转换为十进制数:按权展开法。
例:将二进制数(1011001.101)2和十六进制数(AD5.C) 16转换为十进制数。
《数字逻辑教案》word版第一章:数字逻辑基础1.1 数字逻辑概述介绍数字逻辑的基本概念和特点解释数字逻辑在计算机科学中的应用1.2 逻辑门介绍逻辑门的定义和功能详细介绍与门、或门、非门、异或门等基本逻辑门1.3 逻辑函数解释逻辑函数的概念和作用介绍逻辑函数的表示方法,如真值表和逻辑表达式第二章:数字逻辑电路2.1 逻辑电路概述介绍逻辑电路的基本概念和组成解释逻辑电路的功能和工作原理2.2 逻辑电路的组合介绍逻辑电路的组合方式和连接方法解释组合逻辑电路的输出特点2.3 逻辑电路的时序介绍逻辑电路的时序概念和重要性详细介绍触发器、计数器等时序逻辑电路第三章:数字逻辑设计3.1 数字逻辑设计概述介绍数字逻辑设计的目标和方法解释数字逻辑设计的重要性和应用3.2 组合逻辑设计介绍组合逻辑设计的基本方法和步骤举例说明组合逻辑电路的设计实例3.3 时序逻辑设计介绍时序逻辑设计的基本方法和步骤举例说明时序逻辑电路的设计实例第四章:数字逻辑仿真4.1 数字逻辑仿真概述介绍数字逻辑仿真的概念和作用解释数字逻辑仿真的方法和工具4.2 组合逻辑仿真介绍组合逻辑仿真的方法和步骤使用仿真工具进行组合逻辑电路的仿真实验4.3 时序逻辑仿真介绍时序逻辑仿真的方法和步骤使用仿真工具进行时序逻辑电路的仿真实验第五章:数字逻辑应用5.1 数字逻辑应用概述介绍数字逻辑应用的领域和实例解释数字逻辑在计算机硬件、通信系统等领域的应用5.2 数字逻辑在计算机硬件中的应用介绍数字逻辑在中央处理器、存储器等计算机硬件部件中的应用解释数字逻辑在计算机指令执行、数据处理等方面的作用5.3 数字逻辑在通信系统中的应用介绍数字逻辑在通信系统中的应用实例,如编码器、解码器、调制器等解释数字逻辑在信号处理、数据传输等方面的作用第六章:数字逻辑与计算机基础6.1 计算机基础概述介绍计算机的基本组成和原理解释计算机硬件和软件的关系6.2 计算机的数字逻辑核心讲解CPU内部的数字逻辑结构详细介绍寄存器、运算器、控制单元等关键部件6.3 计算机的指令系统解释指令系统的作用和组成介绍机器指令和汇编指令的概念第七章:数字逻辑与数字电路设计7.1 数字电路设计基础介绍数字电路设计的基本流程解释数字电路设计中的关键概念,如时钟频率、功耗等7.2 数字电路设计实例分析简单的数字电路设计案例讲解设计过程中的逻辑判断和优化7.3 数字电路设计工具与软件介绍常见的数字电路设计工具和软件解释这些工具和软件在设计过程中的作用第八章:数字逻辑与数字系统测试8.1 数字系统测试概述讲解数字系统测试的目的和方法解释测试在保证数字系统可靠性中的重要性8.2 数字逻辑测试技术介绍逻辑测试的基本方法和策略讲解测试向量和测试结果分析的过程8.3 故障诊断与容错设计解释数字系统中的故障类型和影响介绍故障诊断方法和容错设计策略第九章:数字逻辑在现代技术中的应用9.1 数字逻辑与现代通信技术讲解数字逻辑在现代通信技术中的应用介绍数字调制、信息编码等通信技术9.2 数字逻辑在物联网技术中的应用解释数字逻辑在物联网中的关键作用分析物联网设备中的数字逻辑结构和功能9.3 数字逻辑在领域的应用讲述数字逻辑在领域的应用实例介绍逻辑推理、神经网络等技术中的数字逻辑基础第十章:数字逻辑的未来发展10.1 数字逻辑技术的发展趋势分析数字逻辑技术的未来发展方向讲解新型数字逻辑器件和系统的特点10.2 量子逻辑与量子计算介绍量子逻辑与传统数字逻辑的区别讲解量子计算中的逻辑结构和运算规则10.3 数字逻辑教育的挑战与机遇分析数字逻辑教育面临的挑战讲述数字逻辑教育对培养计算机科学人才的重要性重点和难点解析重点环节一:逻辑门的概念和功能逻辑门是数字逻辑电路的基本构建块,包括与门、或门、非门、异或门等。
第一章数字电路与逻辑设计基础本章的主要知识点包括数制及其转换、二进制的算术运算、BCD码和可靠性编码等。
1.参考学时2学时(总学时32课时,课时为48课时可分配4学时)。
2.教学目标(能力要求)●系统梳理半导体与微电子技术发展的历史,激发学生专业热情,结合我国计算机发展面临的卡脖子现状,鼓励学生积极投身信息成业自主可控;●学生可解释数字系统的概念、类型及研究方法;●学生能阐述数制的基本特点,可在不同数制之间进行数字的转换;●学生能理解带符号二进制数的代码表示,能将真值和原码、反码、补码的进行转换;●学生能熟记几种常用的编码(8421码、2421码、5421码、余三码),说明有权码和无权码的区别,能阐述不同编码的特点和特性;●学生能阐述奇偶校验码和格雷码的工作原理与主要特征,并能利用相关原理进行二进制和格雷码的转换,能根据信息码生成校验码,并能根据信息码和校验码辨别数据是否可靠。
3.教学重点●BCD码●奇偶校验码●格雷码4.教学难点●理解不同BCD码的编码方案及相关特征●理解可靠性编码方案、验证的原理以及使用方法。
5.教学主要内容(1)课程概述(15分钟)➢科技革命促生互联网时代➢半导体与微电子技术发展历程➢课程性质、内容与学习方法(2)芯片与数字电路(20分钟)➢数字信号和模拟信号➢数字逻辑电路的特点➢数字逻辑电路的分类➢数字逻辑电路的研究方法(3)数制及其转换(5分钟)➢进位计数值的概念和基本要素➢二进制和十进制的相互转换➢二进制和八进制数的相互转换➢二进制和十六进制数的相互转换(4)二进制数的算术运算(5分钟)➢无符号二进制数的算术运算➢带符号二进制数的机器码表示➢带符号二进制数的算术运算(5)BCD码(20分钟)➢有权码和无权码的区别➢8421码的编码规律及和十进制数的转换➢2421码的编码规律及和十进制数的转换➢5421码的编码规律及和十进制数的转换➢余三码的编码规律及和十进制数的转换(6)奇偶校验码(15分钟)➢奇校验和偶校验的概念➢奇校验和偶校验校验位的生成方法和校验方法➢奇校验和偶校验的特点(7)格雷码(10分钟)➢格雷码的特点和用途➢格雷码和二进制数的相互转换6.教学过程与方法(1)课程概述(15分钟)➢科技革命促生互联网时代以习总书记的讲话作为整个课程的导入,说明科技发展是强国必有之路,穿插不同国家崛起的历史,结合第一次工业革命、第二次工业革命,推出目前进入的互联网时代,结合中美贸易战事件,引导学生积极投身国产IT生态的建设。
数字电路知识点总结(精华版)数字电路知识点总结(精华版)第一章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与十六进制数的转换二、基本逻辑门电路第二章逻辑代数逻辑函数的表示方法有:真值表、函数表达式、卡诺图、逻辑图和波形图等。
一、逻辑代数的基本公式和常用公式1.常量与变量的关系A + 0 = A,A × 1 = AA + 1 = 1,A × 0 = 02.与普通代数相运算规律a。
交换律:A + B = B + A,A × B = B × Ab。
结合律:(A + B) + C = A + (B + C),(A × B) × C = A ×(B × C)c。
分配律:A × (B + C) = A × B + A × C,A + B × C = (A + B) × (A + C)3.逻辑函数的特殊规律a。
同一律:A + A = Ab。
摩根定律:A + B = A × B,A × B = A + Bc。
关于否定的性质:A = A'二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量 A 的地方,都用一个函数 L 表示,则等式仍然成立,这个规则称为代入规则。
例如:A × B ⊕ C + A × B ⊕ C,可令 L = B ⊕ C,则上式变成 A × L + A × L = A ⊕ L = A ⊕ B ⊕ C。
三、逻辑函数的化简——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与或表达式。
1.合并项法利用 A + A' = 1 或 A × A' = 0,将二项合并为一项,合并时可消去一个变量。
同学们好!1906年,福雷斯特等发明了电子管;电子管体 积大、重量重、耗电大、寿命短。
世界上第一 台计算机用了1.8万只电子管,占地170平方米, 重30吨,耗电150KW 。
目前在一些大功率发射 装置中使用。
集成电路 电子器件的发展电子管 晶体管 分立元件 (( SSI (100元件以下) MSI (〈10 3 ) LSI (〈10 5 ) 超大规模 VLSI (10 5 以上) 1948年,肖克利等发明了晶体管,其 性能在体积、重量方面明显优于电子 管,但器件较多时由分立元件组成的 分立电路体积大、焊点多、电路的可 靠性差。
1960年集成电路出现,成 千上万个器件集成在一块 芯片,大大促进了电子学 的发展,尤其促进数字电 路和微型计算机的飞速发 展。
芯片中集成上万个 等效门,目前高的 已达上百万门。
课 程 简 介本课程为《数字逻辑电路》,以数字电路为主,脉冲 电路的内容较少.课程为4个学分,包括实验.属专业基础 课.本课程具有较强的实践性,有广泛的应用领域.学好本课程的要点: 听懂每一堂课的内容、培养逻辑 思维方法、勤于思考.课 程内 容逻辑门电路 组合逻辑电路 常用组合逻辑功能器件 常用时序逻辑功能器件 半导体存储器和可编程逻辑器件 脉冲信号的产生与整形 数字逻辑基础 第1章第2章第3章第4章第6章第7章第8章时序逻辑电路 第5章数模和模数转换 第9章绪 论一、模拟量和数字量模拟量:模拟量就是连续变化的量。
自然界中可 测试的物理量一般都是模拟量,例如温度,压力,距离,时间等。
数字量:数字量是离散的量。
数字量一般是将模 拟量经过抽样、量化和编码后而得到的。
1 2 3 4 5 7 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 1218202224262830323436温度( C)时间(小时) A.M P.M 温度和时间关系图(用模拟量表示)1 2 3 4 5 7 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 1218 202224262830323436温度( C)时间(小时) A.M P.M 温度和时间关系图(用采样值表示)量化曲线1 2 3 4 5 7 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12时间(小时) A.M P.M 温度和时间关系图(用数字形式表示)1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 030292827262524232221201918 ( oc)二、模拟和数字系统的几个实例 1) 音频有线扩音系统音频有线扩音系统为纯模拟系统。