人教版数学九年级上册 第25章 25.2用列举法求概率同步测试试题(一)
- 格式:doc
- 大小:264.63 KB
- 文档页数:12
课题名称:25.2.2用列举法求概率1、基础夯实单项选择题:(共10道需有答案和解析)1.在数据1,-1,4,-4中任选两个数据,均是一元二次方程2340x x --=的根的概率是 ( )A.16 B.13 C.12 D.14解析:方程2340x x --=的根为x =4或x =-1,从l ,一1,4,一4中任取两个数,画树形图可知,同时取4和-1的概率为16.] 2.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上面的点数之和是3的倍数的概率是 ( ) A.13 B.16 C.518D.56 解析:列表格,可以看出共有36种结果,其中符合要求的有12种.3.一只自由飞行的小鸟,将随意地落在如图25-49所示的方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为 . A.925B.13C.12D.14解析:因为所有方格面积为:S 1=25;阴影的面积为:S 2=9.所以小鸟停在小圆内(阴影部分)的概率是9254.根据第六届世界合唱比赛的活动细则,每个参赛的—合唱团在比赛时必须演唱4首歌曲,爱乐合唱团已确定了2首歌曲,还需在A ,B 两首歌曲中确定一首,在C ,D 两首歌曲中确定另一首,则同时确定A ,C 为参赛歌曲的概率是 . A.16 B.13 C.12 D.14解析:每个选项都有2种可能,那么两个选项有4种可能,∴同时确定A ,C 为参赛歌曲的概率是15. 一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( A ) A.310 B.925 C.920 D.35解析:解:列表如下:==.故选解答:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是2163=,故选B . 分析:本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率. 7.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )解答:将一名只会翻译阿拉伯语用C表故选答案解答:∵是中心对称图形的有圆、菱形,解答:合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C 有2个,再根据概率公式求出概率即可..“湘潭是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交解答:∵他在该路口遇到红灯的概率为13,遇到黄灯的概率为19,2、能力提升非选择题(共5道)1.王制定一个玩飞行棋的游戏规则为:抛掷两枚均匀的正四面体骰子(四面依次标上数字1,2,3,4),掷得点数之和为5时才“可以起飞”.请你根据该规则计算“可以起飞”的概率(要求用树形图或列表法求解).解析:解:画树形图如图25-54所示,共有16种可能情况,开始开始1 2 3 4 1 2 3 41 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 图25-54 图25-55 符合要求的有4种,所以概率为14. 2.有一个不透明的口袋,装有分别标有数字1,2,3,4的4个小球(小除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积. (1)请你用列表或画树形图的方法,求摸出的这两个数的积为6的概率;(2)小敏小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.解析:解:(1)画树形图如图25-55所示,共有12种可能结果,其中积为6的情况有2种,所以两数之积为6的概率为16. (2)由树形图知积为奇数的概率为412=13,所以小敏赢的概率为13,而小颖赢的概率为23,因为13<23,所以游戏不公平.游戏规则改为积为奇数小敏得2分,积为偶数小颖得1分.(游戏规则修改不唯一)3.甲、乙两同学投掷一枚骰子,用字母户P ,q 分别表示两人各投掷一次的点数. (1)求满足关于x 的方程20x Px q ++=有实数解的概率; (2)求(1)中方程有两个相等实数解的概率.解析:只要P q ,的值满足2P q -4≥0,则关于x 的主程2x +Px +q =0有实数解;只要240P q -=,则方程有两个相等的实数解.解:把两个人投骰子的等可能结果列成表格如下:(1)P (方程2x +Px +q =0有实数解)=36. (2)P (方程2x +Px +q =0有两个相同的实数解)=236=118. 4.学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求: (1)此班这次上交作品共____件;(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程) 答案:答案见解析分析:本题考查了条形统计图及列表法和树状图的知识,解题的关键是了解直方图中每一个小长方形的高的比等于它们频数的比.(1)用第二小组的频数除以该小组的份数占总份数的多少即可求得总人数; (2)分别列举出所有可能结果后用概率的公式即可求解. 解答:(1)520402521÷=+++(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢.问这个游戏公平吗?为什么?如果不公平,请你设计一个公平的游戏规则.答案:答案见解析分析:此题主要考查了列表法或树状图求概率,注意列表时它是从中随机抽出一张(不放回),这样不可能有重复的卡片.(1)利用列表法列举出所有结果即可,注意是不放回实验;(2)利用(1)中的表格即可求出两人获胜的概率,进而判别游戏公平性.解答:(1)列表得:3、个性创新选答题(共1-3个)1.如图所示,甲乙两人准备了可以自由转动的转盘A,B,每个转盘被分成几个面积相等的扇形,并在每个扇形内标上数字.(1)只转动A转盘,指针所指的数字是2的概率是多少?(2)如果同时转动A,B两个转盘,将指针所指的数字相加,则和是负数的概率是多少?并用树形图-112-22-3-1BA或表格说明理由.(如果指针指在分割线上,那么重转一次,直到指针指向某一区域为止)解析:(1)指针指向2的概率是12. (2)树形图如图所示.因为共有12种结果,每种结果出现的可能性相同,其中和是负数的结果有7种,所以和是负数的概率是712. 开始A 转盘 1 2 3 -1B 转盘 -1 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 和 0 -1 -2 1 0 -1 1 0 -1 -2 -3 -42.现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别为2和3.从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜.请用列表法或画树状图的方法说明这个游戏是否公平.(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4,5,6三种情况,所以出现‘和为4’的概率是13”,她的这种看法是否正确?说明理由.解: (1)画树状图如下: 223 323由图可知,所有等可能的结果共有4种,其中,摸到的牌面数字相同的情况有2种,摸到的牌面数字不同的情况也有2种,所以P (小红获胜)=24=12,P (小明获胜)=24=12.所以这个游戏是公平的.(2)小丽的看法错误.两张牌的牌面数字“和为4”的概率为P (和为4)=14;两张牌的牌面数字“和为5”的概率为P (和为5)=24;两张牌的牌面数字“和为6”的概率为P (和为6)=14.所以小丽的看法不正确.4、其他题型(自由添加)。
新人教版九年级数学上册《25-2用列举法求概率》(第1课时)同步测试1.从n个苹果和3个雪梨中任选1个,若选中苹果的概率是12,则n的值是()A.6 B.3 C.2 D.12.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字.若投掷这枚骰子一次,则向上一面的数字小于3的概率是()A.12B.16C.13D.233.某校安排三辆车,组织九年级学生去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.13B.19C.12D.234.根据第六届世界合唱比赛的活动细则,每个参赛的合唱团在比赛时需演唱4首歌曲.爱乐合唱团已确定了两首歌曲,还需在A,B两首歌曲中确定一首,在C,D两首歌曲中确定另一首,则同时确定A,C为参赛歌曲的概率是__________.5.若将分别写有“生活”“城市”的2张卡片,随机放入“让更美好”中的两个内(每个只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是__________.6.如图,把1个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出1个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有涂颜色的概率.能力提升7.在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个、黄球1个、红球1个,摸出1个球记下颜色后放回,再摸出1个球,则两次都摸到红球的概率是()A.19B.13C.23D.298.在“x2□2xy□y2”的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()A.1 B.34C.12D.149.在一不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字1 2,2,4,13-,现从该口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数1yx=的图象上,则点P落在正比例函数y=x图象上方的概率是__________.10.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.他们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.“字母棋”的游戏规则为:①游戏时两人随机各摸1只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A棋胜B棋,C棋;B棋胜C棋,D棋;C棋胜D棋;D棋胜A棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C棋的概率是多少?(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸1只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸1只棋,小军在剩余的9只棋中随机摸1只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?参考答案复习巩固1.B 选中苹果的概率是12,说明苹果和雪梨的个数相等. 2.C3.A 假设有A ,B ,C 三辆车,小王和小菲搭车的情况为AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC ,共9种,其中小王与小菲同车的情况有3种.故小王与小菲同车的概率为3193=. 4.145.12“生活”“城市”放入后有两种可能性,即“生活让城市更美好”“城市让生活更美好”.所以组成“城市让生活更美好”的概率是12. 6.解:(1)因为三面涂有颜色的小正方体有8个, 所以P (三面涂有颜色)81648==; (2)因为两面涂有颜色的小正方体有24个,所以P (两面涂有颜色)243648==; (3)因为各个面都没有涂颜色的小正方体共有8个,所以P (各个面都没有涂颜色) 81648==. 能力提升7.A8.C 一共有4种情况:x 2+2xy -y 2,x 2-2xy +y 2,x 2+2xy +y 2,x 2-2xy -y 2,能构成完全平方式的有:x 2-2xy +y 2,x 2+2xy +y 2,因此能构成完全平方式的概率是2142=. 9.14 ∵点P 在反比例函数y =1x的图象上, ∴点P 的坐标分别为122⎛⎫ ⎪⎝⎭,,122⎛⎫ ⎪⎝⎭,,144⎛⎫ ⎪⎝⎭,,133⎛⎫- ⎪⎝⎭,-共有4种情况.其中落在正比例函数y =x 图象上方的点是122⎛⎫ ⎪⎝⎭,. ∴点P 落在正比例函数y =x 图象上方的概率是14. 10.解:(1)小玲摸到C 棋的概率为310.(2)小军摸到D棋的概率是49,所以在这一轮中小玲胜小军的概率是49.(3)①若小玲摸到A棋,小玲胜小军的概率是59;②若小玲摸到B棋,小玲胜小军的概率是79;③若小玲摸到C棋,小玲胜小军的概率是49;④若小玲摸到D棋,小玲胜小军的概率是1 9 .由此可见,小玲希望摸到B棋,此时胜小军的概率最大.。
用列举法求概率第1课时 直接列举法求概率 [见B 本P54]1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一球,两次都摸到黑球的概率是( A ) A.14B.13 C.12D.232.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了.她第一次就拨通电话的概率是( C ) A.12 B.14 C.16 D.183.若从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为( A ) A.12 B.34 C.13 D.14【解析】∵从长度分别为3,5,6,9的四条线段中任取三条的可能结果有:3,5,6;3,5,9;3,6,9;5,6,9;能组成三角形的有:3,5,6;5,6,9; ∴能组成三角形的概率为12.4.在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后,然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是__29__.5.从1,2,3,4,5中任取一个数作为十位上的数,再从2,3,4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是__13__.【解析】 所组成的所有两位数为12,13,14,22,23,24,32,33,34,42,43,44,52,53,54,共15种情形,其中是3的倍数的有12,24,33,42,54,共5种情形,∴P =515=13.6.小红有A ,B ,C ,D 四种颜色的衬衫,又有E ,F 两种颜色的裤子,若他喜欢的是A 衬衫配E 裤子,则黑暗中,她随机拿出一套恰好是她最喜欢的搭配的概率是__18__.7.一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表的方法,求出两次摸出的球上的数字之和为偶数的概率. 解: 列表(如下表所示)∴两次摸出球上的数字之和为偶数的概率为59.8.如图25-2-1,有四张背面相同的纸牌A ,B ,C ,D ,其正面分别是红桃,方块,黑桃,梅花,其中红桃,方块为红色,黑桃,梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.图25-2-1(1)用列表法表示两次摸牌所有可能出现的结果(纸牌用A ,B ,C ,D 表示);(2)求摸出的两张纸牌同为红色的概率.解: (1)列表法:。
人教版 九年级数学 25.2 列举法求概率一、选择题(本大题共10道小题) 1. 2019·大连 不透明袋子中装有红、绿小球各一个,这些小球除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A.23B.12C.13D.142. 有一首《对子歌》中写道“天对地,雨对风,大陆对长空”.现有四张书签,除正面分别写有“天”“地”“雨”“风”四个字外其他均无区别.从这四张书签中随机抽取两张,则抽到的书签正好配成“对子”的概率是( ) A.12B.13C.14D.163. 一个布袋里装有2个红球、3个黄球和5个白球,这些球除颜色不同外其他都相同.搅匀后任意摸出1个球,是白球..的概率为( ) A.12B.310C.15D.7104. 小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么小李获胜的概率为( )A.1325B.1225C.425D.125. 2019·广西“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从图书馆、博物馆、科技馆三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A.13B.23C.19D.296.某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( ) A. 12 B. 13 C. 14 D. 167. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.128. 2018·梧州小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A.127B.13C.19D.299. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( ) A.19B.127C.59D.1310. 书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A.310B.625C.925D.325二、填空题(本大题共8道小题)11. 2019·邵阳不透明袋中装有大小、形状、质地完全相同的4个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是________.12. (2019·浙江台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是__________.13. (2019·甘肃陇南)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).14. 同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上,一枚硬币反面向上的概率是________.15. 如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是________.16. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是________.17. 如图,A是正方体小木块(质地均匀)的一个顶点,将小木块随机投掷在水平桌面上,则点A与桌面接触的概率是________.18. 点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.三、解答题(本大题共4道小题)19. 上海世博会门票的价格如下表所示:指定日普通票200元平日优惠票100元…………某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种票至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选一种方案购票,求恰好选到11张门票的概率.20. “共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图41-K-2是四位院士(依次记为A,B,C,D),为了让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A,B,C,D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报.求小明和小华查找同一位院士资料的概率.21. 在学习“轴对称现象”时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明在这三件文具中任取一件,结果是轴对称图形的概率是________;(2)小明把A,B两把三角尺的各任意一个角拼在一起(无重叠、无缝隙),得到一个更大的角,请画树状图或列表求这个角是钝角的概率.22. 想经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.人教版九年级数学25.2 列举法求概率-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】B[解析] 画树状图如下:由树状图知,共有12种等可能的结果,其中抽到的书签正好配成“对子”的有4种结果,所以抽到的书签正好配成“对子”的概率为1 3.3. 【答案】A4. 【答案】A[解析] 画树状图如下:共有25种等可能的结果,两人出拳的手指数之和为偶数的结果有13种,所以小李获胜的概率为1325.故选A.5. 【答案】A6.2种,则P =212≥16.7. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.8. 【答案】D[解析] 如图,用A ,B ,C 分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P (三人摸到球的颜色都不相同)=627=29.9. 【答案】A[解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a,b,c为边长的三边形是等边三角形的概率是327=19.故选A.10. 【答案】A[解析] 3本小说分别记作A,B,C,2本散文分别记作D,E.一共有20种等可能的结果,其中2本都是小说的结果有6种,因此随机抽取2本都是小说的概率是3 10.二、填空题(本大题共8道小题)11. 【答案】16[解析] 画树状图如下:由树状图知,共有12种等可能的结果,其中取出2个小球的颜色恰好是一红一蓝的结果有2种,所以取出2个小球的颜色恰好是一红一蓝的概率为212=16.故答案为16.12. 【答案】4 9【解析】画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为49;故答案为:49.13. 【答案】0.5【解析】因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为:0.5.14. 【答案】12 [解析] 同时抛掷两枚硬币共有4种等可能的结果,即正正,正反,反正,反反,其中一正一反的结果有2种, 所以所求概率=24=12.15. 【答案】23 [解析] 因为随机闭合开关S1,S2,S3中的两个,共有3种情况:S1S2,S1S3,S2S3,能让灯泡发光的有S1S2,S1S3两种情况, 所以随机闭合两个,能让灯泡发光的概率为23.16. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.17. 【答案】12 [解析] 正方体小木块共有6个面,其中包含点A 的面有3个,所以P(点A 与桌面接触)=36=12.18. 【答案】15 [解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果有4种,所以点P(a ,b)在平面直角坐标系中第二象限内的概率为420=15.三、解答题(本大题共4道小题)19. 【答案】(2)张门票的方案只有1种,因此恰好选到11张门票的概率是16.20. 【答案】解:根据题意画树状图如下:共有16种等可能的结果,其中小明和小华查找同一位院士资料的结果有4种,所以小明和小华查找同一位院士资料的概率为416=14.21. 【答案】解:(1)23(2)画树状图如图所示.一共有9种等可能的结果,其中能得到钝角的结果有6种,所以这个角是钝角的概率是69=23.22. 【答案】(1)根据题意,画出树状图如下:故P(三辆车全部同向而行)=19. (2)P(至少有两辆车向左转)=727.(3)依题意得,汽车右转、左转、直行的概率分别为25,310,310,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下: 左转绿灯亮的时间为90×310=27(秒); 直行绿灯亮的时间为90×310=27(秒); 右转绿灯亮的时间为90×25=36(秒).。
课题名称:25.2.1用列举法求概率1、基础夯实单项选择题:(共10道需有答案和解析)一、选择题3分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=nm,得到绝对值小于2的数的个数是解决本题的易错点.让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.解答:∵数的总个数有9个,绝对值小于2的数有-1,0,1共3个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是31 93故选B.分析:此题考查的是用列表法或树状图法求概率的知识.注意所选每种情况必须均等,注意概率=所求情况数与总情况数之比.由于第二个转盘不等分,所以首先将第二个转盘中的蓝色部分等分成两部分,然后画树状图,由树状图求得所有等可能的结果与可配成紫色的情况,再利用概率公式即可求得答案.解答:如图,将第二个转盘中的蓝色部分等分成两部分,中奖,所以A选项的说法错误;取出红球分析:本题考查了概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.先求出总球数,再根据概率公式解答即可.解答:因为3个红球,2个蓝球,一共是5个,从袋子中随机取出一个球,取出红球的概率是3,5故选B.分析:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格求得所有等可能的与这两个乒乓球上的数字之和大于5的情况,然后利用概率公式求解即可求得答案.解答:列表得:故选D.)=的概率.本题球的总数为1+2=3,白球的数目为2.解答:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意故选A.摸出1个,摸到白球的概率是:2÷3=239.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且如图所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为何?()分析:本题考查了概率公式和条形统计图,要知道:概率=所求情况数与总情况数之比.根据统计图求出各色纸牌的总张数及红色牌和黄色牌的张数,利用概率公式进行计算即可.解答:图中共有各色纸牌3+3+5+4=15张,分析:此题考查的是用列表法或树状图法求概率与一元二次方程判别式的知识.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+px+q=0有实数根的情况,继而利用概率公式即可求得答案.解答:画树状图得:∵x2+px+q=0有实数根,∴△=b2-4ac=p2-4q≥0,2、能力提升非选择题(共5道)1、盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是____.答案:23分析:此题考查的是用列表法或树状图法求概率与分式的定义.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后根据树状图求得所有等可能的结果与能组成分式的情况,再利用概率公式求解即可求得答案.解析:画树状图得:答案:15分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A.出现m种结果,那么事件A的概率P(A)=mn先求出将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.解答:因为将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有5种情况,分别是1,2,5;1,3,4;2,3,3;4,2,2;1,1,6;因为1,2,5两边之和小于第三边,所以错误;因为1,3,4两边之和等于第三边,所以错误因为2,3,3两边之和大于于第三边,所以正确;因为4,2,2两边之和等于第三边,所以错误;因为1,1,6两边之和小于第三边,所以错误;所以其中能构成三角形的是:2,3,3一种情况,所以截成的三段木棍能构成三角形的概率是;故答案为:1523分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是无理数的情况,再利用概率公式即可求得答案.解答:画树状图得:4.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是____.答案:1 25分析:本题考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.让习惯用左手写字的学生数除以学生总数即为所求的概率.解答:根据题意,某班共有50名同学,其中有2名同学习惯用左写字手,答案:2分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果与他们恰好参加同一项比赛的情况,利用概率公式即可求得答案.解答:画树状图得:3、个性创新选答题(共1-3个)1、现有5个质地、大小完全相同的小球上分别标有数字-1,-2,1,2,3.先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.答案:答案见解析分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.解答:(1)列表得:)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状分析:(1)总人数=参加某项的人数÷所占比例,用喜欢“舞蹈”活动项目的人数除以总人数再乘100%,即可求出喜欢“舞蹈”活动项目的人数占抽查总人数的百分比,用总人数减去其他4个小组的人数求出喜欢“戏曲”活动项目的人数;(2)根据频率的计算方法,用选中“舞蹈、声乐”这两项活动的数除以总数计算即可解答.解答:(1)根据喜欢声乐的人数为8人,得出总人数=8÷16%=50,分析:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.(1)依据题意先用列表法或画树状图法分析所有可能,即可得出答案;(2)利用所有结果与所有符合要求的总数,然后根据概率公式求出该事件的概率.解答:(1)根据题意画树形图如下:4、其他题型(自由添加)。
25.2 用列举法求概率第1课时用列表法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。
初中数学人教版九年级上学期第二十五章25.2用列举法求概率一、单选题(共4题;共8分)1.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A. B. C. D.2.如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为()A. B. C. D.3.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是4.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.二、填空题(共3题;共8分)5.两个人做游戏:每个人都从-1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为________.6.在如图所示的电路图中,当随机闭合开关, , 中的两个时,能够让灯泡发光的概率为________.7.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是________;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.三、解答题(共2题;共10分)8.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.9.现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为、,图案为“保卫和平”的卡片记为B)四、综合题(共4题;共41分)10.小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;解:树状图为:(2)求出一个回合能确定两人下棋的概率.11.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.12.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).13.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.答案解析部分一、单选题1.【答案】A【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为.故答案为:A.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.2.【答案】C【解析】【解答】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴,故答案为:C.【分析】画出树状图,找出所有等可能的结果,计算即可.3.【答案】A【解析】【解答】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;D、第一次摸出的球是红球的概率是;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是,故符合题意;故答案为:A.【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.4.【答案】B【解析】【解答】解:根据题意列树状图得:∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,∴两个指针同时指在偶数上的概率为:,故答案为:B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.二、填空题5.【答案】【解析】【解答】由题可得到树状图如下图所示:∴.故答案为.【分析】画出树状图进行求解即可;6.【答案】【解析】【解答】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足:一共有:, ,、, 、, 三种情况,满足条件的有, 、, 两种,∴能够让灯泡发光的概率为:故答案为:.【分析】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足条件,从而求算概率.7.【答案】(1)(2)解:根据题意可列表格如下:总共有9种结果,每种结果出现的可能性相同,其中两张卡片数字之和大于7的有三种:,(两张卡片数字之和大于7).【解析】【解答】解:(1)A盒里有三张卡片上,有两张是奇数,∴抽到的卡片上标有数字为奇数的概率是,故答案为:;【分析】(1)根据简单的概率公式进行计算即可;(2)用列表法列出所有等可能的情况,即可得出概率.三、解答题8.【答案】解:解法一:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P (小吉抽到两张卡片中有A卡片)= .解法二:用列表法,根据题意,列表结果如下:结果为:(第一次抽取情况,第二次抽取情况)由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.9.【答案】解:树状图如下:P(两次抽取的卡片上图案都是“保卫和平”).列表法如下表:第B一张结果第二张P(两次抽取的卡片上图案都是“保卫和平”).【解析】【分析】根据题意,采用树状图或利用列表法,表示出符合题意的所有可能,根据概率公式进行计算得到答案即可。
25.2用列举法求概率(第一课时)◆随堂检测1.飞镖随机地掷在下面的靶子上.(如图1)(1)在每一个靶子中,飞镖投到区域A 、B 、C 的概率是多少? (2)在靶子1中,飞镖投在区域A 或B 中的概率是多少? (3)在靶子2中,飞镖没有投在区域C 中的概率是多少?2.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为12,那么口袋中球的总数为( ) A .12个 B .9个 C .6个 D .3个3.将1、2、3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,那么这个点在函数y x =图象上的概率是多少?(1,1)(1,2) (1,3) (2,1)(2,2) (2,3) (3,1) (3,2) (3,3)◆典例分析将正面分别标有数字1、2、3、4、6,背面花色相同的五张卡片洗匀后,背面朝上放在桌面上,从中随机抽取两张.(1)写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率;(2)记抽得的两张卡片的数字为(a ,)b ,求点P (a ,)b 在直线2y x =-上的概率.分析:因为从五张卡片中随机抽取两张,它的可能结果是有限个,并且各种结果发生的可能性相等.因此,它可以应用“列举法”的公式概率.注意,在问题(1)中抽出的两张卡片是没有先后顺序的;在问题(2)中抽出的两张卡片是有先后顺序上的.解:(1)任取两张卡片共有10种取法,它们是:(1、2),(1、3),(1、4),(1、6),(2、3),(2、4),(2、6),(3、4),(3、6),(4、6);和为偶数的共有四种情况.故所求概率为142105P ==. 图1(2)抽得的两个数字分别作为点P 横、纵坐标共有20种机会均等的结果,在直线2y x =-上的只有(3、1),(4、2),(6、4)三种情况,故所求概率1320P =. ◆课下作业●拓展提高1.有三名同学站成一排,其中小明站在两端的概率是________.2.在组成单词“Probability ”(概率)的所有字母中任意取出一个字母,则取到字母“b ”的概率是________.3.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,求布袋中黄球的个数n . 4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率.(1)牌上的数字为奇数;(2)牌上的数字为大于3且小于6.5.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少? (提示:抽取一张(不放回),再抽取一张时,一定要注意第二次抽取的结果受到第一次结果的影响.) ●体验中考1.(,贵州省)不透明的口袋中有质地、大小、重量相同的白色球和红色球数个,已知从袋中随机摸出一个红球的概率为31,则从袋中随机摸出一个白球的概率是________. 2.(,龙岩)在3□2□(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是________.3.(,牡丹江市)现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是________.参考答案:◆随堂检测1.解:(1)在靶子1中,飞镖投在区域A 、B 、C 中的概率都是13,在靶子2中,飞镖投在区域A 的概率是12,飞镖投在区域B 、C 中的概率都是14; (2)在靶子1中,飞镖投在区域A 或B 中的概率是23;(3)在靶子2中,飞镖没有投在区域C 中的概率是34. 2.C. 口袋中球的总数为1332÷=(个). 3.解:∵从1、2、3三个数字中随机生成的点有9个,且每个点出现的可能性相等,其中在函数y x =图象上的点有(1,1)、(2,2)和(3,3)共3个,∴点在函数y x =图象上的概率是3193=. ◆课下作业●拓展提高1.23. 2.211. 3.解:由题意得,425n n =+,解得n =8. 4.解:任抽一张牌,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可能性相同.(1)P(点数为奇数)=3/6=1/2;(2)牌上的数字为大于3且小于6的有4,5两种,∴P (点数大于3且小于6)=1/3.5.解:能组成的两位数有12,13,21,23,31,32.恰好是“32”的概率为16. ●体验中考 1.32. 2.. 3.. 从四条线段中任选三条有四种等可能的结果,其中不能组成三角形的是(2,3,5)一种,故能组成三角形的概率是.213434。
人教版数学九年级上第25章《概率初步》全章同步练习与单元测试25.1 随机事件与概率25.1.1 随机事件25.1.2 概率25.2 用列举法求概率第1课时用列表法求概率第2课时用树状图求概率25.3 用频率估计概率125.3 用频率估计概率2综合练习单元测试人教版数学九年级上同步练习第二十五概率初步25.1 随机事件与概率25.1.1 随机事件一、选择题1.(3分)(2007•遂宁)下列事件中,哪一个是确定事件?()A.明日有雷阵雨B.小胆的自行车轮胎被钉扎环C.小红买体彩中奖D.抛掷一枚正方体骰子,出现7点朝上2.(3分)(2009•朝阳)下列事件中,属于不确定事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套正在播放新闻联播A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件5.(3分)(2012•泰州)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是()6.(3分)(2012•龙岩)一个不透明的布袋里有30个球,每次摸一个,摸一次就一定摸到二、填空题7.(3分)从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是.8.(3分)一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性.9.(3分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中的可能性较小.10.(3分)3张飞机票2张火车票分别放在五个相同的盒子中,小亮从中任取一个盒子决定出游方式,则取到票的可能性较大.11.(3分)在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是.12.(3分)在线段AB上任三点x1、x2、x3,则x2位于x1与x3之间的可能性(填写“大于”、“小于”或“等于”)x2位于两端的可能性.13.(3分)(2012•崇左)“明天的太阳从西方升起”这个事件属于事件(用“必然”、“不可能”、“不确定”填空).三、解答题14.应用题:在一个不透明的口袋中,装着10个大小和外形完全相同的小球,其中有5个红球,3个蓝球,2个黑球,把它们搅匀以后,请问:下列哪些事件是必然事件,哪些是不可能事件,哪些是不确定事件.(1)从口袋中任意取出一个球,它刚好是黑球.(不确定事件)(2)从口袋中一次取出3个球,它们恰好全是蓝球.(不确定事件)(3)从口袋中一次取出9个球,恰好红,蓝,黑三种颜色全齐.(必然事件)(4)从口袋中一次取出6个球,它们恰好是1个红球,2个蓝球,3个黑球.(不可能事件)15.(2013•昆山市一模)(1)已知:甲篮球队投3分球命中的概率为,投2分球命中的概率为,某场篮球比赛在离比赛结束还有1min,时,甲队落后乙队5分,估计在最后的1min,内全部投3分球还有6次机会,如果全部投2分球还有3次机会,请问选择上述哪一种投篮方式,甲队获胜的可能性大?说明理由.(2)现在“校园手机”越来越受到社会的关注,为此某校九年级(1)班随机抽查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图(如图所示,图②表示家长的三种态度的扇形图)1)求这次调查的家长人数,并补全图①;2)求图②表示家长“赞成”的圆心角的度数;3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?参考答案一、选择题 1.D 2.C 3.C 4.B 5.D 6.D二、填空题7.随机事件 8.相等 9.判断题 10.飞机 11.减少有效分中有受贿裁判评分的可能性 12.小于 13.不可能人教版数学九年级上同步练习 25.1.2 概率1.在大量重复进行同一试验时,随机事件A 发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A 的______.2.在一篇英文短文中,共使用了6000个英文字母(含重复使用),其中“正”共使用了900次,则字母“正”在这篇短文中的使用频率是______.(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______.4.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%5.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .956.某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?7.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).8.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元)如果花2______ 9.下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等 10.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个D .15个11.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21 B .31 C .51 D .101 12.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地 按一下密码的最后一位数字,正好按对密码的概率有多少?13.某地区近5年出生婴儿性别的调查表如下:完成该地区近5年出生婴儿性别的调查表,并分别求出出生男孩和女孩概率的近似值.(精确到0.001)14.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗?若不同意,你将怎样纠正他的结论.15.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗?说说你的理由.16.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______;(2)摸到红球的概率等于______; (3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______; (5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).人教版数学九年级上同步练习 25.2 用列举法求概率第1课时 用列表法求概率1.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是( ) A 、18 B 、13 C 、38 D 、352.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )A 、14B 、13C 、12D 、233.一辆汽车在一笔直的公路上行驶,途中要经过两个十字路口.那么在两个十字路口都能直接通过(都是绿灯)的概率是_____________.4.袋子内装有除颜色外其余都相同的3个小球,其中一个红球,两个黄球.现连续从中摸两次(不放回),则两次都摸到黄球的概率是____________.5. A 、B 两个口袋中均有3个分别标有数字1、2、3的相同的球,甲、乙两人进行玩球游戏.游戏规则是:甲从A 袋中随机摸一个球,乙从B 袋中随机摸一个球,当两个球上所标数字之和为奇数时,则甲赢,否则乙赢.问这个游戏公平吗?为什么?6.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?(3)妞妞和爸爸出相同手势的概率是多少?7.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.8.桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中随机抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中随机抽出一张,记下卡片上的数字,然后将这两数相加;(1)请用列表或画树形图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?9.小明为了检验两枚六个面分别刻有点数1、2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 000次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.用列举法求概率 1.C 2.D 3.19 4.135.不公平 下面列举所有可能出现的结果: 由此可知,和为奇数有4种,和为偶数有5种 ∴甲赢的概率为4/9,乙赢的概率为5/9 ∴不公平 6.(1)13,(2) 13,(3) 137.(1) 列表:由表中可知,得到的两位数共有9种 (2) 98.(1)列表如下:由列表可得:P (数字之和为5)=41 (2)因为P (甲胜)=41,P (乙胜)=43 ∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:4312=÷(分) 9.列表如下:由表中可知,和为7的概率为6,2000033336⨯≈.而20远远小于3333因而这两个骰子不可能都合格.人教版数学九年级上同步练习 第2课时 用树状图求概率1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113 B .118 C .1411 D .1432.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ). A .1B .101 C .1001 D .10001 3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.(1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:(1)三辆车全部直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支.12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31 B .41 C .51 D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ). A .51 B .52 C .53 D .54 14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是 31求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______. 16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:(1)奇数点朝上的概率为;31(2)大于6的点数与小于3的点数朝上的概率相同.人教版数学九年级上同步练习 25.3 用频率估计概率1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”) 2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张. 3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.5.如果手头没有硬币,用来模拟实验的替代物可用( ). A .汽水瓶盖 B .骰子 C .锥体 D .两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.参考答案1.概率,频率. 2.8,12,4,26. 3.2.4.200. 5.A . 6.B .7.(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9. 8.可估计三色球总数为100%2525=个,则黄球约为40个,红球约为100-40-25=35个. 9.9. 10.⋅154;4111.可能性是;101可取3个白球和两个红球,用红球代表过了保质期的饮料,从这5个球中任取两个,这两个均为红球的概率即为所求.12.(1)10010052000=⨯(支),估计箱子里有100支不合格产品; (2)0.5×(2000-100)-1×100=850(元),这箱笔芯能赚钱,赚了850元.13.(1)先求有标记数与总条数的比,67928得池塘鱼数242567928100=÷=条,估计可能不太准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.14.从袋中随机摸取一球,记下颜色放回摇匀,摸20次为一次实验,若摸出n 个橙球,则摸到橙球的频率为;20n 重复多次实验,用实验频率估计理论概率;用2030n÷求出袋中球的总数,再用总数减去30个橙球数,就得出放进去的白球数.15.首先统计出联通用户数量m ,然后随机调查1000名手机用户,如果其中有n 名中国联通用户,则可估计对手的市场占有率为,10001n-对手用户数量为m nm -1000名. 16.方案一:从口袋中摸出10粒棋子做上标记,然后放回口袋.拌匀后从中摸出20粒棋子,求出标记的棋子与20的比值,不断重复上述过程30次,有标记的棋子与20的比值的平均数为,1m则估计袋中棋子有10m 粒. 方案二:另拿10粒黑色棋子放到袋中,拌匀后,重复方案一中的过程.黑棋子与20的比值平均数为,1n估计袋中原有白棋子(10n -10)粒.人教版数学九年级上同步练习 25.3 用频率估计概率1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______.5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361 B .181 C .61 D .21 6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( ) A .8000条 B .4000条 C .2000条 D .1000条7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下(1)请估计:当很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法. 8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m ,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1m 的圆,在不远处向圈内掷石子,且记录如下:13.地面上铺满了正方形的地砖(40cm ×40cm).现在向其上抛掷半径为5cm 的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员; (3)敌国的士气不振. 因此,他向本国发回消息:“敌国已基本失去战斗力”. 你认为这名间谍的消息正确吗?参考答案1.近似值,0. 2.1,30,6. 3.300. 4.⋅515.C . 6.B .7.(1)0.6;(2)0.6,0.4;(3)白球12,黑球8; (4)尝试自己设计出一种方案与同学交流. 8.能.设男教师人数为x ,则,200805050=+x 解得x =75,估计该校约有75位男教师.。
用列举法求概率同步测试试题(一)一.选择题1.经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是()A.B.C.D.2.一个不透明的布袋中有分别标着数字1、2、3、6的四个乒乓球(除标数不同外,没有其它区别),现从袋中随机一次摸出两个乒乓球,则这两个球上的数字之积为6的概率为()A.B.C.D.3.从长度分别为2、6、7、9的4条线段中任取3条作三角形的边,能组成三角形的概率为()A.B.C.D.4.一个盒子里有完全相同的四个小球,球上分别标有﹣2,0,1,2,随机从盒子里摸出两个小球,上面的数字之和不为0的概率为()A.B.C.D.5.某校有A,B两个电脑教室,甲,乙,丙三名学生各自随机选择其中的一个电脑教室上课.求甲,乙,丙三名学生在同一个电脑教室上课的概率()A.B.C.D.6.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.7.现有四根长3cm、4cm、7cm、9cm的木棒,任取其中的三根,首尾相连后,能组成三角形的概率为()A.B.C.D.8.如图所示的两个转盘分别被均匀地分成3个和4个扇形如图所示的两个转盘分别被均匀地分成3个和4个扇形,每个扇形上都标有一个实数.同时自由转动两个转盘,转盘停止后(若指针指在分格线上,则重转),两个指针都落在无理数上的概率是()A.B.C.D.9.某奥体中心的构造如图所示,其东、西面各有一个入口A、B,南面为出口C,北面分别有两个出口D、E.聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为()A.B.C.D.10.5月19日为中国旅游日,宁波推出“读万卷书,行万里路,游宁波景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从奉化溪口、象山影视城、宁海浙东大峡谷中随机选择一个地点;下午从宁波动物园、伍山石窟、东钱湖风景区中随机选择一个地点游玩,则王先生恰好上午选中宁海浙东大峡谷,下午选中东钱湖风景区这两个地的概率是()A.B.C.D.二.填空题11.袋中有3个小球,分别为2个红球和1个黄球,它们除颜色外完全相同.一次随机取出两个小球,则取出的两个小球颜色相同的概率为.12.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.13.在一个不透明的盒子里装有3个分别标有数字1,2,3的小球,它们除数字外其他均相同,充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为.14.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.15.如图1,一张纸条上依次写有10个数,如图2,一卡片每次可以盖住纸条上的3个数,那么随机地用卡片盖住的3个数中有且只有一个是负数的概率.三.解答题16.临近期末考试,心理专家建议考生可通过以下四种方式进行考前减压:A.享受美食,B.交流谈心,C.体育锻炼,D.欣赏艺术.(1)随机采访一名九年级考生,选择其中某一种方式,他选择“享受美食”的概率是.(2)同时采访两名九年级考生,请用画树状图或列表的方法求他们中至少有一人选择“欣赏艺术”的概率.17.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3的3个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为6,则可获得50元代金券一张;若所得的数字之和为5,则可获得30元代金券一张;若所得的数字之和为4,则可获得15元代金券一张;其它情况都不中奖.(1)请用列表或树状图的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来.(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率.18.现有A,B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为6的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜,请问这样的游戏规则对甲乙双方公平吗?为什么?19.“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.参考答案与试题解析一.选择题1.【解答】解:画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果;由“树形图”知,两辆汽车一辆左转,一辆右转的结果有2种,且所有结果的可能性相等,∴P(两辆汽车一辆左转,一辆右转)=.故选:C.2.【解答】解:画树状图得:∵共有12种等可能的结果,这两个球上的数字之积为6的有4种情况,∴这两个球上的数字之积为6的概率为:=.故选:C.3.【解答】解:∵从长度分别为2、6、7、9的4条线段中任取3条作三角形的边,等可能的结果有:2、6、7;2、6、9;2、7、9;6、7、9,且能组成三角形的有:2、6、7;6、7、9;∴能组成三角形的概率为:=.故选:B.4.【解答】解:列树状图得,,数字之和不为0的有10种情况,P==.5.【解答】解:如图:P(三人在同一电脑室)==.故选:C.6.【解答】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故选:A.7.【解答】解:∵现有四根长3cm、4cm、7cm、9cm的木棒,任取其中的三根,可能结果有:3cm、4cm、7cm;3cm、4cm、9cm;3cm、7cm、9cm;4cm、7cm、9cm;其中首尾相连后,能组成三角形的有:3cm、7cm、9cm;4cm、7cm、9cm;∴任取其中的三根,首尾相连后,能组成三角形的概率为:=.故选:D.8.【解答】解:(π,),(π,),(π,sin60°),(π,3.14),(2,),(2,),(2,sin60°),(2,3.14),(1,),(1,),(1,sin60°),(1,3.14).可知共有3×4=12种可能,两个指针都落在无理数上的有(π,)和(π,sin60°)2种,所以两个指针都落在无理数上的概率是=.故选:C.9.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设聪聪从入口A进入展览厅并从北面出口离开的概率是P,∵聪聪从入口A进入展览厅并从北面出口离开的有2种情况,∴P=.故选:C.10.【解答】解:列树状图为,王先生恰好上午选中宁海浙东大峡谷,下午选中东钱湖风景区这两个地的概率是P=,故选:A.二.填空题(共5小题)11.【解答】解:画树状图如下:由树状图可知,共有6种等可能结果,其中取出的两个小球颜色相同的有2种结果,∴取出的两个小球颜色相同的概率为=,故答案为:.12.【解答】解:一共有3种情况,这个两位数是0的有1种情况;∴P(两数和为0)=.故本题答案为:.13.【解答】解:如图由树状图可知,一共有6种可能,两个球上的数字之和为奇数的有4种可能,∴这两个球上的数字之和为奇数的概率==,故答案为.14.【解答】解:设A是等腰三角形,B是平行四边形,C是圆,画树状图得,∴一共有9种情况,∵B与C时中心对称图形,∴摸出两张牌面图形都是中心对称图形的纸牌有4种;∴摸出两张牌面图形都是中心对称图形的纸牌的概率是,故答案为:.15.【解答】解:用卡片随机地盖住纸条上的3个数,共有8个等可能结果.其中有且只有一个是负数的结果有4个,所以所求的概率==.三.解答题(共4小题)16.【解答】解:(1)随机采访一名九年级考生,选择其中某一种方式有4种等可能结果,他选择“享受美食”的只有1种结果,∴他选择“享受美食”的概率是,故答案为:.(2)画树状图为:共有16种等可能的结果数,其中他们中至少有一人选择“欣赏艺术”的结果数为7, ∴他们中至少有一人选择“欣赏艺术”的概率为.17.【解答】解:(1)列表如下:1 2 3 1 2 3 4 2 3 4 5 3456(2)由表可知,共有9种等可能结果,其中能中奖的有6种结果, ∴能中奖的概率为=.18.【解答】解:(1)随机地从A 中抽取一张,抽到数字为6的概率为;(2)不公平,理由如下: 画树状图如下:从树状图中可知共有6个等可能的结果,而所选出的两数之积为3的倍数的有4种情况. ∴P (甲获胜)==,而P (乙获胜)=1﹣=, ∵P (甲获胜)>P (乙获胜),∴这样的游戏规则对甲乙双方不公平.19.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人), 扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60,90.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.。