人教版九年级数学试卷
- 格式:doc
- 大小:324.00 KB
- 文档页数:4
人教版九年级上册数学试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 4 = 0的解是()A. x = 2B. x=-2C. x = ±2D. x=±42. 二次函数y = x^2+2x - 3的顶点坐标是()A. (-1,-4)B. (1,-4)C. (-1,4)D. (1,4)3. 已知关于x的一元二次方程(m - 1)x^2+2x + 1 = 0有实数根,则m的取值范围是()A. m≤slant2且m≠1B. m≥slant2且m≠1C. m≤slant2D. m≥slant24. 抛物线y = -2(x - 3)^2+5的对称轴是()A. x = 3B. x=-3C. x = 5D. x=-55. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x + 2)^2+1B. y = 3(x - 2)^2+1C. y = 3(x + 2)^2-1D. y = 3(x - 2)^2-16. 若关于x的方程x^2-kx - 12 = 0的一个根为3,则k的值为()A. -1B. 1C. -5D. 5.7. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆。
8. 在同一坐标系中,一次函数y = ax + c和二次函数y = ax^2+c的图象大致为()(此处给出四个选项的图象组合)9. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,对称轴为直线x = 1,下列结论中正确的是()(此处给出一个二次函数图象)A. ac>0B. 当x>1时,y随x的增大而增大。
C. 2a + b = 0D. b^2-4ac<010. 对于二次函数y = -x^2+2x,有下列四个结论:它的对称轴是直线x = 1;设y_1=-x_1^2+2x_1,y_2=-x_2^2+2x_2,则当x_1时,y_1>y_2;它的图象与x轴的两个交点是(0,0)和(2,0);④当0 < x < 2时,y>0。
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。
人教版九年级(上)期末数学试卷第I卷(选择题)一、选择题(本大题共16小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1.一元二次方程x2+6x+5=0的常数项是( )A. 0B. 1C. 5D. 都不对2.如图所示图形中是中心对称图形的是( )A. 正三角形B. 等腰三角形C. 直角三角形D. 圆3.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是( )A. ∠D=∠BB. ∠E=∠CC. ADAB =AEACD. ADAB =DEBC4.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是( )A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位5.如图,在△ABC中,DE//BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A. 23B. 12C. 34D. 356.下列事件中,是随机事件的是( )第2页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 太阳从西边升起B. △ABC 中,AB 与AC 的和比BC 大C. 两个负数相乘,积为正D. 两个数相加,和大于其中的一个加数7. 如图,在一块宽为20m ,长为32m 的矩形空地上,修筑宽相等的两条小路,两条路分别与矩形的边平行,如图,若使剩余(阴影)部分的面积为560m 2,问小路的宽应是多少?设小路的宽为xcm ,根据题意得( )A. 32x +20x =20×32−560B. 32×20−20x ×32x =560C. (32−x)(20−x)=560D. 以上都不正确8. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小9. 如图,已知⊙O 的半径为4,则它的内接正方形ABCD 的边长为( )A. 1B. 2C. 4√2D. 2√210. 如图,在平面直角坐标系xOy 中,点P 为函数y =4x(x <0)图象上任意一点,过点P 作PA ⊥x 轴于点A ,则△PAO 的面积是( )A. 8B. 4C. 2D. −211. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,若∠P =70°,则∠ABO =( )A. 30°B. 35°C. 45°D. 55°12.下列关于二次函数y=2x2的说法正确的是( )A. 它的图象经过点(−1,−2)B. 它的图象的对称轴是直线x=2C. 当x<0时,y随x的增大而减小D. 当x=0时,y有最大值为013.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC= 150cm,CD=800cm,则树高AB等于( )A. 300cmB. 400cmC. 550cmD. 都不对14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A. 10B. 15C. 20D. 都不对15.如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )A. (1,0)B. (0,1)C. (−1,0)D. (0,−1)16.如图,△ABC和阴影三角形的顶点都在小正方形的顶点上,则与△ABC相似的阴影三角形为( )A. B. C. D.第II卷(非选择题)二、填空题(本大题共3小题,共12.0分)17.二次函数y=2(x−1)2−5的开口方向______,最小值是______.18.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABD与△A′B′D′的周长之比为______.△ABC与△A′B′C′的面积之比为______.第4页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………19. 已知一次函数y 1=kx +m(k ≠0)和二次函数y 2=ax 2+bx +c(a ≠0)部分自变量与对应的函数值如下表x … −1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…−159…当y 2=y 1时,自变量x 的取值是______,当y 2>y 1时,自变量x 的取值范围是______.三、解答题(本大题共7小题,共66.0分。
数学九年级上册试卷人教版【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > 0, b < 0,则下列哪个选项是正确的?A. a b > 0B. a b < 0C. a + b > 0D. a + b < 02. 已知一组数据:2, 3, 5, 7, 11,其平均数是多少?A. 4B. 5C. 6D. 73. 二次方程 x^2 5x + 6 = 0 的解是:A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = -2 或 x = -3D. x = -1 或 x = -64. 下列哪个图形是中心对称的?A. 矩形B. 正方形C. 圆D. 三角形5. 如果sinθ = 1/2,那么θ 的度数是多少?A. 30°B. 45°C. 60°D. 90°二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 对角线互相垂直的四边形是菱形。
()3. 一元二次方程的解一定是两个实数根。
()4. 相似三角形的对应边长成比例。
()5. 平行线的斜率相等。
()三、填空题(每题1分,共5分)1. 平方差公式是:a^2 b^2 = _______。
2. 一元二次方程 ax^2 + bx + c = 0 的判别式是 _______。
3. 如果一个三角形的两边长分别是 3 和 4,那么第三边的长度可能是 _______。
4. 二项式定理是: (a + b)^n = _______。
5. 圆的标准方程是: (x h)^2 + (y k)^2 = _______。
四、简答题(每题2分,共10分)1. 解释什么是二次函数的顶点。
2. 简述勾股定理。
3. 什么是相似三角形?4. 解释什么是函数的单调性。
5. 什么是坐标轴?五、应用题(每题2分,共10分)1. 一个长方形的周长是 24cm,长是宽的两倍,求长和宽。
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
人教版九年级数学试卷及答案5篇第一篇:单元一测验试卷及答案----------------------------------------试卷姓名:_________________ 班级:________________ 学号:_________________一、选择题(每小题2分,共40分)1. 下列选项中,哪项是一个真分数?A. 5/4B. -3/5C. 10/3D. 8/72. 已知甲、乙两数的和为30,甲数是乙数的2/3,那么乙数是多少?A. 12B. 15C. 18D. 203. 下列各数中,不是质数的是:A. 7B. 11C. 13D. 154. 若每支钢笔10元,Tom用50元能买几支?A. 5B. 10C. 15D. 205. 一个矩形的长是3.5cm,宽是2cm,它的面积是多少?A. 7.5cm²B. 5cm²C. 8cm²D. 6.5cm²...答案一、选择题(每小题2分,共40分)1.A2.D3.D4.A5.A6.B7.C8.D9.C 10.B11.C 12.B 13.D 14.A 15.C16.B 17.A 18.C 19.C 20.B二、填空题(每小题2分,共20分)21. 75 22. 6.25 23. 1/2 24. 17 25. 0.0126. -2 27. 256 28. -7 29. -0.2 30. 120三、解答题(每小题10分,共50分)31. 解:...(略)第二篇:单元二测验试卷及答案----------------------------------------试卷姓名:_________________ 班级:________________ 学号:_________________一、选择题(每小题2分,共40分)1. 下列等式中,正确的是:A. 5x + 3 = 8B. 2x + 7 > 4x - 3C. 3x - 2 < 7x + 5D. 4x +6 ≤ 3x + 22. 以下哪个图形一定是正方形?A. 长方形B. 正三角形C. 菱形D. 矩形3. 根据图及所给的信息,判断“△ABC相似于△DEF”是否正确:A. 正确B. 不正确(图略)答案一、选择题(每小题2分,共40分)1.A2.D3.A二、填空题(每小题2分,共20分)无三、解答题(每小题10分,共50分)无...第五篇:单元五测验试卷及答案----------------------------------------试卷姓名:_________________ 班级:________________ 学号:_________________一、选择题(每小题2分,共40分)1. 已知函数f(x) = 2x - 3,那么f(4)的值是多少?A. -2B. 5C. 11D. 292. 某超市原价100元的商品打98折,现在的价格是多少?A. 88元B. 98元C. 108元D. 200元3. 如图,若直线a与直线b平行,直线c与直线b垂直,那么直线a与直线c的关系是:A. 平行B. 垂直答案一、选择题(每小题2分,共40分)1.B2.A3.B二、填空题(每小题2分,共20分)无三、解答题(每小题10分,共50分)无...以上为人教版九年级数学试卷及答案5篇的示例,具体试卷和答案内容可以根据需要进行调整和编写。
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.在下列二次函数中,图象的开口向下,顶点坐标为(-2,-1)的是( ) A .22()1y x =-+ B .2(2)1=---y x C .2(2)1y x =++D .2(2)1y x =-+-3.下列事件中,是必然事件的是( )A .篮球队员在罚球线上投篮一次,未投中B .13个人中至少有两个人生肖相同C .车辆经过有交通信号灯的路口,遇到红灯D .明天一定会下雨 4.反比例函数1y x=-的图象不经过( )A .第一、二象限B .第二、四象限C .第一、四象限D .第一、三象限 5.如图,AB 是⊙O 的直径,点C 在⊙O 上,36ACO ∠=︒,则B 的度数等于( )A .36°B .44°C .54°D .60°6.一元二次方程22560x x p -+-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定 7.把函数()212y x =-+的图象先向右平移2个单位长度,再向下平移1个单位长度,平移后图象的函数解析式为( )A .()211y x =++B .()231y x =-+C .()213y x =++ D .()233y x =-+8.如图,四边形ABCD 内接于⊙O ,115BCD ∠=︒,则BOD ∠的度数是( )A .130°B .120°C .1l5°D .105°9.如图,P 是等边ABC 外一点,把BP 绕点B 顺时针旋转60°到1BP ,已知1150APB ∠=︒,11:1:2P A PC =,则1:PB P A =( )A B .2:1 C .3:1 D10.如图,抛物线2y ax bx c =++的顶点坐标是()1,n ,以下结论:⊙0abc >;⊙30a c +<;⊙520a b c -+>;⊙()24b a c n =-.正确的有( )A .1个B .2个C .3个D .4个二、填空题11.已知二次函数21y x =+,当0x <时,y 随x 的增大而________.(填“增大”或“减小”) 12.为了估计鱼塘中鱼数,养鱼者首先从鱼塘中打捞200条鱼,在每条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,发现其中50条鱼有标记,则鱼塘中鱼的条数大约有________条.13.如图,以点O 为圆心的两个同心圆的半径分别等于3和6,大圆的弦AB 是小圆的切线,则AB =________.14.如果m 是方程210x x -+=的一个根,那么代数式()1m m -的值等于________. 15.点()1,2A a +和点()3,1B a -均在反比例函数ky x=(k 为常数,0k ≠)的图象上,则=a ________.16.已知一个圆锥的母线长为3cm ,它的侧面展开图是一个圆心角为120°的扇形,则这个圆锥的底面圆的半径等于________cm .17.如图,ABC 的内切圆⊙O 分别与AB ,AC ,BC 相切于点D ,E ,F .若90C ∠=︒,6AC =,8BC =,则⊙O 的半径等于________.三、解答题18.解方程:(25)410x x x -=-19.一个不透明的口袋中有4个完全相同的小球,把它们分别标号为A ,B ,C ,D .随机抽出一个小球然后放回,再随机抽出一个小球.(1)请用列表法或画树状图法列举出两次抽出的球的所有可能结果; (2)求两次抽出的小球的标号不相同的概率.20.如图,在ABC 中,90BAC ∠=︒,通过尺规作图(作图痕迹如图所示)得到的射线与AC 相交于点P .以点P 为圆心,AP 为半径的圆与尺规作图得到的射线的一个交点为F ,连接AF .(1)求证:BC 是⊙P 的切线;(2)若56ABC ∠=︒,求AFP ∠的大小. 21.已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点()2,6A . (1)求这个函数的解析式;(2)判断点()3,4B -,142,425C ⎛⎫-- ⎪⎝⎭是否在这个函数的图象上,并说明理由;(3)当42x -<<-时,求y 的取值范围. 22.已知抛物线22y x x c =++.(1)若抛物线与x 轴有两个公共点,求c 的取值范围;(2)当3c =-时,在平面直角坐标系中画出这条抛物线,并根据图象,直接写出函数值y 为正数时,自变量x 的取值范围.23.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,通过调查发现,这种水产品的销售单价每涨价1元,月销售量就减少10千克.现商店把这种水产品的售价定为x (单位:元/千克).(1)填空:每月的销售量是 千克(用含x 的代数式表示);(2)求月销售利润y (单位:元)与售价x (单位:元/千克)之间的函数解析式; (3)商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24.如图,AB 是O 的直径,点C ,D ,E 分别是⊙O 上异于A ,B 的三点,弦CD 与直径AB 相交于点H ,E ADC ∠=∠,过点D 作⊙O 的切线交AB 的延长线于点F .(1)求证:AB CD ⊥;(2)若点B 是OF 的中点,求证:DAF △是等腰三角形.25.如图,一次函数y =k 1x+b 的图象与反比例函数y =2k x的图象相交于A ,B 两点,点A 的坐标为(﹣1,3),点B 的坐标为(3,n ). (1)求这两个函数的表达式;(2)点P 在线段AB 上,且S⊙APO :S⊙BOP =1:3,求点P 的坐标.26.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1). (1)求反比例函数和一次函数的解析式; (2)求⊙AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.27.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当⊙PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使⊙MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案1.A2.D3.B4.D5.C 6.C 7.B 8.A 9.D 10.A 11.减小 12.80013.14.-1 15.5 16.1 17.2 18.152x =,22x =【详解】解:(25)2(25)0x x x ---=,(25)(2)0x x --=,250x -=或20x -=,152x =,22x =.19.(1)(A ,A),(B ,A),(C ,A),(D ,A),(A ,B),(B ,B),(C ,B),(D ,B),(A ,C),(B ,C),(C ,C),(D ,C),(A ,D),(B ,D),(C ,D),(D ,D),见解析;(2)34【分析】(1)根据题意利用列表法求出所有的结果即可得到答案;(2)根据(1)中的结果,求出标号不同的所有结果数,然后根据概率公式求解即可得到答案.【详解】解:(1)列表如下:(2)由(1)知,共有16种结果,每种结果出现的可能性相同,其中两次抽出的小球的标号不相同的结果有12种.⊙两次抽出的小球的标号不相同的概率为123164P ==. 20.(1)见解析;(2)31°【分析】(1)过点P 作PD⊙BC ,根据尺规作图可知,BP 是⊙ABC 的平分线,由⊙BAC=90°得,PA⊙AB ,再根据角平分线的性质和切线的判定可得;(2)由(1)可知,以及角平分线的性质得,⊙ ABP=12⊙ABC ,求出⊙APB 的度数,再根据等腰三角形以及三角形的外角的性质即可求出; 【详解】(1)证明:过点P 作PD BC ⊥,垂足为D 由尺规作图知,BP 是ABC ∠的平分线;由90BAC ∠=︒得,PA AB ⊥ ⊙PD PA = ⊙BC 是P 的切线(2)解:由(1)得,11562822ABP ABC ∠=∠==︒⨯︒⊙9062APB ABP ∠=-∠=︒︒ ⊙1312AFP APB ∠=∠=︒21.(1)12y x =;(2)点()3,4B -不在函数12y x =的图象上,点142,425C ⎛⎫-- ⎪⎝⎭在函数12y x =的图象上,见解析;(3)63y -<<-【分析】(1)把点A 的坐标代入已知函数解析式,通过方程即可求得k 的值.(2)只要把点B 、C 的坐标分别代入函数解析式,横纵坐标坐标之积等于12时,即该点在函数图象上;(3)根据反比例函数图象的增减性解答问题. 【详解】解:(1)⊙反比例函数ky x=的图象经过点()2,6A . ⊙62k=解得12k =⊙反比例函数的解析式为12y x=(2)⊙()3412⨯-≠,14241225⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭⊙点()3,4B -不在函数12y x =的图象上,点142,425C ⎛⎫-- ⎪⎝⎭在函数12y x =的图象上(3)当4x =-时,1234y ==--;当2x =-时,1262y ==-- ⊙函数12y x=的图象位于第一、第三象限,在每一个象限内,y 随x 的增大而减小 ⊙当42x -<<-时,求y 的取值范围为63y -<<-. 22.(1)1c <;(2)见解析,3x <-,或1x >【分析】(1)根据抛物线与x 轴有两个公共点,得出方程220x x c ++=有两个不相等的实数根,再根据0∆>列出关于c 的不等式求解即可;(2)将3c =-代入二次函数,再列表、描点、连线即可得出图象,再根据图象即可得出范围.【详解】解:(1)⊙抛物线与x 轴有两个公共点 ⊙方程220x x c ++=有两个不相等的实数根 ⊙224240b ac c ∆=-=-> 解得1c <⊙c 的取值范围1c <(2)当3c =-时,223y x x =+-列表:描点,连线,得图象当y 为正数时,自变量x 的取值范围是3x <-,或1x >.23.(1)100010x -;(2)210140040000y x x =-+-(50100x ≤≤);(3)在月销售成本不超过13000元的情况下,使月销售利润达到8000元,销售单价应定为80元/千克 【分析】(1)根据销售单价每涨价1元,月销售量就减少10千克劣势即可; (2)根据销售利润和售价的关系列式即可;(3)当月销售利润达到8000元,求出x 的值,判断即可; 【详解】解:(1)()5005010100010x x --⨯=-; 故答案是100010x -;(2)()()24010001010140040000y x x x x =--=-+-,其中50100x ≤≤;(3)当月销售利润达到8000元时,有2101400400008000x x -+-=, 化简,得214048000x x -+=, 解得60x =,或80x =,当60x =时,月销售成本为()40100010601600010000⨯-⨯=>, 当80x =时,月销售成本为40(10001080)800010000⨯-⨯=<, ⊙月销售成本不超过10000元, ⊙80x =;答:在月销售成本不超过13000元的情况下,使月销售利润达到8000元,销售单价应定为80元/千克.24.(1)见解析;(2)见解析【分析】(1)连接OC,OD,证明BOD BOC∠=∠,运用等腰三角形三线合一的性质即可证明出结论;(2)连接BD,由切线的性质可证明OB=BD=BF以及BOD是等边三角形,进一步可得出结论.【详解】解:(1)证明:连接OC,OD⊙E ADC∠=∠⊙AOD AOC∠=∠⊙AD AC=⊙AB是O的直径⊙ADB ACB=⊙ADB AD ACB AC-=-即DB CB=⊙BOD BOC∠=∠,⊙OC OD=⊙OH CD⊥即AB CD⊥(2)连接BD⊙DF是O的切线⊙OD DF⊥,即90ODF∠=︒⊙点B是OF的中点⊙12BD OF OB ==⊙OD OB =⊙OD OB BD ==⊙BOD 是等边三角形⊙60BOD ∠=︒⊙30BAD ∠=︒,30F ∠=︒⊙BAD F ∠=∠⊙DA DF =⊙DAF △是等腰三角形25.(1)反比例函数解析式为y =﹣3x;一次函数解析式为y =﹣x+2;(2)P 点坐标为(0,2).【分析】(1))先把点A 点坐标代入y=2k x中求出k 2得到反比例函数解析式为y=-3x ;再把B (3,n )代入y=-3x中求出n 得到得B (3,-1),然后利用待定系数法求一次函数解析式;(2)设P (x ,-x+2),利用三角形面积公式得到AP :PB=1:3,即PB=3PA ,根据两点间的距离公式得到(x -3)2+(-x+2+1)2=9[(x+1)2+(-x+2-3)2],然后解方程求出x 即可得到P 点坐标.【详解】(1)把点A (﹣1,3)代入y =2k x得k 2=﹣1×3=﹣3,则反比例函数解析式为y =﹣3x; 把B (3,n )代入y =﹣3x 得3n =﹣3,解得n =﹣1,则B (3,﹣1), 把A (﹣1,3),B (3,﹣1)代入y =k 1x+b 得11331k b k b -+=⎧⎨+=-⎩,解得1k 1b 2=-⎧⎨=⎩, ⊙一次函数解析式为y =﹣x+2;(2)设P (x ,﹣x+2),⊙S⊙APO :S⊙BOP =1:3,⊙AP :PB =1:3,即PB =3PA ,⊙(x ﹣3)2+(﹣x+2+1)2=9[(x+1)2+(﹣x+2﹣3)2],解得x 1=0,x 2=﹣3(舍去),⊙P 点坐标为(0,2).26.(1)反比例函数的解析式为:y=4x;一次函数的解析式为:y=x﹣3;(2)S⊙AOB=152;(3)一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【分析】(1)把A的坐标代入y=kx,求出反比例函数的解析式,把A的坐标代入y=x+b求出一次函数的解析式;(2)求出D、B的坐标,利用S⊙AOB=S⊙AOD+S⊙BOD计算,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.【详解】(1)⊙反比例函数y=kx的图象过点A(4,1),⊙1=k4,即k=4,⊙反比例函数的解析式为:y=4x.⊙一次函数y=x+b(k≠0)的图象过点A(4,1),⊙1=4+b,解得b=﹣3,⊙一次函数的解析式为:y=x﹣3;(2)⊙令x=0,则y=﹣3,⊙D(0,﹣3),即DO=3.解方程4x=x﹣3,得x=﹣1,⊙B(﹣1,﹣4),⊙S⊙AOB=S⊙AOD+S⊙BOD=12×3×4+12×3×1=152;(3)⊙A(4,1),B(﹣1,﹣4),⊙一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.27.(1)y=-x2+2x+3.(2)P的坐标(1,2).(3)存在.点M的坐标为(1),(1,),(1,1),(1,0).【分析】(1)可设交点式,用待定系数法求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(3)由于⊙MAC的腰和底没有明确,因此要分三种情况来讨论:⊙MA=AC、⊙MA=MC、⊙AC=MC;可先设出M点的坐标,然后用M点纵坐标表示⊙MAC的三边长,再按上面的三种情况列式求解【详解】(1)⊙A(-1,0)、B(3,0)经过抛物线y =ax 2+bx +c ,⊙可设抛物线为y =a (x +1)(x -3).又⊙C(0,3) 经过抛物线,⊙代入,得3=a (0+1)(0-3),即a=-1.⊙抛物线的解析式为y =-(x+1)(x -3),即y =-x 2+2x+3.(2)连接BC ,直线BC 与直线l 的交点为P . 则此时的点P ,使⊙PAC 的周长最小. 设直线BC 的解析式为y =kx +b ,将B(3,0),C(0,3)代入,得:303k b b +=⎧⎨=⎩,解得:13kb =-⎧⎨=⎩.⊙直线BC 的函数关系式y =-x +3.当x -1时,y =2,即P 的坐标(1,2).(3)存在.点M 的坐标为(1),(1),(1,1),(1,0).⊙抛物线的对称轴为: x=1,⊙设M(1,m).⊙A(-1,0)、C(0,3),⊙MA 2=m 2+4,MC 2=m 2-6m +10,AC 2=10.若MA =MC ,则MA 2=MC 2,得:m 2+4=m 2-6m +10,得:m =1.⊙若MA =AC ,则MA 2=AC 2,得:m 2+4=10,得:m =.⊙若MC =AC ,则MC 2=AC 2,得:m 2-6m +10=10,得:m =0,m =6, 当m =6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的M点,且坐标为(1),(1),(1,1),(1,0).。
人教版九年级上册数学期中考试试题2022年7月一、单选题1.下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程22x x =的解是()A .2x =B .122,0x x ==C .0x =D .122,1x x ==3.二次函数y =(x+1)2+2的图象的顶点坐标是()A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3)4.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转180°得到点A′的坐标是()A .(﹣1,3)B .(1,﹣3)C .(3,1)D .(-1,﹣3)5.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对应的二次函数的关系式为()A .2(1)3y x =-++B .2(1)3y x =-+-C .2(1)3y x =---D .2(1)3y x =--+6.如图,DE BC ,在下列比例式中,不能成立的是()A .AD AEDB EC=B .DE AEBC EC=C .AB ACAD AE=D .DB ABEC AC=7.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为()A .10mB .12mC .15mD .40m8.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=9.已知二次函数y =x 2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A .有最大值8,最小值﹣8B .有最大值8,最小值﹣7C .有最大值﹣7,最小值﹣8D .有最大值1,最小值﹣710.如图,在Rt ABC 中,90ACB ∠=︒,30ABC ∠=︒,将ABC 绕点C 顺时针旋转α角0180()α︒<<︒至A B C ''△,使得点A '恰好落在AB 边上,则α等于()A .150︒B .90︒C .30°D .60︒二、填空题11.若两个相似三角形的相似比是1:2,则它们的面积比是______.12.已知方程x 2﹣3x ﹣k =0有一根是2,则k 的值是_____.13.如图,已知30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,则BAE ∠=_____°.14.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为_____.15.若二次函数21y ax =+,当x 取1x ,2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为_____.16.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.三、解答题17.解方程:2420x x ++=.18.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式.19.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结BE .求证:AD BE =.20.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △;(3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标.21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?22.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽;(2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克)506070销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.24.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.定义:若两条抛物线的对称轴相同,则称这两条抛物线为同轴抛物线.若抛物线211:12C y x mx m =--+与抛物线2C :2222y x nx n =-++-为同轴抛物线,将抛物线1C 上1≥x 的部分与抛物线2C 上1x <的部分合起来记作图象G .(1)①n =_____(用含m 的式子表示);②若点(),1m -在图象G 上,求m 的值;(2)若1m =,当12x -≤≤时,求图象G 所对应的函数值y 的取值范围;(3)正方形ABCD 的中心为原点O ,点A 的坐标为()1,1,当图象G 与正方形ABCD 有3个交点时,求m 的取值范围(直接写出结果).26.在△ABC 中,点D 在BC 边上,AD CD =,点E 、F 分别在线段AC 、AD 上,连结EF ,且EFD ABC ∠=∠.(1)当点E 与点C 重合时,如图1,找出图中与EF 相等的线段,并证明;(2)当点E 不与点C 重合时,如图2,若AC kEC =,求EFAB的值(用含k 的式表示);(3)若90BAC ∠=︒,35AB BC =,23EF AB =,如图3,求EC AC 的值.参考答案1.C 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、不是轴对称图形,是中心对称图形,故此选项不合题意;C 、既是轴对称图形又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C .2.B 【解析】利用因式分解法解一元二次方程,提取公因式x .【详解】解:22x x=()20x x -=,10x =,22x=.故选:B .3.B 【解析】根据顶点式的意义直接解答即可.【详解】解:二次函数y =(x+1)2+2的图象的顶点坐标是(﹣1,2).故选:B .4.D 【解析】根据中心对称的定义得到点A 与点A′关于原点对称,然后根据关于原点对称的点的坐标特征求解.【详解】∵线段OA 绕原点O 顺时针旋转180°,得到OA′,∴点A 与点A′关于原点对称,而点A 的坐标为(1,3),∴点A′的坐标为(﹣1,﹣3).故选D .5.A 【解析】根据二次函数图象的平移规律解答即可.【详解】解:由题意知,平移后抛物线的解析式是()213y x =-++,故A 正确.故选:A .【点睛】本题考查了二次函数图象的平移,解题的关键在于掌握二次函数图象平移的规律:左加右减,上加下减.6.B 【解析】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.【详解】DE BC ∥,AD AE DB ABDB EC EC AC∴==.ADE ABC ∴ ∽DE AE AEBC AC EC∴=≠B.错误故选B .【点睛】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.7.C 【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得,1.8325x,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.8.D【解析】等量关系为:原价×(1-降价的百分率)2=现价,把相关数值代入即可.【详解】第一次降价后的价格为:25×(1-x);第二次降价后的价格为:25×(1-x)2;∵两次降价后的价格为16元,∴25(1-x)2=16.故选:D.9.A【解析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【详解】∵y=x2﹣6x+1=(x﹣3)2﹣8,∴在﹣1≤x≤4的取值范围内,当x=3时,有最小值﹣8,当x=﹣1时,有最大值为y=16﹣8=8.故选A.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.D【解析】【分析】由旋转的性质可得CA=CA',∠ACA'=α,由等腰三角形的性质可得∠A=∠CA'A=60°,由三角形内角和定理可求α的值.【详解】解:90ACB ∠=︒ ,30ABC ∠=︒,60A ∴∠=︒,将ABC ∆绕点C 顺时针旋转α角0180()α︒<<︒至△A B C '',CA CA '∴=,ACA α'∠=,60A CA A '∴∠=∠=︒,60ACA ∴'∠=︒,60α∴=︒,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.11.1:4【解析】【分析】根据相似三角形的面积比等于相似比即可求得.【详解】∵两相似三角形的相似比为1:2,∴它们的面积比是1:4,故答案为:1:4.【点睛】本题考查了相似三角形的面积的比等于相似比的平方的性质,熟记性质是解题的关键.12.-2【解析】【分析】直接把x =2代入方程x 2﹣3x ﹣k =0,得到关于k 的方程,然后解一次方程即可.【详解】解:把x =2代入方程x 2﹣3x ﹣k =0得4﹣6﹣k =0,解得k =﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.20【解析】【分析】利用旋转的性质得出50DAB ∠=o ,进而得出BAE ∠的度数.【详解】∵30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,∴50DAB ∠=o ,则BAE ∠=503020DAB DAE ∠-∠=-=o o o 故答案为:20°【点睛】此题主要考查了旋转的性质,得出旋转角DAB ∠的度数是解题关键.14.()22238x x -+=【解析】【分析】根据题意可直接进行列式求解.【详解】由题意易得:()22238x x -+=;故答案为()22238x x -+=.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理的应用是解题的关键.15.1【解析】【分析】y=ax 2+1的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,所以x 1,x 2互为相反数,即x 1+x 2=0,由此可以确定此时函数值.【详解】解:∵在y=ax 2+c 的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,∴x 1,x 2互为相反数,∴x 1+x 2=0,∴y=0+1=1.故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.16.(164y x x=<<【解析】【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD+∠BAP =90°,∠BAP+∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB .∴=AD DEAP AB,即4=4y x∴(164y x x=<<.故答案为:(164y x x=<<【点睛】本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.17.12x =-+22x =--【解析】【分析】方程利用配方法求出解即可.∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=,∴2x =-∴12x =-22x =--18.223y x x =--+.【解析】将点()3,0-,()2,5-代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩,则二次函数的解析式为223y x x =--+.19.见解析.【解析】由旋转的性质可得CD =CE ,∠DCE =90°,由“SAS”可证△ACD ≌△BCE ,从而得出结论.【详解】∵将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,∴CD CE =,90DCE ∠=︒,∴90DCE ACB ∠=∠=︒,∴ACD DCB DCB BCE ∠+∠=∠+∠,∴ACD BCE ∠=∠,且AC BC =,CD CE =,∴()ACD BCE SAS ≌,∴AD BE =.20.(1)图见解析,()12,2A ,()10,1B -;(2)图见解析;(3)(0,2)-.(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得,然后根据点C 是11,A A B B 的中点即可求出点11,A B 的坐标;(2)先根据点2,A A 的坐标得出平移方式,再根据点坐标的平移变换规律可得点22,B C 的坐标,然后画出点222,,A B C ,最后顺次连接点222,,A B C 即可得;(3)先根据旋转中心的定义可得线段12B B 的中点P 即为旋转中心,再根据点12,B B 的坐标即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得11A B C ,如图所示:设点1A 的坐标为1(,)A a b ,点C 是1A A 的中点,且()2,2A -,()0,2C ,202222ab -+⎧=⎪⎪∴⎨+⎪=⎪⎩,解得22a b =⎧⎨=⎩,1(2,2)A ∴,同理可得:1(0,1)B -;(2)()()2,62,2,2A A --- ,∴从点A 到点2A 的平移方式为向下平移8个单位长度,()()0,5,0,2B C ,()()220,58,0,28B C ∴--,即()()220,3,0,6B C --,先画出点222,,A B C ,再顺次连接点222,,A B C 即可得222A B C △,如图所示:(3)由旋转中心的定义得:线段12B B 的中点P 即为旋转中心,()12(0,1),0,3B B -- ,0013(,)22P +--∴,即(0,2)P -,故旋转中心的坐标为(0,2)-.21.这个苗圃园垂直于墙的一边长为12米.【解析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =,∵30218x -≤,∴6x ≥,∴12x =.答:这个苗圃园垂直于墙的一边长为12米.22.(1)见解析;(2)BD =【解析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AEAB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△.∴AC AEAB AD=.∵EAC BAD ∠=∠,∴BAD CAE ∽.(2)∵90ACB ∠=︒,4BC =,3AC =,∴5AB ==.∵A ABC DE ∽△△,∴AC ABAE AD=.∴52AB AE AD AC ⋅==.将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴BD =23.(1)y =﹣2x+200(40≤x≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x≤80,理由见解析【解析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx+b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩,解得:k 2b 200=-⎧⎨=⎩,∴y =﹣2x+200(40≤x≤80);(2)W =(x ﹣40)(﹣2x+200)=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350,解得:x =55或x =85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.24.(1(2)22220326416553515t t S t t t t t ⎧⎛<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎪-+≤⎪⎝⎩.【解析】(1)根据勾股定理求得AB =,易证BED BAC ∽△△,根据相似三角形的性质求得BE =,根据平行四边形的性质可得DF BE ∥即DF =,继而易得 ∽ADF ABC ,继而根据相似三角形的性质求解;(2)分①当03t <≤时,②当03t <≤时,③当5t <≤【详解】(1)当点F 落在AC 边上时,如图1∵在Rt ABC 中,8AC =,4BC =,90ACB ∠=︒,∴AB =∵ED AB ⊥于D ,∴90EDB ACB ∠=∠=︒,B B ∠=∠,∴BED BAC ∽△△,∴BD BEBC AB=,∴4t =BE =,∵四边形BDFE 为平行四边形,∴DF ∥,∴DF , ∽ADF ABC ,∴DF AD BC AB =,即4=3t =∴当点F 落在AC 边上时,t(2)当0t <≤2,∵BDE BCA ∽,∴BD DE BC CA=,∴48t DE=,∴2DE t =.∴222BDFE S S BD DE t t t ==⋅=⋅= ;当点E 与点C 4=,5t =,t <≤3,∵DM BC ,∴ADM ABC △∽△,∴DM ADBC AB =,∴4DM =∴4DM =-.∵DF BE ==,∴44MF ⎛⎫=-=- ⎪ ⎪⎝⎭又∵MNF CAB △∽△,∴MN MF CA CB =,∴84MN MF=,∴2MN MF =.∴2221364162555MNFS MN MF MF t t t ⎛⎫=⋅==-=-+ ⎪ ⎪⎝⎭△∴22362165BDFE MNF S S S t t ⎛⎫=-=-+ ⎪ ⎪⎝⎭△∴2264851655S t t =-+-;当45455t <≤时,如图4.∵ADM ABC △∽△,∴AD DM AMAB BC AC==,∴454845t DM AM -==,∴545DM t =-,2585AM t =-.∴25258855MC t t ⎛⎫=--= ⎪ ⎪⎝⎭.∵BDMC S S =梯形.∴215251854425555S t t t t ⎛⎫=⋅-+⨯=-+ ⎪ ⎪⎝⎭.综上所述,222252032648525451655351854545555t t S t t t t t t ⎧⎛⎫<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎫⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎛⎫⎪-+<≤ ⎪ ⎪⎪⎝⎭⎩.25.(1)①m ;②m 的取值为15-+或12-+12-;(2)当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)1122m -<<或514m <≤.【解析】(1)①根据同轴抛物线的定义可得n=m ;②分两种情况:①当m 1≥时,将(),1m -代入2112y x mx m =-=+中,当1m <时,把(),1m -代入2222y x mx m =-++-中,计算可解答;(2)先将m=1代入函数y 中,画出函数图象,分别代入x=-1,x=2,x=1计算对应的函数y 的值,根据图象可得结论;(3)画出相关函数的图象,根据图象即可求得.【详解】(1)①抛物线1C 的对称轴为:1x m =,抛物线2C 的对称轴为:2x n =,∵1C 与2C 为同轴抛物线,∴12x x =∴n m =故答案为:m②当m 1≥时,将(),1m -代入2112y x mx m =-=+中得221112m m m --+=-,2240m m +-=,解得11m =-21m =-,∵m 1≥,∴1m =-当1m <时,把(),1m -代入2222y x mx m =-++-中得:222221m m m -++-=-,2210m m +-=解得11m =-+21m =-∵1m <,∴1m =-1m =-.综上所述,m的取值为1-或1-+1--(2)当1m =时,图象G 的函数解析式为()()2211221x x x y x x x ⎧-≥⎪=⎨⎪-+<⎩,图象G 如图1所示,在抛物1C 上,当12x ≤≤时,y 随x 的增大而增大,102y -≤≤,在抛物线2C 上,当11x -≤<时,y 随x 的增大而增大,31y -≤<∴当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)当112m -<<或514m <≤时,图象G 与正方形ABCD 有3个交点,抛物线()2222:22222C y x mx m x m m m =-++-=--++-.抛物线211:12C y x mx m =--+,当1x =时,322y m =-当31212m -≤-≤时,1544m ≤≤.当抛物线2C 的顶点在BC 上时,如图2,2221m m +-=-,11m =-,21m =-当抛物线2C 过点()1,1B -时,如图3,12221m m -++-=-,12m =,∴112m -<<;当抛物线2C 过点()1,1A 时,如图4,12221m m -++-=,44m =,1m =.当抛物线1C 过点()1,1B -时,如图5,1112m m --+=-,54m =,∴514m <≤.综上所述,当112m -+<或514m <≤时,图象G 与正方形ABCD 有3个交点.26.(1)EF AB =.证明见解析;(2)1EF k AB k-=;(3)13EC AC =.【解析】(1)在BD 上取点M ,使AM AD =,根据等边对等角的性质、等量代换及全等三角形的判定和性质可得AB EF =;(2)在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N ,根据等边对等角、平行线的性质、等量代换可证得:ENF AMB △∽△,继而可得EF EN AB AM =,继而易证ANE ADC △∽△,CN DC E AE A =,继而即可求解;(3)过E 作EG AD ⊥于G ,易证EGF CAB △∽△,可得EG EF AC BC =,可设3AB a =,5BC a =,则4AC a =,求得2EF a =,85EG a =,易证AGE CAB △∽△,进而可得AE GE CB AB=,继而可知83AE a =,84433EC a a a =-=,继而即可求解.【详解】(1)EF AB =.证明:在BD 上取点M ,使AM AD =,如图1,∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠,又∵AD CD =,∴AM CD =,又∵ABC EFD ∠=∠.∴()ABM CFD AAS △≌△,∴AB EF =;(2)解:在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N.∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠.∵NE DC ∥,∴FNE ADC AMB ∠=∠=∠.又∵EFD ABC ∠=∠,∴ENF AMB △∽△,∴EFENAB AM =,∵EN DC ,∴ANE ADC △∽△,∴CN DC E AEA =∵AC kEC =,∴()1AE AC EC k EC =-=-.∴()11k EC EN kDC kEC k --==,∵AM AD DC ==,∴1EN EN k DC AM k -==,∴1EF k AB k -=;(3)解:过E 作EG AD ⊥于G ,如图3∵90BAC ∠=︒,∴EGF BAC ∠=∠.又∵EFD ABC ∠=∠,∴EGF CAB △∽△,∴EG EFAC BC=∵35ABBC =,∴设3AB a =,5BC a =,则4AC a =,又∵23EFAB =,∴2EF a =,∴245EG a a a =,∴85EG a =.又∵AD DC =,∴DAC C ∠=∠,∴AGE CAB △∽△,∴AEGECB AB =,∴8553a AE a a =,∴83AE a =∵4AC a =,∴84433EC a a a =-=,∴41343a EC AC a ==.【点睛】本题主要考查相似三角形的的判定及其性质,涉及到等边对等角的性质、等量代换及全等三角形的判定及其性质,解题的关键是熟练掌握所学知识.。
人教版九年级上册数学期末试题一、单选题 1.若a 为方程2240x x +-=的解,则2368a a +-的值为( )A .4-B .2C .4D .82.如图,将AOB 绕着点O 顺时针旋转,得到COD △(点C 落在AOB 外),若30AOB ∠=︒,10BOC ∠=︒,则最小旋转角度是( )A .20°B .30°C .40°D .50°3.如图,⊙O 的半径为5cm ,直线l 到点O 的距离OM=3cm ,点A 在l 上,AM=3.8cm ,则点A 与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .以上都有可能4.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE⊙AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .185.把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是( ) A .13B .49C .59D .236.函数()0ky k x=≠与函数y kx k =-在同一坐标系中的图像可能是( ) A . B .C .D .7.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D .8.关于二次函数()215y x =-+,下列说法正确的是( ) A .函数图象的开口向下 B .函数图象的顶点坐标是()1,5- C .该函数有最大值,是大值是5 D .当1x >时,y 随x 的增大而增大9.对于反比例函数32y x=,下列说法错误的是( ) A .它的图像在第一、三象限 B .它的函数值y 随x 的增大而减小C .点P 为图像上的任意一点,过点P 作PA⊙x 轴于点A .⊙POA 的面积是34D.若点A (-1,1y )和点B(2y )在这个函数图像上,则1y <2y10.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分比率相同,求每次降价百分率,设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .()25601315x += B .()25601315x -= C .()256012315x -= D .()25601315x += 二、填空题 11.抛物线12m yx x -=+是二次函数,则m=___.12.从−1,0,227π中任取一个数,则取到的数是无理数的概率是______. 13.某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a ,这名同学喜欢数学的可能性为b ,这名同学喜欢体育的可能性为c ,则a ,b ,c 的大小关系是_______. 14.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.15.如图,把⊙ABC 绕点C 顺时针旋转25°,得到⊙A′B′C , A′B′交AC 于点D ,若⊙A′DC =90°,则⊙A 度数为___________.16.若等腰三角形的一边长为6,另两边的长是关于x 的一元二次方程280x x m -+=的两个根,则m 的值为_______.17.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____. 三、解答题18.解方程:(3x -1)2-25=019.关于x 的一元二次方程kx 2+(k+1)x+4k=0. (1)当k 取何值时,方程有两个不相等的实数根? (2)若其根的判别式的值为3,求k 的值及该方程的根.20.用适当的方法解下列方程:(1)(1)x x x -= (2)2220x x +-=21.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg ;单价每千克降低一元,日均多售2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算). (1)如果日均获利1950元,求销售单价;(2)销售单价为多少时,可获得最大利润?最大利润为多少.22.如图,在O 中,2CP =,6PD =,5AP =,弦CD AB ⊥,垂足为点P ,求OP 的长度.23.已知关于x 的一元二次方程2320x x k ++-=有实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值.24.如图,已知AB 是圆O 的直径,C 是圆O 上异于A ,B 的点,D 为BC 中点,且DE AC ⊥于点E ,连接CD .(1)求证:DE 是圆O 的切线;(2)若圆O 的直径为13,且6DE =,求AC .25.如图,直线6y ax =+经过点()30A -,,交反比例函数()0ky x x=>的图象于点()1,B m .(1)求k 的值;(2)点D 为第一象限内反比例函数图象上点B 下方的一个动点,过点D 作DC y ⊥轴交线段AB 于点C ,连接AD ,求ACD 的面积的最大值.26.如图,抛物线2142y x x =--与x 轴交于点A 和B ,与y 轴交于点C .(1)求A 、B 、C 三点坐标;(2)如图1,动点P 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动,同时,动点Q 从点B 出发,在线段BC C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒,问P 、Q 两点运动多久后PBQ 的面积S 最大,最大面积是多少?(3)如图2,点D 为抛物线上一动点,直线AD 交y 轴于点E ,直线BD 交y 轴于点F ,求CECF的值.参考答案1.C【分析】将x a =代入方程2240x x +-=得到关于a 的代数式,将常数项移到等号右边,最后整体代入2368a a +-求解即可.【详解】解:将x a =代入方程2240x x +-=得:2240a a +-=,⊙224a a +=,⊙()223683283484a a a a +-=+-=⨯-=, 故选:C . 2.C【分析】直接利用已知得出⊙AOC 的度数,再利用旋转的性质得出对应边之间夹角,得出答案即可.【详解】⊙⊙AOB= 30°,⊙BOC = 10°, ⊙⊙AOC=⊙AOB+⊙COB = 30°+ 10°= 40° ⊙将⊙AOB 绕着点O 顺时针旋转,得到⊙COD , ⊙最小旋转角为⊙AOC = 40°. 故选: C . 3.A【详解】如图,连接OA ,则在直角⊙OMA 中,根据勾股定理得到OA=5<.⊙点A 与⊙O 的位置关系是:点A 在⊙O 内. 故选A .4.B【分析】连接OF,首先证明AC=DF=12,设OA=OF=x,在Rt⊙OEF中,利用勾股定理构建方程即可解决问题.【详解】解:如图,连接OF.⊙DE⊙AB,⊙DE=EF,AD AF=,⊙点D是弧AC的中点,⊙AD CD=,⊙AC DF=,⊙AC=DF=12,⊙EF=12DF=6,设OA=OF=x,在Rt⊙OEF中,则有x2=62+(x-3)2,解得x=152,⊙AB=2x=15,故选:B.5.D【详解】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和大于3的有6种,⊙两次摸出的小球标号的和大于3的概率是23, 故选:D 6.A【分析】先根据一次函数y kx k =-可知,直线经过点(1,0),故选项B 、D 不符合题意,然后由A 、C 选项可知,k 的符号,从而选出答案. 【详解】解:函数y kx k =-的图像经过点(1,0), ∴选项B 、选项D 不符合题意;由A 、C 选项可知:0k >, ∴反比例函数()0ky k x=≠的图像在第一、三象限, 故选项A 符合题意,选项C 不符合题意; 故选:A .【点睛】此题考查了反比例函数与一次函数的图像,熟练掌握反比例函数与一次函数的图像与性质是解答此题的关键. 7.C【分析】利用排除法,由0c -<得出抛物线与y 轴的交点应该在y 轴的负半轴上,排除A 选项和D 选项,根据B 选项和C 选项中对称轴02bx a-=>,得出a<0,抛物线开口向下,排除B 选项,即可得出C 为正确答案.【详解】解:对于二次函数()20y ax bx c a =+-≠,令0x =,则y c =-,⊙抛物线与y 轴的交点坐标为()0,c - ⊙0c >, ⊙0c -<,⊙抛物线与y 轴的交点应该在y 轴的负半轴上, ⊙可以排除A 选项和D 选项;B 选项和C 选项中,抛物线的对称轴02bx a-=>, ⊙ 0b >, ⊙a<0,⊙抛物线开口向下,可以排除B 选项,【点睛】本题考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题的关键. 8.D【分析】由抛物线的表达式和函数的性质逐一求解即可. 【详解】解:对于y=(x -1)2+5, ⊙a=1>0,故抛物线开口向上,故A 错误; 顶点坐标为(1,5),故B 错误;该函数有最小值,最小值是5,故C 错误; 当1x >时,y 随x 的增大而增大,故D 正确, 故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 9.B【分析】根据反比例函数图象与系数的关系解答. 【详解】解:A 、反比例函数32y x =中的32>0,则该函数图象分布在第一、三象限,故本选项说法正确. B 、反比例函数32y x =中的32>0,则该函数图象在每一象限内y 随x 的增大而减小,故本选项说法错误.C 、点P 为图像上的任意一点,过点P 作PA⊙x 轴于点A .,⊙⊙POA 的面积=133224⨯=,故本选项正确. D、⊙反比例函数32y x=,点A (-1,1y )和点B(2y )在这个函数图像上,则y 1<y 2,故本选项正确. 故选:B .【点睛】本题考查了反比例函数的性质:反比例函数y=kx(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大;还考查了k 的几何意义.【分析】设每次降价的百分率为x ,根据降价后的价格=降价前的价格⨯(1-降价的百分率),则第一次降价后的价格是()5601x -,第二次降价后的价格()25601x -,据此列方程即可.【详解】解:设每次降价的百分率为x , 由题意得:()25601315x -=, 故选:B .【点睛】此题主要考查了一元二次方程的应用,根据题意找到等式两边的平衡条件是解题的关键. 11.3【分析】根据二次函数的定义:一般地,形如2y ax bx c =++(a 、b 、c 是常数且a≠0)的函数叫做二次函数,进行求解即可. 【详解】解:⊙抛物线12m y x x -=+是二次函数,⊙12m -=, ⊙3m =, 故答案为:3.【点睛】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义. 12.25【分析】先找出无理数的个数,再根据概率公式即可得出答案.【详解】解:⊙在−1,0,227,π,π共2个, ⊙取到的数是无理数的概率是25.故答案为:25.13.c >a >b【分析】根据概率公式分别求出各事件的概率,故可求解.【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为361620536369-==,这名同学喜欢数学的可能性为121363=,这名同学喜欢体育的可能性为242363=,⊙23>59>13⊙a ,b ,c 的大小关系是c >a >b故答案为:c >a >b .【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.14.1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+=243101x x -++=+2441x x -+=()221x -=⊙1k =故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键. 15.65°【分析】根据旋转的性质,可得知25ACA '∠=︒,从而求得A '∠的度数,又因为A ∠的对应角是A '∠,即可求出A ∠的度数.【详解】ABC 绕着点C 时针旋转25︒,得到A B C ''△25ACA '∴∠=︒90A DC '∠=︒180259065A '∴∠=︒-︒-︒=︒, A ∠的对应角是A '∠65A A '∴∠=∠=︒故答案为:65︒.【点睛】此题考查了旋转的性质,解题的关键是正确确定对应角.16.12或16【分析】分6为等腰三角形的腰长和6为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.其中,每种情况下都要根据三角形三边关系定理(两边之和大于第三边,两边之差小于第三边)检验三边长是否满足三角形的三边关系.【详解】解:由题意,分以下两种情况:(1)当6为等腰三角形的腰长时,则关于 x 的方程 x 2−8x+m=0的一个根x 1=6代入方程得,36-48+m=0解得m=12则方程为 x 2−8x+12=0解方程,得另一个根为x 2=2⊙等腰三角形的三边长分别为 6,6,2,经检验满足三角形的三边关系定理;(2)当6为等腰三角形的底边长时,则关于x 的方程 x 2−8x+m=0 有两个相等的实数根⊙根的判别式246440b ac m =-=-=解得,m=16则方程为x 2−8x+16=0解方程,得 x 1=x 2=4⊙等腰三角形的三边长分别为4,4,6,经检验满足三角形的三边关系定理.综上,m 的值为12或16.故答案为:12或16.17.20%【分析】根据该公司5、6两个月营业额的月均增长率为x 结合5月、7月营业额即可得出关于x 的一元二次方程,解此方程即可得解.【详解】解:设该公司5、6两个月营业额的月均增长率为x ,根据题意得,225(1)36x +=解得,120.2, 2.2x x ==-(舍去)所以,增长率为20%故答案为:20%18.12423x x ==-, 【分析】移项,根据平方根的定义开方,转化为两个一元一次方程,分别求出一次方程的解即可得到原方程的解.【详解】移项,得:()23125x -=,⊙315x -=或315x -=-, ⊙12423x x ==-,.19.(1)12k >-且0k ≠;(2)12x x == 【分析】(1)由方程有两个不相等的实数根,得到0>,列不等式结合0k ≠,从而可得答案;(2)利用3,= 列方程求解,k 再把k 的值代入原方程,解方程即可得到答案.【详解】解:(1)该方程的判别式为:()214214k k kk =+-=+, ⊙方程有两个不相等的实数根,⊙2k+1>0,解得12k >-,又⊙该方程为一元二次方程,⊙0k ≠,⊙k 的取值范围为:12k >-且0k ≠.(2)由题意得2k+1=3解得k =1,原方程为:2120,4x x ++= 11,2,,4a b c === 2124130,4∴=-⨯⨯=>解得:12x x ===20.(1)10x =,22x =;(2)11=-x ,21=-x 【分析】(1)根据因式分解法求解一元二次方程的性质计算,通过计算即可得到答案;(2)根据公式法求解一元二次方程的性质计算,即可得到答案.【详解】(1)⊙(1)x x x -=⊙220x x -=⊙()20x x -=⊙10x =,22x =;(2)⊙2220x x +-=⊙212x -==-⊙11=-x ,21=-x21.(1)65;(2)当单价为65时,日获利最大,最大利润为1950元.【分析】(1)若销售单价为x 元,则每千克降低(70-x )元,日均多销售出2(70-x )千克,日均销售量为[60+2(70-x )]千克,每千克获利(x -30)元,根据题意可得等量关系:每千克利润×销售量-500元=总利润,根据等量关系列出方程即可;(2)运用配方法配成顶点式,得顶点坐标,结合x 的取值范围即可求得结论.【详解】解:(1)设销售单价为 x 元,由题意得:(x -30)[60+2(70-x )]-500=1950,解得:x 1=x 2=65,⊙销售单价不得高于每千克70元,也不得低于每千克30元,⊙x=65符合题意,答:销售单价为65元时,日均获利为1950元;(2)设销售单价为 x 元,可获得利润为y ,由题意得:y=(x -30)[60+2(70-x )]-500=-2x 2+260x -6500(30≤x≤70),⊙y=-2x 2+260x -6500可化为y=-2(x -65)2+1950的形式,⊙顶点坐标为(65,1950),⊙30<65<70,当单价定为65元时,日均获利最大,最大利润为1950元.22【分析】过O 作OE CD ⊥于点E ,过O 作OF AB ⊥于点F ,连接OA ,OD ,先证明四边形OEPF 是矩形,得出PF OE =,OF PE =,然后根据垂径定理求出DE ,PE ,在Rt AOF 和Rt DOE △根据勾股定理得出222222AF OF OA OD OE DE ,然后求解即可. 【详解】解⊙过O 作OE CD ⊥于点E ,过O 作OF AB ⊥于点F ,连接OA ,OD ,又CD AB ⊥,⊙四边形OEPF 是矩形,⊙PF OE =,OF PE =,⊙2CP =,6PD =,⊙8CD CP DP ,⊙CD OE ⊥, ⊙142DE CD ==, ⊙2OF PE PD DE ,设OE x =,则PF x =,5AF x =-,在Rt AOF 中,222AF OF OA +=,在Rt DOE △中,222OE DE OD +=,又OA OD =,⊙2222AF OF OE DE ,即2222524x x , 解得1310x =, 23.(1)k 174≤; (2)k=3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值.【详解】(1)解:⊙一元二次方程2320x x k ++-=有实数根.⊙∆≥0,即32-4(k -2)≥0,解得k 174≤ (2)⊙方程的两个实数根分别为12,x x ,⊙12123,2x x x x k -+==-,⊙()()12111x x ++=-,⊙121211x x x x +++=-,⊙2311k --+=-,解得k=3.24.(1)证明见解析(2)5AC =【分析】(1)连接OD ,根据BD DC =可知BAD DAC ∠=∠,再由圆的性质可得OD AC ∥,进而即可求证;(2)如图所示,连接OC ,过点O 作OH AC ⊥于点H ,则四边形ODEH 为矩形,推出6OH DE ==,再利用勾股定理求出AH 的长即可得到答案.【详解】(1)证明:连接OD .⊙D 为BC 中点,即BD DC =,⊙BAD DAC ∠=∠.⊙OA OD =,⊙BAD ODA ∠=∠.⊙DAC ODA ∠=∠,⊙OD AC ∥.又⊙DE AC ⊥,⊙DE OD ,⊙DE 是圆O 的切线.(2)解:如图所示,连接OC ,过点O 作OH AC ⊥于点H .⊙90OHE E ODE ∠=∠=∠=︒,⊙四边形ODEH 为矩形,⊙6OH DE ==,⊙OA OC OH AC =,⊥,⊙2AC AH =,⊙圆O 的直径为 13 ,⊙ 6.5OA =,在Rt OAH △中,由勾股定理得: 2.5AH ==,⊙25AC AH ==.【点睛】本题主要考查圆的切线的判定、垂径定理,矩形的性质与判定、勾股定理,掌握相关知识,并灵活应用正确做出辅助线是解题的关键.25.(1)8 (2)254【分析】(1)根据待定系数法确定一次函数关系式26y x =+,从而求出点B 的坐标为(1,8),再利用待定系数法确定k 的值即可;(2)设点C 的坐标为(),26x x +,由于DC y ⊥轴,得到点D 的坐标,表示出232524ACD S x ⎛⎫=-++ ⎪⎝⎭△,根据二次函数性质即可得出ACD 的面积的最大值. 【详解】(1)解:把()30A -,代入6y ax =+,得360a -+=, 解得2a =,⊙直线的函数表达式为26y x =+,⊙当1x =时,2168y =⨯+=,⊙()1,8B ,把()1,8B 代入反比例函数k y x=,得188k =⨯=. (2)解:设点C 的坐标为(),26x x +,由于DC y ⊥轴,所以点D 的纵坐标为26x +,⊙点8,2626D x x ⎛⎫+ ⎪+⎝⎭, ⊙()()22118325262634222624ACD S CD x x x x x x x ⎛⎫⎛⎫=⨯+=-⨯+=--+=-++ ⎪ ⎪+⎝⎭⎝⎭△, ⊙当 1.5x =-时,254ACD S =△最大值, 答:ACD S 的最大值为254. 26.(1)()2,0A -、()4,0B ,()0,4C -(2)运动3t =秒时,PBQ S 有最大值,最大值为92(3)12 【分析】(1)令0y =,解一元二次方程即可求出点A 、B 的坐标,令0x =,即可求出C 点坐标;(2)过Q 点作QN AB ⊥于N 点,结合图形,可知12PBQ S BP QN =⨯⨯,则问题得解; (3)设点D 的坐标为:21,42⎛⎫-- ⎪⎝⎭D m m m ,运用待定系数法求出直线AD 的解析式为:424m y x m =+--,则可得E 点坐标为:()0,4m -,进而可得44CE m m =-+=,同理可求出直线BD 的解析式为:()2222m y x m +-+=,即有F 点坐标为:()0,42m --,进一步可求出2442CF m m =--+=,则问题得解.【详解】(1)令0y =,即有:21402x x --=,利用因式分解法,求得:12x =-,24x =, 结合图形,可知()2,0A -、()4,0B , 令0x =,21442y x x =--=-,则有C 点坐标为:()0,4C -,即结果为:()2,0A -、()4,0B ,()0,4C -; (2)⊙()2,0A -、()4,0B ,()0,4C -, ⊙2AO =、4BO CO ==,⊙BOC 是等腰直角三角形,246AB AO BO =+=+=,⊙BC === 过Q 点作QN AB ⊥于N 点,如图,根据运动的特点,可得:AP t =,BQ =, ⊙6BP t =-,⊙6AB =,BC =⊙t的取值范围为:4t ≤=0<,⊙BOC 是等腰直角三角形,⊙45OBC ∠=︒,⊙QN AB ⊥,⊙90QNB ∠=︒,⊙45NQB OBC ∠=∠=︒,⊙QNB 是等腰直角三角形,QN BN =,⊙BQ =,BQ =QN BN =, ⊙QN BN t ==, ⊙()()21119632222PBQ S BP QN t t t =⨯⨯=-=--+,⊙04t <≤,⊙当3t =时,PBQ S 有最大值,最大值为92,运动3t =秒时,PBQ S 有最大值,最大值为92;(3)根据题意,设点D 的坐标为:21,42⎛⎫-- ⎪⎝⎭D m m m ,设直线AD 的解析式为:y kx b =+, ⊙()2,0A -, ⊙220142k bkm b m m -+=⎧⎪⎨+=--⎪⎩, 解得442b m m k =-⎧⎪⎨-=⎪⎩,即直线AD 的解析式为:424m y x m =+--,⊙令0x =,4244m y x m m -=+-=-,⊙E 点坐标为:()0,4m -,21 ⊙()0,4C -, ⊙44CE m m =-+=,同理可求出直线BD 的解析式为:()2222m y x m +-+=,⊙令0x =,()()222222m m y x m +=+--+=,⊙F 点坐标为:()0,42m --, ⊙()0,4C -, ⊙2442CF m m =--+=,根据题意可知:若0m =,则可知E 、F 、D 、C 四点重合, 此时不符合题意,故0m ≠, ⊙1222m m m CECF m ===, 即值为12.。
人教版九年级上册数学期末考试试题一、单选题1.下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.下列一元二次方程中没有实数根是()A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=3.从2,5,3,6,4这5个数中随机抽取一个,恰好为2的倍数的概率为()A .15B .25C .35D .454.某商品原价为225元,连续两次平均降价的百分率为a ,连续两次降价后售价为144元,下面所列方程正确的是()A .()22251144a +=B .()22251144a -=C .()222512144a -=D .()21441225a +=5.在同一平面直角坐标系内,将函数22y x -=的图象向右平移3个单位,再向下平移2个单位得到图象的顶点坐标是()A .()32-,-B .()32-,C .(3,-2)D .(3,2)6.如图,将△ABC 绕着点C 按顺时针方向旋转25°,B 点落在B′位置,点A 落在A'位置,若AC ⊥A'B',则∠BAC 的度数是()A .55°B .65°C .75°D .85°7.如图,点,,,,A B C D E 都在⊙O 上,,24BC DE BAC =∠=︒,则∠DOE=()A .24°B .42°C .48°D .72°8.一个圆锥的母线长为6,侧面展开图是半圆,则圆锥的侧面积是()A .6πB .12πC .18πD .24π9.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a≠0)的图象可能是()A .B .C .D .10.抛物线2y ax bx c =++的顶点为D(-1,3),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①240ac b -<;②0a b c ++<;③3c a -=;④方程220ax bx c ++-=有两个不相等的实数根;⑤若点()()1122,,,x y x y 都在该函数图象上,且1230.5x x --<<<,则123y y <<.其中正确结论的个数为()A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是____12.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____.13.如图,D 、E 分别是ΔABC 的边AB 、AC 上的动点,若3,8,6AE AC AB ===,且ΔADE 与ΔABC 相似,则AD 的长度是_______.14.如图,已知四边形ABCD 内接于⊙O ,E 在AD 的延长线上,∠CDE=82°,则∠ABC的度数是_____.15.已知CD 是⊙O 的一条弦,作直径AB ,使AB CD ⊥,垂足为E ,若1,6AE CD ==,则AB 的长为______.16.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.17.如图所示,抛物线23y x bx =-++与x 轴交于点A 和点B ,与y 轴交于点C ,且OA=OC ,点M 、N 是直线x=-1上的两个动点,且MN=2(点N 在点M 的上方),则四边形BCNM 的周长的最小值是______.三、解答题18.解方程:(1)2450x x --=(2)()()22320x x x +-+=19.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?20.如图所示,AB 是⊙O 直径,OD AC ⊥弦于点F ,且交⊙O 于点E ,若BEC ADO ∠=∠.(1)判断直线AD 和⊙O 的位置关系,并说明理由;(2)当54AB AC ==,时,求AD 的长.21.如图,抛物线()20y ax bx c a =++≠经过点A(2,0),B(-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标;(3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.22.如图,⊙O 与△ABC 的边BC 相切于点D ,与AB 、AC 的延长线分别相切于点E 、F ,连接OB ,OC .(1)若∠ABC=80°,∠ACB=40°,求∠BOC 的度数.(2)∠BOC 与∠A 有怎样的数量关系,并说明理由.23.如图,正比例函数2y x =的图象与反比例函数k y x=的图象交于点A(m ,2)(1)求反比例函数的解析式和A 点的坐标;(2)点C 在y 轴的正半轴上,点D 在x 轴的正半轴上,直线CD 经过点A ,直线CD 交反比例函数图象于另一点B ,若OD =2OC ,求点B 的坐标.24.如图,在⊙O中,AB为弦,CD为直径,且AB⊥CD,垂足为E,P为 AC上的动点(不与端点重合),连接PD.(1)求证:∠APD=∠BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:∠AIP+∠DAI=180°;(3)在(2)的条件下,连接IC、IE,若∠APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.25.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.26.如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)若点P是y轴上一点,当∠APB=90°时,求点P的坐标.参考答案1.B2.D3.C4.B5.C6.B7.C8.C9.D10.C11.-112.213.4或9414.82°15.1016.9517.218.(1)15=x ,21x =-.(2)12x =-,21x =.【分析】(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5,∵∆=24b ac -=()()24415--⨯⨯-=36,∴46232x ±===±,∴15=x ,21x =-.(2)()()22320x x x +-+=原方程整理得,()()210x x +-=,∴20x +=或10x -=,∴12x =-,21x =.19.(1)50元或58元(2)54元【分析】(1)设每件商品的售价应为x 元,根据总利润和每件利润与件数的关系列出总利润的代数式,建立方程(x-33)[300+20(60-x)]=8500解答;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据w 和每件利润与件数的关系列出函数表达式,配方成顶点式,得到当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.(1)解:设每件商品的售价应为x 元,根据题意,得(x-33)[300+20(60-x)]=8500解得150x =,258x =,∴售价应为50元或58元;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据题意,得()333002060w x x =-+⎦-⎡⎤⎣()220216049500x x =-+-()220548820x =--+,当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.20.(1)相切,理由见解析(2)103【分析】(1)先证明∠FAO+∠AOF=90°,再根据圆周角定理证明∠BAC=∠ADO ,即可推出∠ADO+∠AOF=90°,由此得到∠DAO=90°,即可证明结论;(2)先利用垂径定理和勾股定理求出OE 的长,再证明△AOF ∽DOA ,利用相似三角形的性质求解即可.(1)解:直线AD 和⊙O 相切.理由如下:∵OD ⊥AC 于点F ,∴∠AFO=90°,在Rt △AOF 中,∠FAO+∠AOF=90°,又∵∠BEC=∠ADO ,∠BEC=∠BAC ,∴∠BAC=∠ADO ,∴∠ADO+∠AOF=90°,∴∠DAO=180°-(∠ADO+∠AOF )=180°-90°=90°,∵OA 为圆O 半径,∴直线AD 和⊙O 相切.(2)解:由垂径定理可知,122AF AC ==,又∵OA=12AB=2.5,由勾股定理可知 1.5OF ==,∵直线AD 和⊙O 相切,∴∠DAB=90°=∠AFO ,又∵∠AOD=∠AOF ,∴△AOF ∽△DOA ,∴OF AF OA AD =即15225AD =..,∴AD=103.【点睛】本题主要考查了圆周角定理,切线的判定,相似三角形的性质与判定,垂径定理,勾股定理等等,熟知切线的判定以及相似三角形的性质与判定条件是解题的关键.21.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)【分析】(1)已知抛物线上的三点用待定系数法求解析式;(2)根据抛物线的解析式,设出点M 的坐标,作一条竖线交AB 于N ,利用公式()12ABM A B S MN x x =-△求△ABM 的面积;(3)求出点E 坐标,利用平行四边形的性质和平移求点F 的坐标,注意分类讨论.(1)解:将点A(2,0),B(-2,4),C(-4,0)分别代入2y ax bx c =++得:4201640424a b c a b c a b c ++=⎧⎪-+=⎨⎪-+=⎩,解得1214a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩.∴抛物线的表达式为y=2142x x --+.(2)如图,作MN ∥y 轴交直线AB 于点N,设点M(m ,2142m m --+).设直线AB 的方程为y kx n =+,将20()2)4(A B -,,,代入解析式得:2024k n k n +=⎧⎨-+=⎩,解得12k n =-⎧⎨=⎩,∴直线AB 的解析式为:2y x =-+,∴2()N m m -+,,()221142222MN m m m m =--+--+=-+,∴()()2211122242222(2)ABM A B S MN x x m m m ∆=-=⨯-++=-+-⨯(<<),∵-1<0,且-2<0<2,∴当m=0时,ΔABM 的面积最大,此时21442m m --+=,所以M 的坐标为(0,4).(3)∵抛物线的对称轴为直线,将1x =-代入2y x =-+得y=3,∴E (-1,3),当BC 为对角线时,构成BECF .∵B(-2,4),E(-1,3),∴点E到点B向左一个单位长度,向上1个单位长度,∴点C到点F也向左一个单位长度,向上1个单位长度,∵C(-4,0),∴F(-5,1).同理,当BE为对角线时,构成BCEF,可得F(1,7);当BF为对角线时,构成BCFE,可得F(-3,-1).综上所述点F得坐标为(-5,1)或(1,7)或(-3,-1).22.(1)60°(2)∠BOC=90°-12∠A,见解析【分析】(1)方法一:先根据平角的定义求出∠EBC和∠DCF的度数,再根据切线长定理得到∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,据此理由三角形内角和定理求解即可;方法二:如图,连接OD,OE,OF,则由切线的性质可知,证明Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),得到∠EOB=∠DOB,∠COD=∠COF,先求出∠A的度数,再利用四边形内角和定理求出∠EOF=120°,则∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)同(1)方法二求解即可.(1)解:方法一:由题意得∠EBC=180°-∠ABC=180°-80°=100°,∠DCF=180°-∠ACB=180°-40°=140°,由切线长定理可知,∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,∴在△OBC中,∠BOC=180°-∠OBC-∠BCO=180°-70°-50°=60°;方法二:如图,连接OD,OE,OF,则由切线的性质可知,∠BEO=∠BDO=∠CDO=∠CFO=90°,又∵OD=OE=OF,OB=OB,OC=OC,∴Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),∴∠EOB=∠DOB,∠COD=∠COF,在△ABC中,∠A=180°-∠ABC-∠ACB=60°,在四边形AEOF 中,∠A+∠EOF=180°,∴∠EOF=120°,∴∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)解:同(1)方法二可得180EOF A =︒-∠∠,∠EOB=∠DOB ,∠COD=∠COF ,∴∠BOC=∠BOD+∠COD=12∠EOF=1902A ︒-∠.【点睛】本题主要考查了切线的性质,切线长定理,三角形内角和定理,四边形内角和定理,全等三角形的性质与判定等等,熟知切线的性质和切线长定理是解题的关键.23.(1)反比例函数解析式为2y x=,点A 的坐标为(1,2),(2)(4,12)【分析】(1)先把点A 的坐标代入正比例函数解析式求出点A 的坐标,然后把点A 的坐标代入反比例函数解析式求出反比例函数解析式即可;(2)设直线CD 的解析式为1=y k x b +,求出点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,得到1b OC b OD k ==-,,再根据OD=2OC ,求出112k =-,得到直线CD 的解析式为12y x b =-+,然后代入A 点坐标求出直线CD 的解析式即可求出点B 的坐标.(1)解:∵点A (m ,2)在正比例函数y=2x 的图象上,∴2m=2,∴m=1,∴点A 的坐标为(1,2),把点A 的坐标代入反比例函数解析式得2=1k,∴k=2,∴反比例函数解析式为2y x=(2)解:设直线CD 的解析式为1=y k x b +,令0x =,y b =,令0y =,10k x b +=,即1bx k =-,∴点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,∴1bOC b OD k ==-,,∵OD=2OC ,∴12bb k -=,∴112k =-,∴直线CD 的解析式为12y x b =-+,把点A 的坐标代入直线CD 解析式得1122b -⨯+=,∴52b =,∴直线CD 的解析式为1522y x =-+,联立15222y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,解得412x y =⎧⎪⎨=⎪⎩或12x y =⎧⎨=⎩(舍去),∴点B 的坐标为(4,12).24.(1)见解析(2)见解析(3)2【分析】(1)根据垂径定理和圆周角定理可证明;(2)作∠BAP的平分线交BP于I,证明∠DAI=∠AID,进而命题可证;(3)连接BI,AC,先计算得∠AIB=120°,从而确定I在以D为圆心,AD为半径的圆上运动,根据“射影定理”得AD2=DE•CD,进而证明△DI′E∽△DCI′,从而求得结果.(1)解:证明:∵直径CD⊥弦AB,∴=,AD BD∴∠APD=∠BPD;(2)如图,作∠BAP的平分线,交PD于I,证:∵AI平分∠BAP,∴∠PAI=∠BAI,∴∠AID=∠APD+∠PAI=∠APD+BAI,∵=,AD BD∴∠DAB=∠APD,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI,∴∠AID=∠DAI,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)如图2,连接BI,AC,OA,OB,∵AI平分∠BAP,PD平分∠APB,∴BI平分∠ABP,∠BAI=12∠BAP,∴∠ABI=12∠ABP,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP)=60°,∴∠AIB=120°,∴点I的运动轨迹是 AB,∴DI=DA,∵∠AOB=2∠APB=120°,∵AD⊥AB,∴AD BD,∴∠AOB=∠BOD=60°,∵OA=OD,∴△AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.25.(1)(1,0)-或(2,3)(2)见解析(3)①(2,3);②333022m m -<<【分析】(1)把1m =代入抛物线及直线解析式,并联立即可求解;(2)联立方程组求解即可求证;(3)①由(2)可直接得到;②先求出抛物线G ',再联立抛物线G '和直线h ,求出交点,再进行分类讨论即可.(1)解:当1m =时,抛物线21:1G y x =-,直线2:1h y x =+,令211x x -=+,解得1x =-或2x =,∴抛物线G 与直线h 交点的坐标为(1,0)-或(2,3);(2)证明:令2(33)2332mx m x m mx m --+-=+-,整理得2(43)460mx m x m --+-=,即(2)(23)0x mx m --+=,解得2x =或23m x m -=,当2x =时,3y =;当23m x m-=时,0y =;∴抛物线G 与直线h 的交点分别为(2,3)和23(m m-,0),∴必有一个交点在x 轴上;(3)①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线21:(33)23(23)(1)G y mx m x m mx m x =--+-=-+-,则抛物线G 与x 轴的交点为(1,0),23(m m-,0), 抛物线G 与抛物线G '关于原点对称,∴抛物线G '过点(1,0)-,23(m m--,0),∴抛物线G '的解析式为:223(1)((33)23m y m x x mx m x m m-'=-++=----+,令2(33)2332mx m x m mx m ----+=+-,整理得2(43)0mx m x +-=,0x ∴=或34m x m-=,即四个交点分别为:(0,32)m -,(2,3),23(m A m -,0),34(m m -,66)m -,2302(0)m m m-∴<<>,不等式无解,这种情况不成立;当340m m -<时,则304m <<,则34232m m m m --<<,解得1m >,不成立;当342m m->时,得102m <<,此时23340m m m m --<<,解得得102m <<,333022m m -∴<<.即抛物线G 对称轴的取值范围为:333022m m -<<.【点睛】本题主要考查二次函数与一次函数交点问题,第(3)关键是求出四个交点,由“点A 的横坐标既不是最大值又不是最小值”,对四个点进行分类讨论.26.(1)y=-x 2+2x+3(2)(0,1)或(0,3)【分析】(1)将点A (1,4)代入y=-2x+m ,确定直线解析式即可求出B 点坐标,再设抛物线解析式为y=a(x-1)2+4,将所求的B点坐标代入即可求a的值;(2)(2)设P(0,t),则可求AB=AB的中点M(2,2),再由直角三角形斜边的中线等于斜边的一半可得4+(t-2)2=5,即可求P点坐标为(0,1)或(0,3).【小题1】解:将点A(1,4)代入y=-2x+m,∴-2+m=4,∴m=6,∴y=-2x+6,令y=0,则x=3,∴B(3,0),设抛物线解析式为y=a(x-1)2+4,将B(3,0)代入y=a(x-1)2+4,∴4a+4=0,∴a=-1,∴y=-x2+2x+3;【小题2】设P(0,t),∵A(1,4),B(3,0),∴AB=AB的中点M(2,2),∵∠APB=90°,∴∴4+(t-2)2=5,∴t=1或t=3,∴P点坐标为(0,1)或(0,3).。
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,是中心对称图形的是( )A .B .C .D .2.已知2x =是一元二次方程220x mx ++=的一个根,则m 的值是( )A .3-B .3C .0D .0或3-3.下列事件中,是必然事件的是( )A .从一个只有白球的盒子里摸出一个球是白球B .掷一枚硬币,正面朝上C .任意买一张电影票座位是3D .汽车经过红绿灯路口时前方正好是绿灯4.把抛物线y =﹣(x+1)2向左平移1个单位,然后向上平移3个单位,则平移后抛物线为( )A .y =﹣(x+2)2﹣3B .y =﹣x 2﹣3C .y =﹣x 2+3D .y =﹣(x+2)2+35.如图,点A ,B ,C 在O 上,若BC ,AB ,AC 分别是O 内接正三角形.正方形,正n 边形的一边,则n =( )A .9B .10C .12D .156.若二次函数y =ax 2的图象经过点(1,﹣2),则它也经过( )A .(﹣1,﹣2)B .(﹣1,2)C .(1,2)D .(2,1) 7.如图,在ABC 中,64C ∠=︒,将ABC 绕着点A 顺时针旋转后,得到AB C '',且点C '在BC 上,则B C B ∠''的度数为( )A .42°B .48°C .52°D .58°8.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( )A .2100(1)y x =-B .100(1)y x =-C .2100y x =-D .2100(1)y x =+ 9.如图,圆锥侧面展开得到扇形,此扇形半径6CA =,圆心角120ACB ∠=︒,则此圆锥高OC 的长度是( )A .2B .C .D .10.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;①3a +c >0;①当y >0时,x 的取值范围是-1≤x <3;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题11.在平面直角坐标系中点A (2,1)关于原点对称点的坐标是 ___.12.已知一元二次方程x 2+2x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____.13.如图:四边形ABCD 内接于①O ,E 为BC 延长线上一点,若①A =72°,则①DCE =______°.14.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为________m .15.如图,一名男生推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系是y =﹣22531312x x ++,则他将铅球推出的距离是 _____m .16.如图,反比例函数的图象与一次函数y =﹣2x+3的图象相交于点P ,点P 到y 轴的距离是1,则这个反比例函数的解析式是__________________.17.方程x (x ﹣2)﹣x+2=0的正根为_____.三、解答题18.如图,①ABC 绕着顶点A 逆时针旋转到①ADE ,①B =40°,①E =60°,AB//DE ,求①DAC 的度数.19.如图,AB 是①O 直径,弦CD 交AB 于点E ,OE =DE ,①BOD =α,求①AOC (用含α的式子表示).20.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.21.如图所示,点D是①ABC的AB边上一点,且AD=1,BD=2,AC①ACD①①ABC.22.如图,墙壁EF长24米,需要借助墙壁围成一个矩形花园ABCD,现有围栏40米,设AB长x米.(1)BC的长为米(用含x的式子表示);(2)求这个花园的面积最大值.23.如图1,AB是①O的直径,弦CD与AB相交于点E,①C+①D=90°,BF①CD.(1)求证:BF是①O的切线;(2)延长AC交直线FB于点P(如图2),若点E为OB中点,CD=6,求PC的长.24.如图,AB是①O的直径,AC是弦,P为AB延长线上一点,①BCP=①BAC,①ACB 的平分线交①O于点D,交AB于点E,(1)求证:PC是①O的切线;(2)求证:①PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.25.如图,抛物线2=++与x轴交于A,B两点,与y轴交于C点,OA=1,OB=OC=3.y ax bx c(1)求抛物线的表达式;(2)如图1,点D为第一象限抛物线上一动点,连接DC,DB,BC,设点D的横坐标为m,①BCD的面积为S,求S的最大值;(3)如图2,点P(0,n)是线段OC上一点(不与点O、C重合),连接PB,将线段PB以点P为中心,旋转90°得到线段PQ,是否存在n的值,使点Q落在抛物线上?若存在,请求出满足条件的n的值,若不存在,请说明理由.26.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.①当t>0时,①BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案1.C【详解】解:A、不是中心对称图形,选项说法错误,不符合题意;B、不是中心对称图形,选项说法错误,不符合题意;C、是中心对称图形,选项说法正确,符合题意;D、不是中心对称图形,选项说法错误,不符合题意;故选:C.2.A【详解】解:①x=2是一元二次方程x2+mx+2=0的一个解,①4+2m+2=0,①m=3 .故选:A.3.A【详解】解:A 、“从一个只有白球的盒子里摸出一个球是白球”是必然事件,此项符合题意;B 、“掷一枚硬币,正面朝上”是随机事件,此项不符题意;C 、“任意买一张电影票座位是3”是随机事件,此项不符题意;D 、“汽车经过红绿灯路口时前方正好是绿灯”是随机事件,此项不符题意;故选:A .4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“上加下减,左加右减”的原则可知,平移后的抛物线解析式为2(11)3y x =-+++即为2(2)3y x =-++故选D5.C【分析】分别连接OB 、OA 、OC ,根据正多边形的中心角=360n︒,可分别求得①BOC 、①AOB 的度数,从而可得①AOC 的度数,再根据正多边形的中心角=360n ︒,可求得边数n . 【详解】分别连接OB 、OA 、OC ,如图所示①BC 是O 内接正三角形的一边 ①①BOC=3601203︒=︒ 同理,可得:①AOB=90°①①AOC=①BOC−①AOB=30°①AC 是O 正n 边形的一边①36030n︒=︒ ①n=12故选:C .【点睛】本题考查了正多边形与圆,正多边形的中心角=360n︒,掌握这一知识是解决本题的关键.6.A【分析】先根据题意求出a 的值,然后逐项分析判断即可.【详解】解:①二次函数2y ax =的图象经过点(1,﹣2),①将(1,﹣2)代入2y ax =得:2a =-,①二次函数的解析式为:22y x =-,当1x =-时,2y =-,即原函数图象经过点(﹣1,﹣2),当2x =时,8y =-,即原函数图象经过点(2,﹣8),当1x =时,2y =-,即原函数图象经过点(1,﹣2),故选:A .【点睛】本题考查二次函数2y ax =的图象与性质,掌握函数图象上点坐标的特征,准确求解函数解析式是解题关键.7.C【分析】根据旋转的性质可以得到AC AC =',然后根据64C ∠=︒,即可得到旋转角的度数,然后三角形内角和,即可得到B C B ∠''的度数. 【详解】解:将ABC 绕着点A 顺时针旋转后,得到AB C '',64C ∠=︒, AC AC ∴=',CAC BAB ∠'=∠',B B ∠=∠',64C AC C ∴∠=∠'=︒,18052CAC C AC C ∴∠'=︒-∠-∠'=︒,52BAB ∴∠'=︒,52B AD ∴∠'=︒,B B ∠=∠',BDC B DA ∠'=∠',52BC D B AD ∴∠'=∠'=︒,即B C B ∠''的度数为52︒,故选:C.【点睛】本题考查旋转的性质、三角形内角和、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.A【分析】原价为100万元,一年后的价格是100×(1-x),二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式求得.【详解】解:由题意得:二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式是:y=100(1-x)2.故选A.【点睛】本题考查了根据实际问题列二次函数关系式的知识,需注意第二年的价位是在第一年的价位的基础上降价的.9.C【分析】设圆锥底面圆的半径为r,根据圆锥的侧面展开图求出圆锥的底面圆的周长,进而求得OA,最后用勾股定理求出CA即可.【详解】解:设圆锥底面圆的半径为r①AC=6,①ACB=120°①12062180l AB rππ⨯==,即:r=OA=2在Rt①AOC中,OA=2,AC=6,由勾股定理得,OC==故填:【点睛】本题主要考查了扇形的弧长公式、勾股定理等知识点,根据弧长公式和圆的周长公式求得OA是解答本题的关键.10.B【详解】解:①抛物线与x轴有2个交点,①b2﹣4ac>0,所以①正确;①抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),①方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以①正确;①x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0, ①a+2a+c=0,所以①错误;①抛物线与x 轴的两点坐标为(﹣1,0),(3,0),①当﹣1<x <3时,y >0,所以①错误;①抛物线的对称轴为直线x=1,①当x <1时,y 随x 增大而增大,所以①正确.故选:B .11.(-2,-1)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】解:点A (2,1)关于原点的对称点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.m>-1【分析】根据一元二次方程根的判别式,当①>0时,方程有两个不相等的实数根,列不等式求出m 的范围即可.【详解】①方程有两个不相等的实数根①①>0①22 -4×1• (-m)>04+4m>0m>-1①m 的取值范围是m>-1故答案为:m>-1【点睛】本题主要考查一元二次方程根的判别式,对于一元二次方程ax 2+bx+c=0, ①>0时,方程有两个不相等的实数根;①=0时,方程有两个相等的实数根;①<0时方程没有实数根.掌握以上知识是解题的关键.13.72【分析】根据圆内接四边形对角和为180°再结合补角的性质即可得到①DCE=①A .【详解】解:①四边形ABCD 内接于①O ,①①A+①BCD=180°①①BCD+①DCE=180°①①DCE=①A=72°,故答案为:72.【点睛】本题考查的是圆内接四边形的性质和补角性质,掌握圆这些是本题关键. 14.54【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm ,①在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为60m , ①1.8390h =, 解得h=54(m ).故答案为54.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.10【分析】成绩就是当高度y=0时x 的值,所以解方程可求解.【详解】解:当y=0时,-22531312x x ++=0, 解之得x 1=10,x 2=-2(不合题意,舍去),所以推铅球的距离是10米.故答案为10【点睛】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.16.5y x=- 【分析】根据点P 到到y 轴的距离及其象限,确定横坐标,代入一次函数解析式,得到其纵坐标,再将点P 的坐标代入反比例函数解析式k y x=中求得k 值,即可得解; 【详解】解:①点P 到y 轴的距离是1,且由图可知,点P 在第二象限,①点P 的横坐标为x=-1,代入一次函数y =﹣2x+3中得到:y =﹣2×(-1)+3=5,①点P 的坐标为(-1,5), 设反比例函数的解析式为:k y x=,点P 在反比例函数图象上, ①51k =-, ①k=-5,①反比例函数解析式为:5y x=-, 故答案为:5y x=- 【点睛】本题考查了一次函数与反比例函数的交点问题,利用待定系数法,熟练掌握待定系数法是解本题的关键.17.x =1或x =2【分析】利用提取公因式法解方程即可得答案.【详解】①x (x ﹣2)﹣(x ﹣2)=0,①(x ﹣2)(x ﹣1)=0,①x ﹣2=0或x ﹣1=0,解得:x =2或x =1,故答案为:x =1或x =2【点睛】本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.18.40°【分析】根据旋转的性质可知,①B =①D ,①C =①E ;根据三角形内角和即可求出①BAC 的度数;再根据AB①DE ,可得①BAD =①D ,因此可求解①DAC 的度数.【详解】①①ABC 旋转到①ADE ,①B =40°,①E =60°①①B =①D =40°,①C =①E =60°①①BAC =180°-40°-60°=80°①AB①DE①①BAD =①D =40°①①DAC =①BAC -①BAD =80°-40°=40°【点睛】本题考查了旋转的性质、平行线的性质、三角形的内角和定理,运用旋转的性质得出①C的度数是本题的关键.19.①AOC=3α【分析】利用等腰三角形的性质得到①D=①BOD=α,利用三角形外角性质得到①CEO=2α,由于OC=OD,则①C=①D=α,然后根据三角形外角性质得到①AOC=3α.【详解】解:①OE=DE,①①D=①BOD=α,①①CEO=①D+①BOD,①①CEO=2α,①OC=OD,①①C=①D=α,①①AOC=①C+①CEO,①①AOC=3α.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆心角、弧、弦的关系.20.(1)23(2)P(两次取出的小球标号相同)1 3【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.(1)①在1,2,3三个数中,其中奇数有1,3共2个数,①随机摸取一个小球的标号是奇数,该事件的概率为23故答案为:23;(2)画树状图如下:由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,①P (两次取出的小球标号相同)3193==. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.见解析 【分析】首先利用已知得出AD AC AC AB=,进而利用相似三角形的判定方法得出即可.【详解】证明:①AD AC =,AC AB ==,, ①AD AC AC AB =, ①①A=①A ,①①ACD①①ABC .【点睛】本题主要考查了相似三角形的判定,正确把握相似三角形的判定方法是解题关键.22.(1)(40-2x )(2)200平方米【分析】(1)由AB+BC+CD=40米,AB=CD=x 米可得答案;(2)根据矩形的面积公式得出y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,再利用二次函数的性质求解即可.(1)解:由题意知AB+BC+CD=40米,AB=CD=x 米,所以BC 的长为(40-2x )米,故答案为:(40-2x );(2)解:设这个花园的面积为y 平方米,由题意得:y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,①-2<0,①当x=10时,y 取得最大值,最大值为200,答:这个花园的面积最大值为200平方米.【点睛】本题考查二次函数的应用,关键是根据等量关系写出函数解析式.23.(1)见解析(2)PC=2【分析】(1)根据圆周角定理以及已知条件可得①BEC=①A+①C=90°,根据平行线的性质得①ABF=①BEC=90°,则AB①BF,即可得BF是①O的切线;(2)由垂径定理得DE=CE=3,根据线段垂直平分线的性质得OD=BD,可证明①OBD是等可得边三角形,可得①BDE=30°,BD=2BE,根据勾股定理求出(1)证明:①①A=①D,①C+①D=90°,①①BEC=①A+①C=90°,①BF∥CD,①①ABF=①BEC=90°,①AB①BF,①BF是①O的切线;(2)解:连接OD,①①BEC=90°,①AB①CD,①点E为OB中点,CD=6,①CE=DE=3,OD=BD,①OB=OD=BD,①①OBD 是等边三角形,①①OBD=60°,①BDE=30°,①BD=2BE ,①A=①BDE=30°,在Rt①BDE 中,BD 2=BE 2+DE 2,①(2BE )2=BE 2+32,解得①点E 为OB 中点,在Rt①ACE 中,AC 2=CE 2+AE 2=32+(2=36,①AC=6=2CE ,①BP=4,AP=8,①PC=8-6=2.24.(1)见解析;(2)见解析;(3【分析】(1)连接OC ,根据圆周角定理可得①ACB=90°,根据等腰三角形等边对等角以及已知条件证明①BCP +①OCB=90°即可;(2)根据题意以及角平分线定义求得①PEC=①PCE 即可得出结论;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,先证明()AMD BND HL ≌,然后证明四边形CMDN 为正方形,结合已知可得出结论.【详解】解:连接OC,①AB 为直径,①①ACB=90°,①①ACO+①OCB=90°,①OA=OC ,①①BAC=①ACO ,①①BCP =①BAC ,①①BCP=①ACO①①BCP +①OCB=90°,即①OCP=90°,①PC 是①O 的切线;(2)①①BCP =①BAC ,① ①ACB 的平分线交①O 于点D ,①①ACD =①BCD ,①①PCE =①PCB+ ①BCD ,①PEC =①BAC+①ACD ,①①PEC=①PCE ,①①PEC 是等腰三角形;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,①CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,①DM DN =,AD BD =,①AD BD =,①90AMD BND ∠=∠=︒,①()AMD BND HL ≌,①90DMC MCN CND ∠=∠=∠=︒,①四边形CMDN 为矩形,①DM DN =,①矩形CMDN 为正方形,①CN =, ①2AC BC CM AM CB CN +=++=, ①AC BC +=,①2AC BC +=, ①CD25.(1)2y x 2x 3=-++;(2)278;(3)存在,n=1或 【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF①x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A(-1,0),B(3,0),C(0,3)①(1)(3)y a x x =+-把C(0,3)代入得,1a =-①2y x 2x 3=-++(2)作DF①x 轴于点F ,交BC 于点E设直线BC 关系式为y=kx +b ,代入(3,0),(0,3)得k=-1,b=3,①y=-x +3①点D 的横坐标为m ,则DF=223m m -++,EF=-m +3①DE=23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ①302-<,①S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N①1290Q MP Q NP BOP ∠=∠=∠=︒①1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,①1PQ M BPO ∠=∠又①1BP PQ =,①1Q PM PBO △≌△①1MQ OP n ==,3MP OB ==,①1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,①2Q (-n ,n -3)代入抛物线,得2323n n n =-+--解得1n =2n =舍去)综上,存在n 的值,n=1或 【点睛】此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.26.(1),B 点坐标为(3,0);(2)①;①.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;①由题意可知OB=OA ,故当①BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)①抛物线2y x bx c =-++对称轴是直线x=1,①﹣2(1)b ⨯-=1,解得b=2, ①抛物线过A (0,3),①c=3,①抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3, ①B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,①P 在抛物线上,①P (2t ,2443t t -++),①四边形OMPN 为矩形,①ON=PM ,①3t=2443t t -++,解得t=1或t=﹣34(舍去), ①当t 的值为1时,四边形OMPN 为矩形;①①A (0,3),B (3,0),①OA=OB=3,且可求得直线AB 解析式为y=﹣x+3,①当t>0时,OQ≠OB,①当①BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,①Q(2t,﹣2t+3),﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得当OQ=BQ﹣3|,解得t=34;综上可知当t34时,①BOQ为等腰三角形.21。
人教版九年级上册数学期末考试试题一、单选题1.下列四个图案中,是中心对称图形的是( )A .B .C .D .2.把抛物线2112y x =--向右平移1个单位长度,得到新的抛物线的解析式是( ) A .212y x =- B .21(1)12y x =-+- C .2122y x =-- D .21(1)12y x =--- 3.用配方法解一元二次方程x 2﹣10x+21=0,下列变形正确的是( )A .(x ﹣5)2=4B .(x+5)2=4C .(x ﹣5)2=121D .(x+5)2=121 4.在平面直角坐标系xOy 中,已知点A (﹣4,﹣3),以点A 为圆心,4为半径画⊙A ,则坐标原点O 与⊙A 的位置关系是( )A .点O 在⊙A 内B .点O 在⊙A 外C .点O 在⊙A 上D .以上都有可能 5.下列事件为必然事件的是( )A .抛掷一枚硬币,正面向上B .在一个装有5只红球的袋子中摸出一个白球C .方程x 2﹣2x =0有两个不相等的实数根D .如果|a|=|b|,那么a =b6.某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有( )支队伍参赛.A .4B .5C .6D .77.在同一平面直角坐标系xOy 中,一次函数y =2x 与二次函数2y ax a =-的图象可能是A .B .C.D.8.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20° B.25° C.30° D.40°9.已知点P1(x1,y1),P2(x2,y2)为抛物线y=﹣ax2+4ax+c(a≠0)上两点,且x1<x2,则下列说法正确的是()A.若x1+x2<4,则y1<y2B.若x1+x2>4,则y1<y2C.若a(x1+x2﹣4)>0,则y1>y2 D.若a(x1+x2﹣4)<0,则y1>y2 10.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且⊙P=36°,则⊙ACB=( )A.54° B.72° C.108° D.144°二、填空题11.已知点P(2,﹣3)与点Q(a,b)关于原点对称,则a+b=_____.12.在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是_____个.13.在某一时刻,测得一根长为1.5米的竹竿竖直放置时,在平地上的影长是2米;在同一时刻测得旗杆在平地上的影长是24米,则旗杆的高度是_____米.14.如图,已知O的半径为13,弦AB长为24,则点O到AB的距离是___.15.飞机着陆后滑行的距离(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s =60t﹣1.5t2,则飞机停下前最后10秒滑行的距离是_____米.16.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果⊙B=60°,AC=6,那么CD的长为______.17.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(﹣2,0),对称轴为直线x=1,则y<0,x的范围是_____.三、解答题18.解方程:2x2+x﹣15=0.19.如图,已知⊙EAC=⊙DAB,⊙D=⊙B,求证:⊙ABC⊙⊙ADE.20.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,⊙ABC的三个顶点都在格点上.(1)在图中画出将⊙ABC绕点C按逆时针方向旋转90°后得到的⊙A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留π).21.为了更好地宣传垃圾分类,某校九(1)班学生成立了一个“垃圾分类”宣传小组,其中男生2人,女生3人.(1)若从这5人中选1人进社区宣传,恰好选中女生的概率是;(2)若从这5人中选2人进社区宣传,请用树状图或列表法求恰好选中一男一女的概率.22.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+m与二次函数y=ax2+bx+c的图象相交于A,B两点,点A(1,4)为二次函数图象的顶点,点B在x轴上.(1)求二次函数的解析式;(2)根据图象,求二次函数的函数值大于0时,自变量x的取值范围.23.如图,在⊙ABC中,⊙C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB 相切于点D .(1)尺规作图:画出⊙O ,并标出点D (不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD ,若CD =BD ,且AC =6.求劣弧CD 的长.24.某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a 吨时,每吨按0.3a 元缴纳水费;每月超过a 吨时,超过部分每吨按0.4a 元缴纳水费. (1)若a =12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元? (2)若如表是某户居民4月份和5月份的用水量和缴费情况:根据上表数据,求规定用水量a 的值25.如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且⊙ACP=60°,PA=PD .(1)试判断PD 与⊙O 的位置关系,并说明理由;(2)若点C 是弧AB 的中点,已知AB=4,求CE•CP 的值.26.已知抛物线y 12=-x 2+mx+m 12+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C (0,52-),点P 为抛物线在直线AC 上方图象上一动点. (1)求抛物线的解析式;(2)求⊙PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线y12=-x2+mx+m12+在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC 只有一个交点,求图象M的顶点横坐标n的取值范围.27.如图,四边形ABCD为平行四边形,以AD为直径的⊙O交AB于点E,连接DE,DA=DE DC=5.过点E作直线l.过点C作CH⊙l,垂足为H.(1)若l⊙AD,且l与⊙O交于另一点F,连接DF,求DF的长;(2)连接BH,当直线l绕点E旋转时,求BH的最大值;(3)过点A作AM⊙l,垂足为M,当直线l绕点E旋转时,求CH﹣4AM的最大值.参考答案1.A2.D3.A4.B5.C6.C7.C8.B9.C10.B11.112.613.1814.515.15016.617.﹣2<x <4.18.52x =或3x =-;【详解】解:22150x x +-=,⊙(25)(3)0x x -+=,⊙250x -=或30x +=, ⊙52x =或3x =-;19.见解析【详解】解:⊙⊙EAC =⊙DAB ,⊙⊙EAC+⊙DAC=⊙DAB+⊙DAC ,即⊙BAC=⊙DAE ,又⊙⊙B=⊙D ,⊙⊙ABC⊙⊙ADE .20.(1)见详解;(2)52π【分析】(1)利用网格特点和旋转的性质画出A 、B 的对应点A1、B1即可.(2)由勾股定理求出AC 的长度,然后利用扇形的面积公式,即可求出答案.【详解】解:(1)如图所示:(2)由勾股定理,则AC⊙线段AC 在旋转过程中扫过的图形面积为:52S π==;21.(1)35;(2)35【详解】解:(1)根据题意,⊙男生2人,女生3人,⊙从这5人中选1人进社区宣传,恰好选中女生的概率是:35; 故答案为:35;(2)画树状图如图:共有20种等可能的结果,恰好选到一男一女的结果有12种,⊙恰好选到一男一女的概率为:123205=. 22.(1)2y x 2x 3=-++;(2)13x【分析】(1)把点A 代入一次函数解析式,求出一次函数解析式和点B 的坐标,然后设出二次函数顶点式,把点B 代入即可求出二次函数解析式;(2)由图像可知,x 轴上面部分的二次函数值都大于0,根据二次函数与x 轴的交点特征求得二次函数与x 轴的交点即可得出答案.【详解】解:(1)⊙点A (1,4)在一次函数y =﹣2x+m 上,⊙把点A (1,4)代入y =﹣2x+m ,得,4=﹣2×1+m ,解得:m =6,⊙一次函数解析式为:y =﹣2x+6,令y =0时,则﹣2x+6=0,解得:x =3,⊙点B 的坐标为:(3,0),⊙点A (1,4)为二次函数图象的顶点,点B 在x 轴上,⊙设二次函数解析式为:()214y a x =-+,把点B (3,0)代入()214y a x =-+,解得:a =﹣1,⊙二次函数的解析式为:()221423y x x x =--+=-++;(2)由(1)求得二次函数解析式为2y x 2x 3=-++,令y =0,即2230x x -++=,解得:11x =-,23x =,由图像可知x 轴上面部分的二次函数值都大于0,且二次函数与x 轴交于点(﹣1,0)和(3,0),⊙自变量x 的取值范围:13x .【点睛】本题考查了一次函数的图像和性质,二次函数的图像和性质,根据顶点坐标设出二次函数顶点式是求出二次函数的关键.23.(1)作图见解析;(2【分析】(1)由于D点为⊙O的切点,即可得到OC=OD,且OD⊙AB,则可确定O点在⊙A 的角平分线上,所以应先画出⊙A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出⊙DCB的度数,然后进一步求出⊙COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.【详解】解:(1)如图所示,先作⊙A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;(2)如图所示,连接CD和OD,由题意,AD为⊙O的切线,⊙OC⊙AC,且OC为半径,⊙AC为⊙O的切线,⊙AC=AD,⊙⊙ACD=⊙ADC,⊙CD=BD,⊙⊙B=⊙DCB,⊙⊙ADC=⊙B+⊙BCD,⊙⊙ACD=⊙ADC=2⊙DCB,⊙⊙ACB=90°,⊙⊙ACD+⊙DCB=90°,即:3⊙DCB=90°,⊙⊙DCB=30°,⊙OC=OD,⊙⊙DCB=⊙ODC=30°,⊙⊙COD=180°-2×30°=120°,⊙⊙DCB=⊙B=30°,⊙在Rt⊙ABC 中,⊙BAC=60°, ⊙AO 平分⊙BAC , ⊙⊙CAO=⊙DAO=30°,⊙在Rt⊙ACO 中,tan 6OC AC CAO =∠==⊙CD ==.【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键. 24.(1)91.2 ;(2)10【分析】(1)根据题意得:该用户3月份用水量超过a 吨,然后根据“用水量每月不超过a 吨时,每吨按0.3a 元缴纳水费;每月超过a 吨时,超过部分每吨按0.4a 元缴纳水费”,即可求解;(2)若18a > ,可得22620183a =< ,从而得到18a < ,再由“用水量每月不超过a 吨时,每吨按0.3a 元缴纳水费;每月超过a 吨时,超过部分每吨按0.4a 元缴纳水费”,列出方程,即可求解.【详解】解:(1)根据题意得:该用户3月份用水量超过a 吨,()20.3120.412221291.2⨯+⨯⨯-= 元;(2)若18a > ,有20.362a = ,解得:22620183a =< ,即18a < ,不合题意,舍去, ⊙18a < ,根据题意得:()20.30.41862a a a +-= ,解得:1210,62a a == (舍去), 答:规定用水量a 的值为10吨.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.25.(1)PD 是⊙O 的切线.证明见解析.(2)8.【详解】试题分析:(1)连结OP ,根据圆周角定理可得⊙AOP=2⊙ACP=120°,然后计算出⊙PAD 和⊙D 的度数,进而可得⊙OPD=90°,从而证明PD 是⊙O 的切线;(2)连结BC ,首先求出⊙CAB=⊙ABC=⊙APC=45°,然后可得AC 长,再证明⊙CAE⊙⊙CPA ,进而可得,然后可得CE•CP 的值.试题解析:(1)如图,PD 是⊙O 的切线. 证明如下:连结OP ,⊙⊙ACP=60°,⊙⊙AOP=120°,⊙OA=OP ,⊙⊙OAP=⊙OPA=30°,⊙PA=PD ,⊙⊙PAO=⊙D=30°,⊙⊙OPD=90°,⊙PD 是⊙O 的切线.(2)连结BC ,⊙AB 是⊙O 的直径,⊙⊙ACB=90°,又⊙C 为弧AB 的中点,⊙⊙CAB=⊙ABC=⊙APC=45°,⊙AB=4,AC=Absin45°=.⊙⊙C=⊙C ,⊙CAB=⊙APC ,⊙⊙CAE⊙⊙CPA ,⊙,⊙CP•CE=CA 2=()2=8.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.26.(1)215322y x x =---;(2)当515,28P ⎛⎫- ⎪⎝⎭时,PACS取得的最大值,最大值为12516;(3)1815n -≤≤-或2n = 【分析】(1)将点C (0,52-)代入抛物线解析式直接求解即可;(2)先求出A 点坐标,以及直线AC 的解析式,再过P 点作PQ⊙x 轴,交AC 于Q 点,通过设P 、Q 两点的坐标,建立出关于PACS的二次函数表达式,然后结合二次函数的性质求出其最值,并求出此时对应的P 点坐标即可;(3)先根据题意画出基本图像G ,然后结合平移的性质确定B 点的运动轨迹,以及其直线解析式,根据题目要求和平移的性质可以确定点B 平移至恰好在PC 上时,以及图象G 与直线AC 的交点R ,经过平移至C 点时,满足要求,应注意,当A 点平移后经过C 点时,此时也可满足图象M 与PC 仅有一个交点,即为C 点,此情况应单独求解.【详解】解:(1)将点C (0,52-)代入抛物线解析式得:1522m +=-,解得:3m =-, ⊙抛物线解析式为:215322y x x =---;(2)⊙抛物线与x 轴交于A 、B 两点,⊙令2150322x x =---,解得:15x =-,21x =-,⊙A 、B 坐标分别为:()5,0A -,()1,0B -, 设直线AC 的解析式为:()0y kx b k =+≠, 将()5,0A -和50,2C ⎛⎫- ⎪⎝⎭代入得:5052k b b -+=⎧⎪⎨=-⎪⎩,解得:1252k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ⊙直线AC 的解析式为:1522y x =--,如图所示,过P 点作PQ⊙x 轴,交AC 于Q 点, ⊙P 点在位于直线AC 上方的抛物线上,⊙设215,322P a a a ⎛⎫--- ⎪⎝⎭,则15,22Q a a ⎛⎫-- ⎪⎝⎭,其中50a -<<,⊙221515153222222P Q PQ y y a a a a a ⎛⎫=-=------=-- ⎪⎝⎭, ⊙()12PACC A SPQ x x =-, ⊙()2211555125052224216PACS a a a ⎛⎫⎛⎫=--⨯--=-++⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭, ⊙504-<, ⊙抛物线开口向下,当52a =-时,PAC S取得的最大值,最大值为12516, 此时,将52a =-代入抛物线解析式得:158y =,⊙当515,28P ⎛⎫- ⎪⎝⎭时,PAC S 取得的最大值,最大值为12516;(3)如图所示,抛物线y 12=-x 2+mx+m 12+在点A 、B 之间的部分(含点A 、B )沿x 轴向下翻折,得到图象G .由(1)可知,原抛物线顶点坐标为()3,2-,⊙沿x 轴向下翻折后,图象G 的顶点坐标为()3,2--,图象G 的解析式为:215322y x x =++; ⊙图象G 沿着直线AC 平移,⊙作直线BS⊙AC ,交PC 于S 点,则随着平移过程,点B 在直线BS 上运动, 分如下情况讨论:⊙当图象G 沿直线AC 平移至B 点恰好经过S 点时,如图中M 1所示, 此时,平移后的图象M 恰好与线段PC 有一个交点,即为S 点,由(2)知,515,28P ⎛⎫- ⎪⎝⎭,以及直线AC 的解析式为1522y x =--,⊙设直线BS 的解析式为:12y x b =-+,将()1,0B -代入得:12b =-,⊙直线BS 的解析式为:1122y x =--;设直线PC 的解析式为:()0y kx b k =+≠, 将515,28P ⎛⎫- ⎪⎝⎭,50,2C ⎛⎫- ⎪⎝⎭代入得:5152852k b b ⎧-+=⎪⎪⎨⎪=-⎪⎩,解得:7452k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ⊙直线PC 的解析式为:7542y x =--;联立11227542y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩,解得:85310x y ⎧=-⎪⎪⎨⎪=⎪⎩,即:S 点的坐标为83,510S ⎛⎫- ⎪⎝⎭,⊙此时点()1,0B -平移至83,510S ⎛⎫- ⎪⎝⎭,等同于向左平移35个单位,向上平移310个单位,即:当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向左平移35个单位,向上平移310个单位, ⊙原图像G 的顶点坐标为:()3,2--,⊙平移后图象M 1的顶点的横坐标318355n =--=-;⊙当图象G 沿直线AC 平移至恰好经过C 点时,如图中M 2所示, 设图象G 与直线AC 的交点为R ,联立2153221522y x x y x ⎧=++⎪⎪⎨⎪=--⎪⎩,解得:50x y =-⎧⎨=⎩或232x y =-⎧⎪⎨=-⎪⎩,⊙点R 的坐标为:32,2R ⎛⎫-- ⎪⎝⎭,由32,2R ⎛⎫-- ⎪⎝⎭平移至50,2C ⎛⎫- ⎪⎝⎭,等同于向右平移2个单位,向下平移1个单位,⊙当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向右平移2个单位,向下平移1各单位,⊙原图像G 的顶点坐标为:()3,2--,⊙平移后图象M 2的顶点的横坐标321n =-+=-;⊙当图象G 在M 1和M 2之间平移时,均能满足与线段PC 有且仅有一个交点, 此时,图象M 的顶点横坐标n 的取值范围为:1815n -≤≤-; ⊙当图象G 沿直线AC 平移至A 点恰好经过C 点时,如图中M 3所示,此时,由()5,0A -平移至50,2C ⎛⎫- ⎪⎝⎭,等同于向右平移5个单位,向下平移52个单位,即:原图像G 向右平移5个单位,向下平移52个单位,得到图象M 3,⊙原图像G 的顶点坐标为:()3,2--,⊙平移后图象M3的顶点的横坐标352n=-+=;综上所述,当新的图象M与线段PC只有一个交点时,图象M的顶点横坐标n的取值范围为:1815n-≤≤-或2n=.27.(1);(2)2+(3)【分析】(1)由平行线的性质可得⊙ADE=⊙DEF,则AE=DF,由AD是圆O的直径,得到⊙AED=90°,则1DF AE===;(2)连接CE,取CE中点K,过点K作KM⊙BE于M,由题意可知H在以K为圆心,以CE为直径的圆上,如图所示,当H运动到H'的位置时,即此时H',B,K三点共线,BH 有最大值BH',由此求解即可;(3)如图3-1所示,过点B作BN⊙l于N,过点B作BT⊙l交CH于T,先证四边形BCHN 是平行四边形,得到HT=BN,再证⊙AME⊙⊙BNE,得到BN=4AM,即可推出CH-4AM=CH-HT=CT,又由CT BC≤即可得到当直线l与直线BC垂直时,=CT BC,如图3-2所示,即此时CH-4AM的最大值即为BC,由此求解即可.【详解】解:(1)如图所示,连接DF,⊙AD⊙l,⊙⊙ADE=⊙DEF,⊙AE=DF,⊙AD是圆O的直径,⊙⊙AED=90°,⊙1DF AE===;(2)如图所示,连接CE ,取CE 中点K ,过点K 作KM⊙BE 于M , ⊙CH⊙EH , ⊙⊙CHE=90°,⊙H 在以K 为圆心,以CE 为直径的圆上, ⊙BH HK BK ≤+,⊙如图所示,当H 运动到H '的位置时,即此时H ',B ,K 三点共线,BH 有最大值BH ', ⊙四边形ABCD 是平行四边形, ⊙AB=CD=5,AB⊙CD ,⊙BE=AB -AE=4,⊙CDE=⊙AED=90°,⊙DCE=⊙MEK ,⊙CE KE ==⊙12KH CE '==⊙⊙CDE=⊙EMK=90°, ⊙⊙CDE⊙⊙EMK , ⊙12KM EK EM DE CE CD ===,⊙12KM DE ==1522EM CD ==, ⊙32BM AB AE EM =--=,⊙2BK ==, ⊙2BH '=+ ⊙BH的最大值为2+;(3)如图3-1所示,过点B 作BN⊙l 于N ,过点B 作BT⊙l 交CH 于T , ⊙BN⊙l ,CH⊙l , ⊙BN⊙CH ,⊙四边形BCHN 是平行四边形, ⊙HT=BN , 同理可证AM⊙BN , ⊙⊙AME⊙⊙BNE , ⊙4BN BEAM AE==, ⊙BN=4AM , ⊙HT=4AM ,⊙CH -4AM=CH -HT=CT ,又⊙CT BC ≤⊙当直线l 与直线BC 垂直时,=CT BC ,如图3-2所示,即此时CH -4AM 的最大值即为BC ,⊙四边形ABCD是平行四边形,⊙==BC AD⊙CH-4AM的最大值为。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列属于一元二次方程的是( )A .x 2-3x+y=0B .x 2+2x= C .2x 2=5x D .x(x 2-4x)=32.抛物线的顶点坐标为( )A .(3,0) B.(-3,0) C .(0,3) D .(0,-3)3.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A . B . C . D .4.若关于x 的方程x 2﹣2x ﹣k =0有实数根,则k 的值可能为( )A .﹣4B .﹣3C .﹣2D .05.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C 2D .26.如图,将就点C 按逆时针方向旋转75°后得到,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°7.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A .B .C .D .8.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )1x 2y 2x 3=-()()2019nCoV -ABC A B C ''△50120,x ()()2501501120x x +++=()()250501501120x x ++++=()2501120x +=()50160x +=A .25°B .30°C .35°D .40°9.若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )A .B .C .D .10.关于x 的方程k 2x 2+(2k-1)x+1 =0有实数根,则下列结论正确的是()A .当k=时,方程的两根互为相反数B .当k=0时,方程的根是x=-1C .若方程有实数根,则k≠0且k≤D .若方程有实数根,则k≤二、填空题。
人教版九年级全册试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 17B. 27C. 37D. 474. 若一个圆的半径为5cm,则这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π5. 若一个长方体的长、宽、高分别为10cm、6cm和4cm,则这个长方体的对角线长度为多少cm?A. 12cmB. 14cmC. 16cmD. 18cm二、判断题(每题1分,共5分)1. 任何两个等边三角形都是相似的。
()2. 两个负数相乘的结果一定是正数。
()3. 任何数乘以0都等于0。
()4. 一个数的平方根有两个,且互为相反数。
()5. 任何数除以它自己都等于1。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第5项是______。
2. 若一个圆的直径为14cm,则这个圆的周长是______cm。
3. 若一个长方体的长、宽、高分别为8cm、6cm和4cm,则这个长方体的体积是______立方厘米。
4. 若一个等比数列的首项为2,公比为3,则第3项是______。
5. 若一个正方形的边长为10cm,则这个正方形的对角线长度是______cm。
四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。
2. 请简要说明平行线的性质。
3. 请简要说明勾股定理。
4. 请简要说明圆的面积公式。
5. 请简要说明长方体的体积公式。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
2024年最新人教版九年级数学(上册)期中试卷及答案一、选择题(每题1分,共5分)1. 下列函数中,哪一个是一次函数?A. y = 2x^2B. y = 3x + 1C. y = x^3D. y = √x2. 下列图形中,哪一个不是中心对称图形?A. 正方形B. 等边三角形C. 圆D. 矩形3. 下列各数中,无理数是?A. √9B. √16C. √3D. √14. 下列等式中,正确的是?A. (a + b)^2 = a^2 + b^2B. (a b)^2 = a^2 b^2C. (a + b)(a b) = a^2 b^2D. (a + b)(a + b) = a^2 + 2ab + b^25. 下列哪个比例尺表示的范围最大?A. 1:1000B. 1:100C. 1:10D. 1:1二、判断题(每题1分,共5分)1. 两条平行线上的任意两点到第三条直线的距离相等。
()2. 任何两个实数都可以比较大小。
()3. 两个负数相乘,结果是正数。
()4. 一元二次方程的解一定是实数。
()5. 对角线互相垂直的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 已知一组数据的方差是9,那么这组数据的标准差是_______。
3. 一次函数y = 2x + 1的图象经过_______象限。
4. 若平行线l1:3x + 4y + 7 = 0,l2:3x + 4y 5 = 0,则两平行线的距离是_______。
5. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长是_______cm。
四、简答题(每题2分,共10分)1. 请简要说明平行线的性质。
2. 什么是二次根式?请举例说明。
3. 如何判断一个多项式是否有整数解?4. 请解释比例尺的意义。
5. 简述三角形的中位线定理。
五、应用题(每题2分,共10分)1. 某商店举行打折活动,原价200元的商品打8折,现价是多少元?2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,行驶的距离是多少?3. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的体积。
2016-2017学年度第二学期第三次教学检测
九年级数学试卷
题号 一 二 三 四 总分 得分
本试卷满分为120分,考试时间为120分钟。
一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案,将其序号写在括号内。
)
1.下列图形中,既是轴对称图形又是中心对称图形的是 ( )
A B C D
2.下列运算正确的是 ( )
A. 933)(x x = B .xy y x 532=+ C. 3
36)2(x x -=- D .2
36x
x x =÷ 3.陇西中药材会议在县委县政府的精心部署下胜利闭幕,中药材会议期间签订的项目成交总金额达60 110 000 000元,将60 110 000 000用科学记数法表示应为 ( )
A .96.01110⨯
B .9
60.1110⨯ C .106
.01110⨯ D .11
0.601110⨯ 4.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的 度数为 ( ) A.125° B .120° C.140° D .130°
5.如果两个相似三角的面积比是1:9,那么它们的周长比是 ( ) A.1:81 B.1:3 C.1:18 D.1:6
6.下列命题是假命题的是 ( ) A.平行四边形的对边相等 B. 菱形的四条边相等
C.矩形的对边平行且相等
D.对角线垂直的平行四边形是正方形
7.如果点P (2x+6,x-4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表
示为 ( )
A B C D
8、如图,是由相同小正方体组成的立体图形,它的主视图为( )
9.某工程队准备修建一条长1200m 的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m,则根据题意可列方程为: ( ) A .21200%)201(1200=--x x B. 2
1200
%)201(1200=-+x
x C.
2
%)201(1200
1200=+-x x D. 2%)201(12001200=--x x 10.如图所示,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC 于点F (EF 不过A 、B 点),设E 到BC 的距离为x ,则△DEF 的面积y 关于x 的函数的图象大致为图中的( ).
A B C D 二、填空题:(本大题共8小题,每小题3分,共24分。
把答案写在横线上。
)
11.分解因式:2
69m n m n m ++= _________ .
12.分式方程
1
12
x x =+的解是 _________ . 13.已知()()x y y y x 411222--+=+,则代数式的值为 .
14.Rt △ABC 中,∠C=90°AB=6 BC=3,则SinA= . 第16题图 15. 一个正多边形的内角和是外角和的4倍,则这个正多边形的一个外角为 . 16.如图,在△ABC 中,EF ∥BC ,1
2
A E E
B =,S 四边形BCFE =8,则AB
C S ∆= . A B C D
(第8题图)
第22题 A
P B O
图② 60° 30° 图① 17.如右图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上, ∠ADC=54°,则∠BAC 的度数等于 . 18.一组按规律排列的式子:2
a ,-4
3
a ,
6
5
a ,-
8
7
a ,…,
则第2017个式子是 .
三、解答题(一):本大题共5小题,共26分。
解答时,应写出必要的文字说明、证明过程或演算步骤。
19. (4分)计算:0
1
)23(82145sin 4|2|--+
⎪⎭
⎫ ⎝⎛----
20. (5分)已知一元二次方程x 2
-4x+k=0有两个不相等的实数根。
(1)求 k 的取值范围;
(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x+k=0与x 2
+mx-1=0有一个相同的 根,求此时m 的值。
21.(5分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣4,5), C (﹣5,2).
(1)画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)将△A 1B 1C 1 沿y 轴方向向下平移4个单位得到三角形△A 2B 2C 2,写出顶点A 2 ,B 2 , C 2 ,的坐标。
22.(6分)建于明洪武七年(1374年),高度33米的光岳楼是目前我国现存的最高大、最 古老的楼阁之一(如图①).喜爱数学实践活动的小伟,在30米高的光岳楼顶楼P 处,利用自制测角仪测得正南方向商店A 点的俯角为60°,又测得其正前方的海源阁宾馆B 点的俯角为30°(如图②).求商店与海源阁宾馆之间的距离(结果保留根号).
23. (6分)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,确定点P(x,y).
(1)请你用画树状图或列表的方法,写出点P所有可能的坐标;
(2)求点P(x,y)落在直线y=x上的概率.
四、解答题(二):本小题共5小题,共40分。
解答时,应写出必要的文字说明、证明过程或演算步骤。
24.(6分).我市为了进一步落实国务院“家电下乡”政策,家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品.我市一家家电商场,今年一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据图中信息解答下列问题:
(1)该商场一季度彩电销售的数量是台,扇形统计图中,“彩电”所对应的扇形的圆心角是度.
(2)请补全条形统计图.
(3)若全市家电下乡的产品有1400台,请估计洗衣机有多少台?25.(6分)如图,已知双曲线
x
k
y=和直线n
mx
y+
=交于点A和B,B点的坐标是(2,-3),AC垂直y轴于点C,AC=1.
(1)求双曲线和直线的解析式;
(2)观察图像,写出
x
k
〉n
mx+时,x的取值范围
为
(3)求△AOB的面积.
26.(6分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
27.(10分)如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点, ∠CDB=∠BFD .
(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB=10,AC=8,求DF 的长. 28.(12分)如图(1),抛物线2
2y x x k =-+与x 轴交于A 、B 两点,与y 轴交于 点C (0,3-).(图(2)为解答备用图)
(1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线2
2y x x k =-+的顶点为M ,求四边形ABMC 的面积;
(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由; 67234天 (第13题图)
第25题 A。