抽样分布与参数估计
- 格式:ppt
- 大小:7.59 MB
- 文档页数:70
抽样分布与参数估计首先,我们来了解什么是抽样分布。
在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。
假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。
抽样分布的形状和性质取决于总体的分布和样本的大小。
通过分析抽样分布,可以得到有关总体参数的有用信息。
例如,我们想要知道一些城市成年人的平均年收入。
在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。
如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。
这个抽样分布将给我们提供有关总体平均年收入的估计和推断。
接下来,我们将讨论参数估计。
参数估计是指使用样本数据来估计总体参数的过程。
总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。
通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。
常用的参数估计方法有点估计和区间估计。
点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。
点估计给出了一个单一的值,但不能提供关于估计的精度的信息。
因此,我们常常使用区间估计。
区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。
区间估计能够向我们提供关于估计的精确程度的信息。
区间估计依赖于抽样分布的性质。
中心极限定理是制定抽样分布理论的一个重要原则。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。
这使得我们可以使用正态分布的性质来计算置信区间。
构建置信区间的一种常用方法是使用样本均值的标准误差。
标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。
根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。
通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。
抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。
4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。
概率论参数估计和抽样分布
一、极大似然估计MLE
极大似然估计(MLE)是一种用来近似概率分布参数的统计学方法。
它的基本原理是根据样本来估计一组参数,使单独参数的极大似然函数最大化,即最大前提下来达到样本可能性的最大化,这种方法可以让样本观测数据的期望值吻合该参数的假设值。
这种估计方法的优点是简单易行,它不需要指定模型的具体参数,而且参数的估计结果可以很容易地进行验证和分析。
它的缺点是需要多次计算,收敛速度慢,容易受噪声影响,而且模型假设受到限制,可能会有明显的偏离。
二、贝叶斯估计BE
贝叶斯估计(BE)是指在概率论估计中,采用以贝叶斯概率论的原理来估计模型参数的一种方法。
该方法将未知状态作为随机变量,根据贝叶斯公式及赋予先验分布,以最大后验概率的原则估计模型参数。
贝叶斯估计具有优点是可以用来估计模型参数的概率分布,而不仅仅是估计其期望值,可以将主观经验纳入参数估计过程中,也可以迅速得到模型参数的分布。
第四章 抽样分布与参数估计3.某地区粮食播种面积5000亩,按不重复抽样方法随机抽取了100亩进行实测,调查结果,平均亩产450公斤,亩产量标准差为52公斤。
试以95%的置信度估计该地区粮食平均亩产量和总产量的置信区间。
解:已知X =450公斤,n =100(大样本),n/N=1/50,11≈-Nn,不考虑抽样方式的影响,用重复抽样计算。
s =52公斤,1-α=95%,α=5%。
这时查标准正态分布表,可得临界值:96.1025.02/==z z α该地区粮食平均亩产量的置信区间是:1005296.14502⨯±=±nsz x α=[439.808,460.192] (公斤) 总产量的置信区间是:[439.808⨯5000,460.192⨯5000] (公斤) =[2199040,2300960](公斤)4.已知某种电子管使用寿命服从正态分布。
从一批电子管中随机抽取16只,检测结果,样本平均寿命为1490小时,标准差为24.77小时。
试以95%的置信度估计这批电子管的平均寿命的置信区间。
解:(1)已知X =1490小时,n =16,s =24.77小时,1-α=95%,α=5%。
这时查t 分布表,可得 2.13145)1(2/=-n t α该批电子管的平均寿命的置信区间是:1677.2413145.214902⨯±=±nst x α=[ 1476.801,1503.199](小时)因此,这批电子管的平均寿命的置信区间在1476.801小时与1503.199小时之间。
6.采用简单随机重复抽样的方法,从2 000件产品中抽查200件,其中合格品190件。
要求:(1)计算合格品率及其抽样平均误差。
(2)以95.45%的置信度,对合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其置信度是多少? 解:(1)合格品率:P=190/200⨯100%=95% 抽样平均误差:np p p )1()(-=σ=0.015(2)%3%95%100015.02%95)(22/02275.02/±=⨯⨯±=±==p Z P Z Z σαα]19601840[]2000%982000%92[(%]98%92[,,的置信区为:件合格品数量,:合格品率的置信区间为=⨯⨯)(3)%64.87)(8764.01,54.1%31.2%100015.0%31.2)(2/2/2/==-==⨯⨯==∆z F Z Z p Z ασααα查表得 7.从某企业工人中随机抽选部分进行调查,所得工资分布数列如下:试求:(1)以95.45%的置信度估计该企业工人平均工资的置信区间,以及该企业工人中工资不少于800元的工人所占比重的置信区间;(2)如果要求估计平均工资的允许误差范围不超过30元,估计工资不少于800元的工人所占比重的允许误差范围不超过10%,置信度仍为95.45%,试问至少应抽多少工人? 解(1)通过EXCEL 计算可得: X =816元,n =50人,s =113.77元。
(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。
这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。
估计(estimation)是统计推断的重要内容之壹。
统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。
因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。
壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。
⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。
第5章抽样分布与参数估计在统计学中,抽样分布与参数估计是重要的概念。
抽样分布是指从总体中随机抽取样本,计算样本统计量,然后将这些统计量进行分布的过程。
参数估计是通过样本数据对总体参数进行估计的方法。
首先,我们来了解抽样分布。
在统计学中,我们通常很难直接获得总体数据,因为总体数据往往很大,难以收集。
因此,我们采用抽样的方式来获取样本数据,并通过样本数据来推断总体特征。
抽样分布是指在重复抽取样本的过程中得到的统计量的分布。
抽样分布的中心趋于总体参数,而抽样分布的形状可以通过中心极限定理进行描述。
中心极限定理认为,当样本数量足够大时,样本均值的抽样分布近似服从正态分布,且均值等于总体均值。
这对于统计推断和参数估计具有重要意义。
其次,我们来了解参数估计的概念及其方法。
参数估计是指根据样本数据对总体参数进行估计的统计方法。
常见的参数包括总体均值、总体方差等。
参数估计可以分为点估计和区间估计两种方法。
点估计是指通过样本数据计算得到的单个数值来估计总体参数。
常用的点估计方法包括最大似然估计和矩估计。
最大似然估计是基于样本的观测值选择使得观测值出现的概率最大的参数值作为估计值的方法。
矩估计是通过样本矩与总体矩的对应关系来估计总体参数的方法。
区间估计是指对总体参数给出一个区间估计值,该区间包含了真实参数值的概率。
常用的区间估计方法包括置信区间估计和预测区间估计。
置信区间估计是通过样本数据计算得到的一个区间,可以包含真实参数值的概率。
置信区间的置信水平是指在多次重复抽样中,这个区间包含了真实参数值的概率。
预测区间估计是在给定自变量取值的情况下,通过样本数据对应的因变量的取值的一个区间估计。
总之,抽样分布与参数估计是统计学中重要的概念和方法。
通过抽样分布可以了解样本统计量的分布情况,而参数估计可以通过样本数据对总体参数进行估计。
这些概念和方法对于数据分析和决策具有重要的实际应用价值。