抽样分布与参数估计总结
- 格式:ppt
- 大小:1.12 MB
- 文档页数:65
抽样分布与参数估计首先,我们来了解什么是抽样分布。
在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。
假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。
抽样分布的形状和性质取决于总体的分布和样本的大小。
通过分析抽样分布,可以得到有关总体参数的有用信息。
例如,我们想要知道一些城市成年人的平均年收入。
在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。
如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。
这个抽样分布将给我们提供有关总体平均年收入的估计和推断。
接下来,我们将讨论参数估计。
参数估计是指使用样本数据来估计总体参数的过程。
总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。
通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。
常用的参数估计方法有点估计和区间估计。
点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。
点估计给出了一个单一的值,但不能提供关于估计的精度的信息。
因此,我们常常使用区间估计。
区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。
区间估计能够向我们提供关于估计的精确程度的信息。
区间估计依赖于抽样分布的性质。
中心极限定理是制定抽样分布理论的一个重要原则。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。
这使得我们可以使用正态分布的性质来计算置信区间。
构建置信区间的一种常用方法是使用样本均值的标准误差。
标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。
根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。
通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。
抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。
它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。
分层的原则是层与层之间的变异越大越好,各层内的变异要小。
试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。
分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。
在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。
⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。
一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。
例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。
第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。
(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。
方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。
判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。
当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。
第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
概率论参数估计和抽样分布
一、极大似然估计MLE
极大似然估计(MLE)是一种用来近似概率分布参数的统计学方法。
它的基本原理是根据样本来估计一组参数,使单独参数的极大似然函数最大化,即最大前提下来达到样本可能性的最大化,这种方法可以让样本观测数据的期望值吻合该参数的假设值。
这种估计方法的优点是简单易行,它不需要指定模型的具体参数,而且参数的估计结果可以很容易地进行验证和分析。
它的缺点是需要多次计算,收敛速度慢,容易受噪声影响,而且模型假设受到限制,可能会有明显的偏离。
二、贝叶斯估计BE
贝叶斯估计(BE)是指在概率论估计中,采用以贝叶斯概率论的原理来估计模型参数的一种方法。
该方法将未知状态作为随机变量,根据贝叶斯公式及赋予先验分布,以最大后验概率的原则估计模型参数。
贝叶斯估计具有优点是可以用来估计模型参数的概率分布,而不仅仅是估计其期望值,可以将主观经验纳入参数估计过程中,也可以迅速得到模型参数的分布。
(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。
这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。
估计(estimation)是统计推断的重要内容之壹。
统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。
因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。
壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。
⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。
第5章抽样分布与参数估计在统计学中,抽样分布与参数估计是重要的概念。
抽样分布是指从总体中随机抽取样本,计算样本统计量,然后将这些统计量进行分布的过程。
参数估计是通过样本数据对总体参数进行估计的方法。
首先,我们来了解抽样分布。
在统计学中,我们通常很难直接获得总体数据,因为总体数据往往很大,难以收集。
因此,我们采用抽样的方式来获取样本数据,并通过样本数据来推断总体特征。
抽样分布是指在重复抽取样本的过程中得到的统计量的分布。
抽样分布的中心趋于总体参数,而抽样分布的形状可以通过中心极限定理进行描述。
中心极限定理认为,当样本数量足够大时,样本均值的抽样分布近似服从正态分布,且均值等于总体均值。
这对于统计推断和参数估计具有重要意义。
其次,我们来了解参数估计的概念及其方法。
参数估计是指根据样本数据对总体参数进行估计的统计方法。
常见的参数包括总体均值、总体方差等。
参数估计可以分为点估计和区间估计两种方法。
点估计是指通过样本数据计算得到的单个数值来估计总体参数。
常用的点估计方法包括最大似然估计和矩估计。
最大似然估计是基于样本的观测值选择使得观测值出现的概率最大的参数值作为估计值的方法。
矩估计是通过样本矩与总体矩的对应关系来估计总体参数的方法。
区间估计是指对总体参数给出一个区间估计值,该区间包含了真实参数值的概率。
常用的区间估计方法包括置信区间估计和预测区间估计。
置信区间估计是通过样本数据计算得到的一个区间,可以包含真实参数值的概率。
置信区间的置信水平是指在多次重复抽样中,这个区间包含了真实参数值的概率。
预测区间估计是在给定自变量取值的情况下,通过样本数据对应的因变量的取值的一个区间估计。
总之,抽样分布与参数估计是统计学中重要的概念和方法。
通过抽样分布可以了解样本统计量的分布情况,而参数估计可以通过样本数据对总体参数进行估计。
这些概念和方法对于数据分析和决策具有重要的实际应用价值。
抽样分布与参数估计概述引言在统计学中,我们经常需要推断整个总体的性质,并据此进行决策或推断。
然而,由于种种原因,我们往往无法直接观察到整个总体的数据。
这时,我们通过对样本的观察和分析来进行总体的推断,这就涉及到了抽样分布和参数估计。
抽样分布抽样分布是指由相同样本大小的一系列独立随机样本所得到的统计量的分布。
在统计学中,我们通常将样本平均值、样本比例或者其他统计量作为总体参数的估计量。
而抽样分布那么将这些统计量的取值范围进行了描述。
中心极限定理中心极限定理是抽样分布的重要定理之一。
它指出,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。
换言之,即使总体分布未知或不是正态分布,样本均值的抽样分布将会趋近于正态分布。
中心极限定理的意义在于,它允许我们利用正态分布的性质来对总体参数进行估计和推断。
通过对样本数据进行观察和分析,我们可以得到样本的均值和标准差,进而利用正态分布的性质来进行置信区间的构造、假设检验等。
参数估计参数估计是指利用样本数据对总体参数进行估计的过程。
常见的参数估计方法包括点估计和区间估计。
点估计点估计是通过单个统计量来估计总体参数的方法。
例如,我们可以用样本均值作为总体均值的估计值,用样本比例作为总体比例的估计值。
点估计能够给出一个具体的数值作为总体参数的估计,但是无法给出估计值的准确性。
区间估计区间估计是通过一个区间来估计总体参数的范围。
而这个区间通常使用置信区间来表示。
置信区间是指总体参数估计值在一定置信水平下的上下限范围。
常用的置信水平有95%和99%等。
置信区间的构造通常基于抽样分布的性质。
利用样本数据和抽样分布的知识,我们可以计算出参数估计值的抽样分布,并根据置信水平选择适当的临界值,从而得到置信区间。
总结抽样分布和参数估计是统计学中重要的概念和方法。
通过对样本数据的观察和分析,我们可以利用抽样分布和参数估计方法来推断总体的性质,并进行统计推断和决策。
中心极限定理告诉我们,当样本容量足够大时,样本均值的抽样分布将近似于正态分布,从而允许我们利用正态分布的性质对总体参数进行估计和推断。