系统抽样
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
一、知识概述1、系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.2、系统抽样的步骤:①采用随机的方式将总体中的个体编号.为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等.②为将整个的编号分段(即分成几个部分),要确定分段的间隔k.当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.③在第一段用简单随机抽样确定起始的个体编号.④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本).说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.3、系统抽样与简单随机抽样的区别与联系系统抽样与简单随机抽样相比,有如下区别:(1)系统抽样比简单随机抽样更容易实施,可节约成本.(2)系统抽样所得到的样本的代表性和个体的编号有关;而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.如,如果学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取样本就可能会是全部为男生或全部为女生.(3)系统抽样比简单随机抽样的应用范围更广.联系是:(1)系统抽样适用于总体中的个体较多的情况,因为这时应用简单随机抽样就显得很不方便;(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样;(3)与简单随机抽样一样,系统抽样也属于等概率抽样.二、例题讲解例1、在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位是68的号码为中奖号码,这是运用哪种抽样方式来确定号码的()A.抽签法B.系统抽样C.随机数表法D.其他抽样方法解:由题意可知抽出的号码分别为0068,0168,0268,……,9968,显然这是将10000个中奖号码平均分成100组,从第一组抽取了0068号,其余号码在此基础上加上100的倍数得到的,可见这是采用系统抽样法.答案:B例2、一个总体中有100个个体,随机编号0,1,2,……,99.依编号顺序平均分成10个小组,组号依次为1,2,3,……,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为t,则在第k组中抽取的号码个位数字与t +k的个位数字相同,若t=7,则在第8组中抽取的号码应是________.答案:75例3、为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程.解:假设抽取50名学生.适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.例4、为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.解:(1)随机地将这1003个个体编号为1,2,3,…,1003.利用简单随机抽样,先从总体中剔除3个个体.(2)再按系统抽样的方法抽取.例5、某制罐厂每小时生产易拉罐10000个,每天生产时间为12小时,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1200个进行检测,请你设计一个抽样方案.若工厂规定每天共抽取980个进行检测呢?解:每天共生产易拉罐120000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001~100中随机选出1个,再每隔100个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=36秒拿出1个易拉罐送检.若共要抽取980个进行检测,则要分980组,但980不能整除120000,则先计算出120000除以980的整数部分是122,所以先要剔除120000-980×122=440个,剩下119560个平均分为980组,每组122个,然后采用简单随机抽样法从001~122中随机选出1个编号,例如选出的是108号,可以从第108个易拉罐开始,每隔122个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=43.92秒拿出一个易拉罐送检.例6、下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:;确定随机数字,取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:,其他步骤相应改为确定随机数字;取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.。
系统抽样法系统抽样法,在统计学中是一种常用的抽样方法。
它是指根据一定的规则,从总体中随机选择具有代表性的样本,以便对总体进行统计推断。
系统抽样法不仅能保证样本的随机性,还能提高调查的效率和准确性。
下面将介绍系统抽样法的基本原理、应用场景以及优缺点。
系统抽样法的原理是通过预先设定的规则来选择样本。
首先,需要确定样本容量,即要从总体中选取多少个样本点。
然后,确定一个起始点,这个起始点是通过随机抽取总体中的一个个体来确定的。
接下来,按照一定的间隔(这个间隔可以是固定的数字,也可以是总体的大小除以样本容量得到的比例),在总体中选取样本。
直到选取到规定的样本容量为止。
这样,样本就具有代表性,能够对总体进行推断。
系统抽样法常见的应用场景是社会调查、市场研究、医学实验等。
在社会调查中,比如对某个城市的居民进行调查,我们可以先确定样本容量,然后选取一个起始点,按照一定的间隔,从不同区域或人口群体中选取样本。
这样,我们可以通过这些样本来了解整个城市的人口特征、生活习惯等信息。
在市场研究中,通过对一部分消费者进行调查,可以推断出整个市场的需求、偏好等情况。
在医学实验中,可以通过对一部分病人进行治疗或观察,来推断出某种治疗方法的有效性或某种药物的副作用。
系统抽样法具有一定的优点和缺点。
其优点之一是样本选择随机性好,能够较好地代表总体。
其次,系统抽样法也较为简单,实施起来相对容易。
此外,它还能提高调查的效率,通过合理的样本容量和间隔选择,能够最大程度地获取有用的信息。
然而,系统抽样法也存在一些缺点。
首先,它对总体的要求较高,需要清楚地了解总体的特点和组成,才能选择合适的起始点和间隔。
其次,如果选择的起始点过于倾斜,可能会导致样本选择的偏差,影响结果的准确性。
此外,系统抽样法也对调查过程的随机性和外界干扰较为敏感,需要注意控制环境和调查过程中的误差。
总之,系统抽样法是一种常用的抽样方法,通过预先设定的规则,从总体中随机选择具有代表性的样本。
系统抽样法系统抽样法是一种常用的抽样方法,可以帮助研究者从一个大的总体中抽取一部分样本,以便进行研究和分析。
在很多实际问题中,我们不可能对整个总体进行研究,而是通过对样本的研究,得出对总体的结论。
系统抽样法能够保证样本具有代表性,且能够有效减少抽样误差。
系统抽样法的基本原理是按照一定的顺序从总体中选取样本。
首先,需要确定总体中的个体数目N,然后确定所需样本的大小n。
接下来,计算抽样间隔k,即总体中每隔k个个体选择一个样本单位。
然后,随机确定一个起始个体,从起始个体开始,每隔k个个体选择一个样本单位,直到累计选择n个样本单位为止。
使用系统抽样法进行抽样有以下几个优点:1. 方便快捷:系统抽样法不需要列出总体的名单或分层,仅需要确定总体的大小和样本的大小,便可进行抽样。
这大大减少了工作量和时间。
2. 代表性:由于采用了间隔抽样原则,系统抽样法可以有效地保证样本具有代表性,从而可以得出对总体的准确推断。
3. 统计效果好:与简单随机抽样相比,系统抽样法具有更好的统计效果。
通过合理地选择起始个体,可以避免产生类似于序列效应和群体集中效应等系统偏差。
4. 可估抽样误差:在使用系统抽样法时,我们可以通过计算抽样误差来进行精确的估计。
这样在数据分析和结论得出时,会更加可靠和准确。
然而,系统抽样法也存在一些限制和注意事项:1. 依赖性问题:由于抽样间隔k是事先设定的,因此如果总体中存在某种周期性或重复性,可能会导致样本选择的不够随机,造成样本的偏倚。
2. 初始选择问题:抽样过程需要从一个起始个体开始,如果起始个体不具有代表性,可能会影响最终的样本结果。
因此,在选择起始个体时需要特别注意。
3. 总体规模影响:对于总体规模较小的情况,系统抽样法可能造成样本选择的不充分,影响样本的代表性。
此时,建议使用其他抽样方法。
4. 返回抽样问题:系统抽样法在一轮抽样中,可能会重复选择到之前已经被选入样本的个体。
这会导致样本的重复性,影响结果的可靠性。
系统抽样法系统抽样法是一种常用的统计抽样方法,可以有效的代表总体,用于对总体进行推断和估计。
系统抽样法是在总体中按照一定规则选择一部分样本作为代表,从而得到可靠的总体估计。
系统抽样法的步骤如下:1. 确定总体:首先需要明确研究对象或感兴趣的总体,例如某产品的用户群体。
2. 确定样本量:根据所设定的误差容限和置信水平,计算得到所需的样本量。
3. 确定抽样间隔:抽样间隔是指从总体中选择样本的规则,比如每隔5个元素选择一个样本。
4. 确定起始点:从总体中任意选择一个起始点作为第一个样本。
5. 依次选择样本:按照设定的抽样间隔,从起始点开始,依次选择样本,直到达到所需的样本量为止。
6. 数据收集和分析:对所选择的样本进行数据收集和分析,可以获得关于总体的一些统计特征。
7. 总体估计:基于对样本数据的分析,对总体的特征进行估计,如总体均值、总体比例等。
系统抽样法的优点包括:1. 相对于随机抽样,系统抽样具有较高的效率,能够达到相同的估计效果,样本量较少时,所需的抽样量较少。
2. 系统抽样相对于方便抽样和判断抽样,具有较高的代表性,能够更好地反映总体的特征。
3. 系统抽样法适用范围广,可以应用于各种类型的总体,如人群、产品、地域等。
然而,系统抽样法也存在一些局限性:1. 当总体的分布不规律时,系统抽样可能导致样本选择出现一定的偏差,因此在使用系统抽样方法之前,需要确保总体具有较好的规律性。
总之,系统抽样法是一种常用的统计抽样方法,可以帮助研究者从总体中选择出具有代表性的样本,从而对总体进行推断和估计。
在实际应用中,研究者需要根据具体情况选择合适的抽样方法,并确保抽样过程的准确性和可靠性。
时系统抽样
【学习导航】
学习要求
1.体会系统抽样的的概念及如何用系统抽样获取样本;
2.感受系统抽样也是等可能性抽样,是否需要用系统抽样,主要是看总体个数的多少.
【课堂互动】
自学评价
案例1 某校高一年级有20个班,每班有50名学生.为了了解高一学生的视力状况,从这1000人中抽取一个容量为100的样本进行检查,应该怎样抽样?
【分析】
这个案例的总体中个体数较多,生活中还有容量大的多的总体,面对这样的总体,采用抽签或随机数表等简单随机抽样方法是不科学的.抽取样本最关键的就是要保证抽样过程的公平性,要保证总体中每个个体被抽到的机会均等.在这样的前提下,我们可以寻求更好的抽样方法.
系统抽样以简单随机抽样为基础,通过将较大容量的总体分组,只需在某一个组内用简单随机抽样方式来获取一个个体,然后在一定规则下就能抽取出全部样本.
1.系统抽样
系统抽样的概念: 将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样(systematic sampling) 系统抽样的步骤为:
(1)采用随机的方式将总体中的个体编号;
(2)将整个的编号按一定的间隔(设为k)分段,当N/n(N为总体中的个体数,n为样本容量)是整数时,k=N/n;当N/n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N’能被n整除,这时,k=N’/n 并将剩下的总体重新编号;
(3)在第一段中用简单随机抽样确定起始的个体编号L;
(4)将编号为L,L+k,L+2k,…,L+(n-1)k 的个体抽出.
【小结】系统抽样是以简单随机抽样为基础的一种抽样方法,对于容量较大、个体差异不明显的总体通常采用这种抽样方法,在保证公平客观的前提下简化抽样过程.在用系统抽样方法抽取样本时,如果总体个数不能被样本容量整除,可以从总体中剔除一些个体,使剩下的总体中的个体的个数能被样本容量整除.
【经典范例】
例1在 1 000个有机会中奖的号码(编号为000~999)中,在公证部门监督下随机抽取的方法确定后两位数为88的号码为中奖号码,这是运用哪种抽样方法来确定中奖号码的?依次写出这10个中奖号码?
【解】
本题中是运用了系统抽样的方法来确定中奖号码的,中奖号码依次为:088,188,288,388,488,588,688,788,888,988
例2某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查.试采用系统抽样方法抽取所需的样本. 【分析】因为624的10%约为62,624不能被62整除,为了保证“等距”分段,应剔除4人.【解】第一步将624名职工用随机方式进行编号;
第二步从总体中剔除4人(剔除方法可用随机数表法),将剩下的620名职工重新编号(分别为000,001,002,……,619),并分成62段;
第三步在第一段000,……,009这十个编号中用简单随机抽样确定起始号码i0;
第四步将编号为i0,i0+10,……,i0+610的个体抽出,组成样本.
例3某制罐厂每小时生产易拉罐10 000个,每天生产时间为12h,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1 200个进行检测,请你设计一个抽样方案。
【解】
每天共生产易拉罐120 000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001~100中随机选出一个编号,例如选出的是013号,则从第13个易拉罐开始,每隔100个,拿出一个送检,或者根据每小时生产10 000个,每隔
36
3600
10000
100
=
⨯s拿出一个易拉罐送检。
例4 现要从999名报名者中随机选取100名参加某活动,请你用系统抽样法设计一种方案,叙
述其步骤。
你能找到另外的抽样方案吗?比较两种方案的合理性和易操作性
【解】按系统抽样法,因为100不能整除999,所以首先将999人编号,采用随机数表法剔除99名,再将剩下的900名报名者重新编号001~900,从001号顺次下去每9人一组,等分成100组,利用抽签法或随机数表法,从1~9个数中随机选出一个数,新编号为该数字加上9的倍数的报名者入选。
例如选出的随机数为3,则新编号为003,012,021,…,894共100人入选。
还可以采取以下抽样方法:首先将999名报名者编号为001~999,因为111可以整除999,将这999个编号从001开始顺次每9个一组,然后选用简单随机抽样法从1~9的9个数字中随机地抽出一个数字,编号为该数字加上9的倍数的共111名报名者先挑选出来,例如:随机抽到的是7,则编号为007,016,025,…,988,997共111名,最后,再利用随机数表从111名中随机抽取11名剔除。
点评:此方法较之系统抽样法更易操作,因为虽然999不能被100整除,但余数99非常大,接近于除数100,而且采用随机数表法从999个数字中随机抽出 99个数剔除的工作量也较大。
后一种方法先通过系统抽样,随机抽取111名,再利用随机数表法,从111个数字中随机抽出11个来剔除,操作起来要相对方便得多。
追踪训练
1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除个体的数目是( A )(A)2 (B)3
(C)4 (D)5
2.全班有50位同学,需要从中选取7人,若采用系统抽样的方法来选取,则每位同学
能被选取的可能性是
50
7
3.一个总体中有100个个体,随机编号为0,1,2, ...,99,依编号顺序平均分成10个小组,组号依次为1,2,3, ...,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m k
+的个位数字相同.若6
m=,则在第7组中抽取的号码是______63_______.
4. 要从1003名学生中选取一个容量为20的样本,试叙述系统抽样的步骤。
【解】
第一步将1003名学生有随机方式进行编号;
第二步从总体中剔除3人(剔除方法可用随机数表法),将剩下的1000名学生重新编号并分成20段;
第三步在第一段000、001、002、003、…、049这十个编号中用简单随机抽样确定起始号码,比如013
第四步将013逐次加上部分的“长度”(第一部分中个体的个数)的0倍、1倍、2倍、…、19倍得到样本:013、063、113、163、…963.。