2014年秋季班数学八年级讲义(5)
- 格式:docx
- 大小:136.22 KB
- 文档页数:4
8年级下学期数学讲义05 ( 第九章中心对称图形)知识点:9.1 图形的旋转1.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。
9.2 中心对称和中心对称图形2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
9.3 平行四边形3.平行四边形的对边相等、对角相等、对角线互相平分。
4.一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
9.4 矩形、菱形、正方形5.矩形的四个角都是直角,对角线相等。
三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。
6.菱形的四条边相等,对角线互相垂直。
四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
7.有一组领边相等的矩形是正方形;有一个角是直角的菱形是正方形。
9.5 三角形的中位线8.三角形的中位线平行于第三边,并且等于第三边的一半。
9.1 图形的旋转试题1.(2013•南昌)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°2.(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对3.(2011•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是()A.45°B.30°C.25°D.15°4.(2009•漳州)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°5.(2008•庐阳区)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°6.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为___________.7.(2013•吉林)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=___________度.8.(2008•厦门)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=___________cm,△ABC的面积=___________cm2.9.(2011•珠海)如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.10.(2006•三明)已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示).(1)求角α;(2)说明四边形EBCD是等腰梯形.9.2 中心对称和中心对称图形试题1.(2013•黔西南州)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个2.(2013•抚顺)下列图形中,不是中心对称图形的是()A.B.C.D.3.(2010•连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④4.把26个英文字母依照轴对称性和中心对称性分成5组:①FRPJLG□②HIO□③NS□④BCKE□⑤VATYWU□,现在还有5个字母D、M、Q、X、Z请你按原规律补上,其顺序依次为()A.Q XZMD B.D MQZX C.Z XMDQ D.Q XZDM5.下列的正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是()A.B.C.D.6.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距___________公里.7.(1997•安徽)如右图,线段AB关于点O(不在AB上)的对称线段是A′B′;线段A′B′关于点O′(不在A′B′上)的对称线段是A″B″.那么线段AB与线段A″B″的关系是___________.8.(2012•广陵区二模)如下图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是___________.9.(1)已知实数a,b满足a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.(2)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长?10.已知:如图所示,E是等腰梯形一腰CD的中点,EF⊥AB,垂足为F,求证:S梯形ABCD=AB•EF.9.3 平行四边形试题1.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.A B∥DC,AD∥BC B.A B=DC,AD=BC C.A O=CO,BO=DO D.A B∥DC,AD=BC 2.(2013•乐山)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为()A.5B.7C.10 D.143.(2013•湖北)若平行四边形的一边长为2,面积为4根号6,则此边上的高介于()A.3与4之间B.4与5之间C.5与6之间D.6与7之间4.(2012•包头)如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S25.(2009•桂林)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12 D.246.(2012•眉山)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=___________.7.(2011•天津)如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于___________.8.(2010•海南)如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=___________cm.9.(2013•玉溪)如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.10.2013•茂名)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.11.(2012•永州)如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.9.4 矩形、菱形、正方形试题1.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°2.(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.133.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.对角线互相平分4.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12√3 D.16√35.(2012•西宁)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A.45°B.120°C.60°D.90°6.(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是___________.7.(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为___________cm.8.(2013•盐城)如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.9.(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.10..(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.9.5 三角形的中位线试题1.(2013•西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为()A.2B.4C.6D.82.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A.9B.10.5 C.12 D.153.(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.3cm B.4cm C.2.5cm D.2cm4.(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10 D.115.(2013•安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.6.(2010•沈阳)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.7.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.答案9.11,解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.2,解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:B.3,解:由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,∴∠CC′B′=15°.故选D.4,解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC-∠DOC=50°.故选C.5,解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°-20°=70°.故选C.6,解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为:1.6.7,解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=1/2(180°-∠BAB′)=1/2(180°-40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°-∠ABB′=90°-70°=20°.故答案为:20.8,解:∵点G是△ABC的重心,∴DE=GD=1/2GC=2,CD=3GD=6,∵GB=3,EG=GC=4,BE=GA=5,∴BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,∴S△ACD=S△BCD,∴S△ABC=S△ACD+S△BCD=2S△BCD=2×1/2×BG×CD=18cm2.填:2,18.9,(1)解:∵∠ABC=120°,∴∠CBC1=180°-∠ABC=180°-120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC,∴∠A1AC=∠C,∴∠A1AC=∠C1.10,解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵△BDC与△ADE重合,∴∠DBC=∠A=36°,∠AED=∠C=72°,∴∠ADE=∠BDC=180°-(72°+36°)=72°,∴α=180°-∠BDC=180°-72°=108°.(2)由(1)∠ADE=∠C=72°,∴DE∥BC,又BE与CD不平行,∴四边形EBCD是梯形,∵∠ABC=∠C=72°,∴四边形EBCD是等腰梯形.9.21,解:矩形、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形、等腰梯形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的是:矩形、菱形.故选:B.2,解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选A.3,解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.4,解:①不是对称图形,5个子母中不是对称图形的只有:Q;(2)有两条对称轴,并且两对称轴互相垂直,则规律相同的是:X;(3)是中心对称图形,则规律相同的是:Z;(4)是轴对称图形,对称轴是一条水平的直线,满足规律的是:D;(5)是轴对称图形,对称轴是竖直的直线,满足规律的是:M.故各个空,顺序依次为:Q,X,Z,D,M.故选D.5,解:A、不是轴对称图形,也不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,但不是轴对称图形;D、不是中心对称图形,是轴对称图形.故选A.6,解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里.故答案为:4.7,解:中心对称图形中的不在同一直线上的两条对应线段的关系是:平行且相等.故线段AB与线段A″B″的关系是:平行且相等.故答案为:平行且相等.8,解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为3.9,解:(1)∵a(a+1)-(a2+2b)=1,∴等式变形得:a-2b=1;原式=(a-2b)2-2(a-2b)=12-2=-1;(2)设AC=x,AB=2x,BB′=4x,在Rt△ABC中AB2=AC2+BC2,∴(2x)2=x2+12,解得:x=±√3/3(负数舍去),∴AB=2×√3/3=2√3/3,∴BB′=4√3/3.10,证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∠D=∠ECG;DE=EC;∠DEA=∠CEG∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.9.31,解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.2,解:∵四边形ABCD为平行四边形,∴DC∥=AB,AD∥=BC,∵E为CD的中点,∴DE为△FAB的中位线,∴AD=DF,DE=1/2AB,∵DF=3,DE=2,∴AD=3,AB=4,∴四边形ABCD的周长为:2(AD+AB)=14.故选D.3,解:根据四边形的面积公式可得:此边上的高=4√6÷2=2√6,2√6介于4与5之间,则则此边上的高介于4与5之间;故选B.4,解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;AD=BC,AB=CD,BD=DB∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即S1=S2.故选C.5,解:通过观察结合平行四边形性质得:S阴影=1/2×6×4=12.故选C.6,解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC-DE=AB-AD=5-3=2,∴CF=2.故答案为:2.7,解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为15.8,解:在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.9,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.10,(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,∠1=∠2,∠DEA=∠FEB,AE=BE∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.11,证明:∵梯形ABCD是等腰梯形,AD∥BC,∴∠B=∠C,∵GF=GC,∴∠GFC=∠C,∴∠GFC=∠B,∴AB∥GF,又∵AE=GF,∴四边形AEFG是平行四边形.9.41,解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.2,解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=1/2BC=4,∵点E为AC的中点,∴DE=CE=1/2AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.3,解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.4,解:如图,连接BE,在矩形ABCD中,AD∥BC,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°,∴∠AEB=∠AEF-∠BEF=120°-60°=60°,在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2√3,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2√3×8=16√3.故选D.5,解:将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF时,A和B重合,即∠AOB是旋转角,∵四边形ABCD是正方形,∴∠BAO=∠ABO=45°,∴∠AOB=180°-45°-45°=90°,即旋转角是90°,故选D.6,解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE=√62+82=10,故PB+PE的最小值是10.故答案为:10.7,解:设AB=x,则可得BC=10-x,∵E是BC的中点,∴BE=1/2BC=10−x/2,在Rt△ABE中,AB2+BE2=AE2,即x2+(10−x/2)2=52,解得:x=4.即AB的长为4cm.故答案为:4.8,证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.9,证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,∠BCF=∠D,∠CBE=∠BFC=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.10,证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠C,AB=CB,∴△ABF≌△CBE(SAS),∴BF=BE.9.51,选A.2,解:∵E和F分别是AB和CD的中点,∴EF是梯形ABCD的中位线,∴EF=1/2(AD+BC),∵EF=6,∴AD+BC=6×2=12.故选C.3,解:∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm,∵对角线AC、BD相交于O点,∴BO=DO,又∵E是AD的中点,∴OE是△ABD的中位线,∴OE=1/2AB=1/2×6=3cm.故选A.4,解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC=√BD2+CD2=5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=1/2BC=EF,EH=FG=1/2AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.5,(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2√3,∴菱形的面积为4×2√3=8√3.6,证明:∵点E,F分别为AB,AD的中点∴AE=1/2AB,AF=1/2AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),又∵菱形ABCD的对角线AC与BD相交于点O ∴O为BD的中点,∴OE,OF是△ABD的中位线.(6分)∴OE∥AD,OF∥AB,∴四边形AEOF是平行四边形(8分),∵AE=AF,∴四边形AEOF是菱形.7,(1)证明:∵AD∥BC,(AD∥BG)∴∠D=∠FCG,∠DAF=∠G.(2分)∵DF=CF,∴△ADF≌△GCF.(4分)(2)解法一:由(1)得△ADF≌△GCF,∴AF=FG,AD=CG.(5分)∵AE=BE,∴EF为△ABG的中位线.∴EF=1/2BG.(6分)∴BG=2×7.5=15.(7分)∴AD=CG=BG-BC=15-10=5.(8分)。
第一章二次根式______________________________________________________________ 2一、基础知识_____________________________________________________________ 2二、精讲精炼_____________________________________________________________ 3 第二章勾股定理_____________________________________________________________ 20一、基础知识____________________________________________________________ 20二、精讲精练____________________________________________________________ 21 第三章直角三角形___________________________________________________________ 40一、基础知识____________________________________________________________ 40二、精讲精练____________________________________________________________ 41 第四章轴对称_______________________________________________________________ 48一、基础知识____________________________________________________________ 48二、精讲精练____________________________________________________________ 49第一章二次根式一、基础知识二、精讲精炼一、基础定义1.如果x 的平方等于a ,那么x 就是a 的 ,所以的a 平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 或者4的平方根是 5.非负的平方根叫 平方根 6. 9的算术平方根是( )A .-3B .3C .±3D .81 8.下列说法中正确的是( )A .9的平方根是3B 22 9. 64的平方根是( )A .±8B .±4C .±2D 10. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .1414.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x2+1 C15.若2m-4与3m-1是同一个数的平方根,则m 的值是( )A .-3B .1C .-3或1D .-1 1、25的平方根是( )A 、5B 、5-C 、5±D 、5±2.36的平方根是( )A 、6B 、6±C 、6 D 、 6±3.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 5.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 6.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 7.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±24.已知一个正方形的边长为a ,面积为S ,则( ) A .a S =B.S 的平方根是aC.a 是S 的算术平方根D.S a ±=27.22)4(+x 的算术平方根是( )A 、 42)4(+x B 、22)4(+x C 、42+x D 、42+x28.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a29.3612892=x ,那么x 的值为( ) A .1917±=xB .1917=xC .1817=xD .1817±=x 30.2)8(-= , 2)8(= 。
第5课三角形全等的判定目标导航学习目标1.掌握判定两个三角形全等的方法:“SSS”、“SAS”、“ASA”、“AAS”,会判定两个三角形全等.2.了解三角形的稳定性及其应用.3.掌握线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等.4.掌握角平分线的性质定理:角平分线上的点到角两边的距离相等.知识精讲知识点01 三角形全等的判定三角形全等的判定方法:1.三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)2.两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)3.两个角及其夹边对应相等的两个三角形全等。
(简写成“角边角”或“ASA”)4.两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)知识点02 线段垂直平分线的性质线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等知识点03 角平分线的性质角平分线的性质定理:角平分线上的点到角两边的距离相等能力拓展考点01 三角形全等的判定【典例1】如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【即学即练1】如图,点E在AB上,AC=AD,∠CAB=∠DAB,△ACE与△ADE全等吗?△ACB与△ADB 呢?请说明理由.考点02 线段垂直平分线的性质【典例2】如图,在△ABC中,DE是AC的垂直平分线,AE=3,△ABC的周长为14,求△BCD的周长.【即学即练2】如图,在△ABC中,AC=6cm,线段AB的垂直平分线交AC于点N,△BCN的周长是13cm,则BC的长为()A.6cm B.7cm C.8cm D.13cm考点03 角平分线的性质【典例3】如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)求证:BE=FD;(2)若AC=10,AD=8,求四边形ABCF的面积.【即学即练3】如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=13cm,AC=7cm,则DE的长()A.3cm B.4cm C.5cm D.6cm分层提分题组A 基础过关练1.如图,已知AB=AC,AE=AD,要利用“SSS”推理得出△ABD≌△ACE,还需要添加的一个条件是()A.∠B=∠C B.BD=CE C.∠BAD=∠CAE D.以上都不对2.下列选项可用SAS证明△ABC≌△A′B′C′的是()A.AB=A′B′,∠B=∠B′,AC=A′C′B.AB=A′B′,BC=B′C′,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′3.如图,用∠B=∠C,∠1=∠2,直接判定△ABD≌△ACD的理由是()A.AAS B.SSS C.ASA D.SAS4.如图,点E,F在AC上,AD=BC,DF=BE,下列条件中,能使△ADF≌△CBE的是()A.∠A=∠C B.AF=CE C.AD∥BC D.DF∥BE5.如图,在△ABC中,BD平分∠ABC,点E在BC的垂直平分线上,若∠A=60°,∠ABD=24°,则∠ACE的度数为()A.48°B.50°C.55°D.60°6.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.求证:(1)AB=DC;(2)△ABC≌△DCB.7.如图,AF=CE,AF∥CE,BE=FD,问△ABF与△CDE全等吗?请说明理由.8.如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC,问△ABC≌△ADE吗?请说明理由.题组B 能力提升练9.已知:BD=CB,AB平分∠DBC,则图中有()对全等三角形.A.2对B.3对C.4对D.5对10.如图,若∠B=∠C,下列结论正确的是()A.△BOE≌△COD B.△ABD≌△ACE C.AE=AD D.∠AEC=∠ADB11.用如图所示方法测小河宽度:AB⊥BC,OB=OC,BC⊥CD,点A,O,D在同一条直线上,量出CD 的长度即知小河AB的宽度.这里判断△AOB≌△DOC的依据是()A.SAS或SSA B.SAS或ASA C.AAS或SSS D.ASA或AAS12.如图,已知AC=AD,要使△ABC≌△ABD,还需要添加一个条件,给出下列条件:①∠1=∠2,②∠C=∠D,③BC=BD,其中符合要求的是()A.①②B.②③C.①③D.①②③13.如图,已知AB=CD,在不添加辅助线的情况下,若再添一个条件就可以证明△ABC≌△CDA,下列条件中符合要求的有()个.①BC=AD;②AD∥BC;③∠B=∠D;④AB∥DC;A.1 B.2 C.3 D.414.如图所示,△EBC≌△DCB,BE的延长线与CD的延长线交于点A,CE与BD相交于点O.则下列结论:①△OEB≌△ODC;②AE=AD;③BD平分∠ABC,CE平分∠ACB;④OB=OC,其中正确的有()A.4个B.3个C.2个D.1个15.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若AB=5,AC=8,BC=10,则△AEF的周长为()A.5 B.8 C.10 D.1316.如图,在△ABC中,∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,请你添加一个条件,使△BEC≌△CDA(填一个即可).17.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连接AP,BP,CP,若∠BAC=50°,则∠BPC=°.18.如图,在△ABC中,点D在AC上,BD平分∠ABC,延长BA到点E,使得BE=BC,连接DE,若∠ADE=38°,∠C=42°,求∠BAD的度数.19.如图,在△ABC中,AB=AC,点D、E在BC上,延长BA至F使AF=AB,连接EF;延长CA至G 使AG=AC,连接DG,当∠G=∠F时,猜想线段BD与线段CE的数量关系?并说明理由.题组C 培优拔尖练20.如图,在△ABC中,AB=AC,点D是OABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56°B.60°C.62°D.64°21.在学习完“探索三角形全等的条件”一节后,一同学总结出很多全等三角形的模型,他设计了以下问题给同桌解决:如图,做一个“U”字形框架P ABQ,其中AB=42cm,AP,BQ足够长,P A⊥AB于A,QB⊥AB于点B,点M从B出发向A运动,同时点N从B出发向Q运动,使M,N运动的速度之比3:4,当两点运动到某一瞬间同时停止,此时在射线AP上取点C,使△ACM与△BMN全等,则线段AC 的长为()A.18cm B.24cm C.18cm或28cm D.18cm或24cm22.如图,在直角三角形ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.下列判断正确的有()①△ABE≌△DCE;②BE=EC;③BE⊥EC;④2S△AEC=3S△AEB.A.1个B.2个C.3个D.4个23.如图,在锐角三角形ABC中,∠BAC=60°,BE,CD为三角形ABC的角平分线.BE,CD交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=BG;③△BDF≌△CEF;④BC=BD+CE.其中结论正确的序号有()A.①②③B.①②④C.②③①D.①③④24.如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有()A.①②③B.③④C.①④D.①③④25.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.26.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠P AD的度数;(2)求证:P是线段CD的中点.。
教版八年级下册数学教学工作计划一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析本学期我带初二(2) (3)班的数学课,学生反应较慢,基础较差。
同时初二这个年龄阶段的学生比较调皮,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是很欠缺,因此在教学中要循序渐进,结合实例,通俗易懂,培养学生活学活用的数学应用能力。
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
班级学生非常活跃,有少数学生不上进,思维不紧跟老师。
学生单纯,有部分同学基础较差,问题较严重。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析本学期教学容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十一章三角形本章主要学习与三角形有关的线段、角及多边形的角和等容。
本章重点:三角形有关线段、角及多边形的角和的性质与应用。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形角和的证明与多边形角和的探究。
第十二章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。
更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
2014年秋季班数学八年级讲义(8)掌握直角三角形全等的判定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等(H.L.)【基础知识】1.判断下列条件能否判断两直角三角形全等,并说明理由(1)一个锐角和这个锐角的对边对应相等。
(2)一个锐角和这个锐角相邻的一条直角边对应相等。
(3)一锐角与斜边对应相等。
(4)两直角边对应相等。
(5)两边对应相等。
(6)两锐角对应相等。
(7)一锐角和一边对应相等2.下面说法不正确的是()A、有一角和一边对应相等的两个直角三角形全B、有两边对应相等的两个直角三角形全等C、有两角对应相等的两个直角三角形全等D、有两角和一边对应相等的两个直角三角形全等3.如图1,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是__________cm4.如图2,已知:AD是△ABC中BC边上的高,E为AC上的一点,BE交AD于点F,且有BF=AC,FD=CD,求证:BE⊥AC5.如图3,已知:AD=BC,BE⊥AC,DF⊥AC,且BE=DF。
求证:(1)△ABE≌△CDF;(2)AB∥CD6.如图4,已知:∠A=90°,AB=BD,ED⊥BC于D。
求证:AE=ED【提高练习】1.如图所示的网格中(4×4的正方形),∠1+∠2+∠3+∠4+∠5+∠6=____________2.已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,求证:CD⊥BE3.已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC,求证:DG=EG。
4.如图,A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF5.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(4,4)处,两直角边与坐标轴交于点A和点B.(1)求OA+OB的值;(2)将直角三角形绕点P逆时针旋转,两直角边与坐标轴交于点A和点B,求OA+OB的值.6. 已知:如图,在△ABC 中,D 是边BC 的中点,AD 是∠BAC 的角平分线,求证:△ABC 是等腰三角形7. 已知:如图,在两个同心圆中,O 是圆心,直线l 与大圆相交于A 、B 两点,与小圆相交于C 、D 两点,求证:AC =BD8. 已知:如图,AD ⊥CD ,CD ∥AB ,CD =CE ,又AE ⊥BC ,垂足为E ,求证:AB =BC9. 如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°。
精品2014年⼋年级数学上册-三⾓形初步认识同步讲义+练习三⾓形初步认识第01课与三⾓形有关的线段知识点:三⾓形定义:组成的图形叫做三⾓形。
⽤符号“△”表⽰。
注意:三条线段必须①;②组成三⾓形的线段叫做三⾓形的,相邻两边所组成的⾓叫做三⾓形的,简称⾓,相邻两边的公共端点是三⾓形的。
注意:三⾓形ABC 的顶点C 所对的边AB 可⽤c 表⽰,顶点B 所对的边AC 可⽤b 表⽰,顶点A 所对的边BC 可⽤a 表⽰.三⾓形三要素:、、。
三⾓形三边的不等关系:。
附加:公式:三⾓形的分类:(1)按⾓分类: 三⾓形、三⾓形、三⾓形。
(2)按边分类:三⾓形的⾼线:从三⾓形的⼀个向它的对边所在直线作,顶点和垂⾜之间的叫做三⾓形的⾼线,简称三⾓形的⾼.注意:⾼与垂线不同,⾼是线段,垂线是直线。
三⾓形的三条⾼,简称三⾓形的⼼。
三⾓形的中线:如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的钝⾓三⾓形直⾓三⾓形锐⾓三⾓形位置边BC 上的中线,表⽰为BD=DC 或BD=DC=21BC 或2BD=2DC=BC. 三⾓的三条中线,简称三⾓形的⼼。
注意:三⾓形的中线是线段。
三⾓形的⾓平分线:如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的⾓平分线,表⽰为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。
三⾓形三个⾓的平分线,简称三⾓形的⼼。
注意:三⾓形的⾓平分线是线段,⽽⾓的平分线是射线,是不⼀样的。
三⾓形稳定性(1)把三根⽊条⽤钉⼦钉成⼀个三⾓形⽊架,然后扭动它,它的形状会改变吗? (2)把四根⽊条⽤钉⼦钉成⼀个四边形⽊架,然后扭动它,它的形状会改变吗? (3)在四边形的⽊架上再钉⼀根⽊条,将它的⼀对顶点连接起来,然后扭动它,它的形状会改变吗?例1.⽤⼀条长为18cm 的细绳围成⼀个等腰三⾓形. (1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有⼀边长为4㎝的等腰三⾓形吗?为什么?例2.已知△ABC 的周长是24cm ,三边a 、b 、c 满⾜c+a=2b ,c-a=4cm ,求a 、b 、c 的长.三⾓形中线的性质:例3.⼀个等腰三⾓形的周长为32 cm,腰长的3倍⽐底边长的2倍多6 cm.求各边长.例4.如图,在直⾓三⾓形ABC中,∠ACB=900,CD是AB边上的⾼,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的⾯积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的⾯积;(4)作出△BCD的边BC边上的⾼DF,当BD=11cm 时,试求出DF的长。
整式的乘除与因式分解第一课 积的乘方 幂的乘方知识点:1.同底数幂的乘法: 公式:2.幂的乘方:公式:3.积的乘方:公式:同底数幂基础练习:(1)()())(222222222243=⨯⨯⨯⨯⨯⨯=⨯ (2)35 ⨯45= )(5=(3)7)3(-⨯6)3(-= ())(3-= (4))(⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1011011013(5)3a ⨯4a = =()a 幂的乘方基础练习:(1)23)2(= = =)(2; (2)54)(x = = =)(x;(3)3100)3(= = =)(3 ;(4)23])2[(-= = =)()2(-=)(2;积的乘方基础练习:(1)3)2(x = = × = (2)4)3-(x = = × = (3)5)(ab = = × =例1.计算:(1)310⨯410= ;(2)53a a a ⋅⋅= ;(3);(4)x x x x ⋅+⋅22=(5)11010+⋅m n = ; (6);97)(m m m ⋅-⋅= ;(7)()3922-⨯= ; (8)y y y y ⋅-⋅⋅-425)(=(9)103=)(233⋅=)(533⋅=)(733⋅例2.把下列各式化成()ny x +或()ny x -的形式.(1) ()()43y x y x ++ = ; (2)()()()x y y x y x ---23= ;(3)()()12+++m my x y x = ; (4)342)()()(y x x y y x --- = ;(5)23)()(y x y x +-- = ;例3.计算:(1)32)2(= (2)34)3(= (3)65)(x = (4)3)(n x = (5)8x =)(2)(x =)(xx ⋅2=)(xx ⋅3 (6)12x =)(2)(x =)(xx ⋅2=)(xx ⋅7=)(3)(x例4.计算:(1)()332⨯; (2)()253⨯; (3)()22ab ; (4)()432a ;(5)10001001)21()2(-⨯- (6)()23351021104⎪⎭⎫ ⎝⎛⨯-⨯⨯ (7)20019911323235.0⎪⎭⎫ ⎝⎛⨯-⋅⎪⎭⎫ ⎝⎛⨯例5.已知:2,3==n m x x ,求n m x 23+。
2014人教版八年级数学上册全册教案第一课时三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。
2、用三边关系判断三条线段能否组成三角形。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。
一边阅读一边完成检测一。
研读二、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。
检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。
路线最近,根据是:,于是有:(得出的结论)。
8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。
(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。
检测练习三、9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是()A、1个B、2个C、3个D、4个2、一个不等边三角形有两边分别是3、5另一边可能是()A、1B、2C、3D、43、下列长度的各边能组成三角形的是()A、3cm、12cm、8cmB、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm 【B】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。
2014年秋季班数学八年级讲义(3)掌握解有关一元一二次方程问题的技巧掌握一元二次方程根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+=+=-,12244ac c x x a a⋅==== 定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为“韦达定理”.上述定理成立的前提是0∆≥.【基础知识】1. 解方程(1)2430x x --= (2) 2(3)2(3)0x x x -+-=(3)42)2)(1(+=++x x x (6)24810x x -+=2. 关于x 的方程04)2(2=+++k x k kx 有两个不相等的实数根. (1)求k 的取值范围。
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由3. 2(12)10k x k ---=已知有两个不相等的实数根,求的值4.22(1)2(1)10k k x k x +-+-=无论为何实数,方程一定有两个不相等的实数根【提高练习】1. 解方程:(1)4326240x x x x +--+= (2)24935120x x +-=2. 已知下列三个方程:24430,x a x a +-+=()22241210x a x a -++-=,()2210,x a x a +-+=其中至少有一个方程有实数根,求实数a 的取值范围。
3. 已知关于x 的方程322210x ax ax a --+-=有且只有一个实数根,则实数a 的取值范围是___________4. 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.5. 已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.6. 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.7. 已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.8. 若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.(1) 求实数k 的取值范围;(2) 若1212x x =,求k 的值.9. 已知:222,220,220x y x x k y y k -=-+=-+=,求k 的值。
2014年八(下)数学期末复习专题讲义第一讲 二次根式一.<新课标要求>1.了解二次根式,最简二次根式的概念;2.了解二次根式(根号下仅限于数)的加、减、乘、除运算法则,会用它们进行有关的简单四则运算.二.二次根式知识树图三.二次根式达标题A .x ≥3B .x ≤3C .x >3D .x <3(变式问题)则x 的值不可以取下列各数中的( ) A .π B .10 C .2)5(- D .42.小明做了下面几道二次根式的题目: ①523=+;②123=-;③623=⋅;④2323=÷; ⑤228=-;⑥5621012-=-.则小明做正确的题数是( )A .1B .2C .3D .43.(2013•上海)下列式子中,属于最简二次根式的是( )A .9B .7C .20D .31 (归纳小结)最简二次根式的特征(1)根号内的数一定是整数,式一定是整式;(2)根号内的整数中不含有完全平方数因子,整式中也不能含有完全平方式因子;4.当4-=x 时,二次根式x 21-的值为_________________. 5.若二次根式2x 的值为3,则=x _____________________.6.计算(1)6812⨯+; (2)2521+.(3)22)3(324)21(-+÷+-.7.已知,23,23+=-=n m 求22n mn m +-的值.(提高题)8.(2006•内江)已知实数x 、y 、a 满足:三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.第二讲一元二次方程一.<新课标要求>1.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程;2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;3.(选学,不列入考试范围)了解一元二次方程的根与系数的关系;4.能运用一元二次方程解简单的实际问题,并能根据具体问题的实际意义,检验方程的解是否合理.教材补充目标:5.理解一元二次方程的概念;6.了解一元二次方程的一般形式,掌握辨别一元二次方程的二次项、一次项的系数和常数项.二.一元二次方程达标题1.(2013•新疆)方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=02.(2013•宜宾)已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.-3 B.3 C.0 D.0或33.(2013•珠海)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解4.(2013•湛江)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降.由原来每斤12元连续两次降价a%后售价下调到每斤5元,下列所列方程中正确的是()A.12(1+a%)2=5 B.12(1-a%)2=5C.12(1-2a%)=5 D.12(1-a2%)=55.(2013•乌鲁木齐)若关于x的方程式x2-x+a=0有实数根,则a的值可以是()A.2 B.1 C.0.5 D.0.256.(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13 C.13 D.以上选项都不正确7.(2013•牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是()A.2018 B.2008 C.2014 D.20128.(2013•兰州)用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2三.一元二次方程知识图四.一元二次方程的解法与实际问题1.解方程:(1)042=-x ; (2)322=-x x ;(3))5(3)5(2-=-x x ; (4) 0322=--x x2.(2013•昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80-100x-80x=7644B .(100-x )(80-x )+x 2=7644C .(100-x )(80-x )=7644D .100x+80x=3563.(2013•黔西南州)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x )+50(1+x )2=196D .50+50(1+x )+50(1+2x )=1964.(2013•东营)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A .5个B .6个C .7个D .8个 5.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为__________.6.(2013•南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程: ______________________________.7.(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?8.(2013•泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?10.(2013•连云港)小林准备进行如下操作实验;把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?请说明理由.11.(2012•徐州)为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?第三讲数据分析初步一.<新课标要求>1.理解平均数的意义,能计算中位数,众数,加权平均数,了解它们是数据集中趋势的描述.2.体会刻画数据离散程度的意义,会计算简单数据的方差.3.体会样本与总体的关系,知道可以通过样本平均数,样本方差推断总体平均数和总体方差.4.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流.二.达标题1.(2013•昭通)已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是5A.6 B.7 C.8 D.93.(2013•重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐4.(2013•舟山)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.315.(2013•自贡)某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3第四讲平行四边形和特殊平行四边形一.<新课标要求>1.了解多边形的定义,多边形的顶点,边,内角,外角,对角线等概念;探索并掌握多边形内角和,与外角和公式.2.理解平行四边形,矩形,菱形,正方形的概念,以及它们之间的关系;了解四边形的不稳定性.3.探索并证明平行四边形的性质定理:平行四边形的对边相等,对角相等,对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.4.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.5.探索并证明矩形,菱形,正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.正方形具有矩形和菱形的一切性质.6.探索并证明三角形的中位线定理.二.达标题1.(2013•宜昌)四边形的内角和的度数为()A.180°B.270°C.360°D.540°2.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形3.(2013•扬州)一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形4.(2013•资阳)一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形5.(2013•宜宾)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是()A.70°B.110°C.140°D.150°(5) (6) (7) 6.(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误..的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()=4S△A O B B.AC=BD C.AC⊥BD D.▱ABCD是轴对称图形A.S▱A B C D8.(2013•黔西南州)已知▱ABCD 中,∠A+∠C=200°,则∠B 的度数是( )A .100°B .160°C .80°D .60° 9.(2013•襄阳)如图,平行四边形ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18B .28C .36D .46(9) (10) 10.(2013•泰安)如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )A .32B .34C .4D .811.(2013•潍坊)下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.(2013•泸州)四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BC B .AB=DC ,AD=BCC .AO=CO ,BO=DOD .AB ∥DC ,AD=BC(12) (14)13.(2013•西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )A .2B .4C .6D .8 14.(2013•淄博)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为( )A .23B .25C .3D .415.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设( ) A .a 不垂直于c B .a ,b 都不垂直于c C .a ⊥b D .a 与b 相交16.对于命题“如果a >b >0,那么a 2>b 2.”用反证法证明,应假设( ) A .a 2>b 2 B .a 2<b 2 C .a 2≥b 2 D .a 2≤b 217.证明“一个三角形中,至少有一个内角小于或等于60°”.运用反证法时,假设正确的是( )A .△ABC 中,∠A <60°且∠B=60°B .△ABC 中,∠A 、∠B 、∠C 都不小于60° C .△ABC 中,∠A <60°且∠B <60°D .△ABC 中,∠A 、∠B 、∠C 都大于60°18.(2013•茂名)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AC 的长是( )A .2B .4C .32 D .34(18) (19) (20)19.(2013•济宁)如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( ) A .45cm 2 B .85cm 2 C .165cm 2 D .325cm 220.(2013•淄博)如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为( )A .78°B .75°C .60°D .45°21.(2013•东营)如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)S △A O B =S 四边形D E O F中正确的有( )A .4个B .3个C .2个D .1个22.(2013•桂林)如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与B 、C 不重合),连结AP ,作PE ⊥AP 交∠BCD 的外角平分线于E .设BP=x ,△PCE 面积为y ,则y 与x 的函数关系式是( ) A .y=2x+1 B .y=21x-2x 2 C .y=2x-21x 2 D .y=2x(21)(22)23.(2013•镇江)如图,AB ∥CD ,AB=CD ,点E 、F 在BC 上,且BE=CF . (1)求证:△ABE ≌△DCF ;(2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形.24.(2013•牡丹江)在△ABC 中,AB=AC ,点D 在边BC 所在的直线上,过点D 作DF ∥AC 交直线AB 于点F ,DE ∥AB 交直线AC 于点E . (1)当点D 在边BC 上时,如图①,求证:DE+DF=AC .(2)当点D 在边BC 的延长线上时,如图②;当点D 在边BC 的反向延长线上时,如图③,请分别写出图②、图③中DE ,DF ,AC 之间的数量关系,不需要证明. (3)若AC=6,DE=4,则DF= .25.(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.26.(2013•云南)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.27.(2013•张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN ∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.28.(2013•鄂州)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.29.(2013•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为.30.(2013•三明)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC 的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= ____________度.第五讲 反比例函数一.<新课标要求>1.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式;2.能画出反比例函数的图象,根据图象和表达式)0(≠=k xky 探索并理解0>k 和0<k 时,图象的变化情况;3.能用反比例函数解决简单实际问题.三.专题解析A .1B .2C .3D .4A .x y 2=B .x y =C .xy = D .x y 4=(第2题图) (第4题图) (第5题图)(3)(2013•六盘水)下列图形中,阴影部分面积最大的是( )A .B .C .D .A .y =B .y =C .y =D .y =A .1B .2C .3D .4A .3B .t 23 C .23D .不能确定(6) (7) (8)A .-2B .2C .4D .-4A .3B .4C .33412- D .33824-A .12B .34 C .12−33 D .32312-2.反比例函数综合(1)(13•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;OABC的形状并证明你的结论.始沿BC向C以每秒2个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.连接AF,CE.①设运动的时间为t秒,当t为何值时,AF⊥CE?②在①的条件下,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
第5讲一元一次不等式1.掌握不等式的基本性质并能正确运用它们将不等式变形;2.理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;3.掌握解一元一次不等式的方法和步骤并准确地求出不等式的解集.知识点01 不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.【知识拓展】(2021春•萍乡期末)“实数x不小于6”是指()A.x≤6 B.x≥6 C.x<6 D.x>6【即学即练】(2021春•建平县期末)据天气预报,2021年7月5日建平县最高气温是25℃,最低气温是22℃,则当天我县气温t(℃)的变化范围是()A.t>25 B.t≤22 C.22<t<25 D.22≤t≤25知识点02 不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或a c>bc).知识精讲目标导航性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c<b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 【知识拓展1】(2021春•饶平县校级期末)若2a +3b ﹣1>3a +2b ,试比较a ,b 的大小.【即学即练1】(2021•梁园区校级一模)若a >b >0,c >d >0,则下列式子不一定成立的是( ) A .a ﹣c >b ﹣dB .C .ac >bcD .ac >bd【即学即练2】(2021秋•澧县期末)若a >b ,则﹣2a ﹣2b .(用“<”号或“>”号填空) 【即学即练3】(2021春•万柏林区校级月考)利用不等式的性质,解答下列问题. (1)①如果a ﹣b <0,那么a b ; ②如果a ﹣b =0,那么a b ; ③如果a ﹣b >0,那么a b ; (2)比较2a 与a 的大小. (3)若a >b ,c >d . ①比较a +c 与b +d 的大小; ②比较a ﹣d 与b ﹣c 的大小.【即学即练4】(2021春•未央区校级月考)若m<n,且(a﹣5)m>(a﹣5)n,求a的取值范围.【即学即练5】(2021春•饶平县校级期末)根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【即学即练6】(2021•连州市模拟)已知a>b,则下列结论正确的是()A.﹣2a>﹣2b B.a+c>b+c C.3a<3b D.ac>bc【即学即练7】(2021春•潍坊期末)若a>b,则下列不等式一定成立的是.A.a+2>b+2 B.<C.﹣2a<﹣2b D.a2<b2【即学即练8】(2021•内江)已知非负实数a,b,c满足==,设S=a+2b+3c的最大值为m,最小值为n,则的值为.知识点03 一元一次不等式1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b>0(a≠0)或ax+b≥0(a≠0) ,ax+b<0(a≠0)或ax+b≤0(a≠0).2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.【知识拓展1】(2021春•皇姑区校级期中)若x2m﹣1>5是关于x的一元一次不等式,则m=.【即学即练1】(2021春•饶平县校级期末)已知(b+2)x b+1<﹣3是关于x的一元一次不等式,试求b的值,并解这个一元一次不等式.【即学即练2】(2021春•平川区校级期末)在数学表达式:﹣4<0,2x+y>0,x=1,x2+2xy+y2,x≠5,x+2>y+3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个【即学即练3】(2021•南岗区校级开学)下列各式中,是一元一次不等式的有()(1)x+2+x2<2x﹣5+x2;(2)2x+xy+y;(3)3x﹣4y≥0;(4)﹣5<x;(5)x≠0;(6)a2+1>5.A.1个B.2个C.3个D.4个【即学即练4】(2021春•甘孜州期末)下列不等式中,是一元一次不等式的是()A.x<y B.a2+b2>0 C.>1 D.<0【即学即练5】(2021春•冠县期末)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.【知识拓展2】(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.【即学即练1】(2021•滕州市一模)下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3 B.C.D.2【即学即练2】(2021•河南模拟)用三个不等式x>﹣4,x<﹣1,x>1中的两个组成不等式组,其中有解集的个数为()A.0 B.1 C.2 D.3【即学即练3】(2021•新野县三模)已知关于x的不等式组有实数解,则m的取值范围是.【即学即练4】(2021春•沭阳县期末)如图,是关于x的不等式的解集示意图,则该不等式的解集为.【即学即练5】(2021春•陆河县校级期末)如图,此不等式的解集为.【即学即练6】(2021春•天津期末)分别用含x的不等式表示如图数轴中所表示的不等式的解集:②;②.【即学即练7】(2021•潮阳区模拟)把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣2【即学即练8】(2021春•抚州期末)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.【即学即练9】(2021春•饶平县校级期末)解不等式7﹣2x>(1﹣)2,把它的解集在数轴上表示出来,并求出它的正整数解.【即学即练10】(2019•衢江区二模)如图,在数轴上,点A、B分别表示数1和﹣2x+3.(1)求x的取值范围;(2)将x的取值范围在数轴上表示出来.【知识拓展3】(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣【即学即练1】(2021秋•济南期末)不等式﹣3x≤6的解集为.【即学即练2】(2021秋•鹿城区校级期中)若不等式(m﹣3)x>m﹣3,两边同除以(m﹣3),得x<1,则m的取值范围为.【即学即练3】(2021秋•肇源县期末)若关于x的方程x+k=2x﹣1的解是负数,则k的取值范围是()A.k>﹣1 B.k<﹣1 C.k≥﹣1 D.k≤﹣1【即学即练4】(2021•安徽模拟)解不等式≤.【即学即练5】(2021•永定区模拟)解不等式:7x﹣2≤5x,并把解集在数轴上表示出来.【即学即练6】(2021秋•清镇市期中)已知点M(﹣6,3﹣a)是第二象限的点,则a的取值范围是.【知识拓展4】(2021•陕西)求不等式﹣x+1>﹣2的正整数解.【即学即练1】(2021•长兴县模拟)整数x满足不等式2x+1<8,则x的值可能是.(写出一个符合的值即可)【即学即练2】(2021春•聊城期末)解不等式,并写出它的负整数解.【即学即练3】(2021春•鞍山期末)解不等式(1﹣2x )≥;并写出它所有的非负整数解.【即学即练4】(2021秋•朝阳区校级期中)不等式4(x ﹣2)<2x ﹣3的非负整数解的个数为( ) A .2个B .3个C .4个D .5个1.比较a b +和a b -的大小.2.等式()()52186117x x -+<-+的最小整数解是方程24x ax -=的解,求a 的值.3.解不等式:11315111x x x x ++>+-++.能力拓展分层提分题组A 基础过关练一.选择题(共4小题)1.(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣2.(2021•锦江区校级开学)若a>b,则下列不等式不一定成立的是()A.﹣2a<﹣2b B.am<bm C.a﹣3>b﹣3 D.3.(2021秋•龙凤区期末)已知a<b,则下列不等式错误的是()A.a﹣7<b﹣7 B.ac2<bc2C.D.1﹣3a>1﹣3b4.(2021秋•杜尔伯特县期末)若m<n,则下列各式正确的是()A.﹣2m<﹣2n B.C.1﹣m>1﹣n D.m2<n2二.填空题(共6小题)5.(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.6.(2021秋•瓯海区月考)根据“3x与5的和是负数”可列出不等式.7.(2021秋•青羊区校级期中)﹣<x<的所有整数的和是.8.(2021秋•济南期末)不等式﹣3x≤6的解集为.9.(2021秋•澧县期末)若a>b,则﹣2a﹣2b.(用“<”号或“>”号填空)10.(2020秋•开化县期末)若x<y,且(a﹣3)x≥(a﹣3)y,则a的取值范围是.三.解答题(共2小题)11.(2021春•澄城县期末)已知(k+3)x|k|﹣2+5<k﹣4是关于x的一元一次不等式,求这个不等式的解集.12.(2021春•秦都区月考)解不等式:3x ﹣4<4+2(x ﹣2).题组B 能力提升练一、单选题1.在数学表达式:30-<,+a b ,3x =,222x xy y ++,5x ≠,23x y +>+中,是一元一次不等式的有( ). A .1个B .2个C .3个D .4个2.不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( ) A .B .C .D .3.不等式2﹣3x≥2x﹣8的非负整数解有( ) A .1个B .2个C .3个D .4个4.如图,是关于x 的不等式2x ﹣a≤﹣1的解集,则a 的取值是( )A .a≤﹣1B .a≤﹣2C .a=﹣1D .a=﹣25.已知关于x 的不等式(1)2a x ->的解集为21x a<-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a <6.若方程3(1)1(3)5m x m x x ++=--的解是正数,则m 的取值范围是( )A .54m >B .54m <C .54m >-D .54m <-7.若关于x 的不等式mx m nx n +<-+的解集为23x >-,则关于x 的不等式2mx m nx n ->-的解集是( ) A .43x >B .43x <C .43x >-D .43x <-二、填空题8.不等式5x-9≤3(x+1)的解集是________.9.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________. 10.不等式112943x x ->+的正整数解的个数为___________________. 11.当x _____________时,21x -的值小于32x +的值. 12.不等式442x x ->-的最小整数解为_____. 13.(1)已知x a <的解集中的最大整数为3,则a 的取值范围是________. (2)已知x a >的解集中最小整数为-2,则a 的取值范围是________.14.若不等式2113x -≤中的最大值是m ,不等式317x --≤-中的最小值为n ,则不等式nx mn mx +<的解集是________. 三、解答题15.解一元一次不等式532122x x ++-<.16.解不等式,并把不等式的解集在数轴上表示出来. (1)6327x x ->-; (2)21123x x -+-≤.17.已知,关于x的不等式(2a-b)x+a-5b>0的解集为x<10 7.(1)求ba的值.(2)求关于x的不等式ax>b的解集.题组C 培优拔尖练1.列式计算:求使的值不小于的值的非负整数x.2.已知不等式5(x﹣2)﹣9>7(x﹣11)+36,它的最大整数解恰好是方程x﹣ax=20的解,求a的值.3.为了保护环境,池州海螺集团决定购买10台污水处理设备,现有H和G两种型号设备,其中每台价格及月处理污水量如下表:H G价格(万元/台)1512处理污水量(吨/月)250220经预算,海螺集团准备购买设备的资金不高于130万元.(1)请你设计该企业有几种购买方案?(2)哪种方案处理污水多?。
第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。
我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。
因此,我们有必要把这部分内容学得更扎实。
知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。
第一讲三角形的三线【知识体系】一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个角.二、三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.〔1〕三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的部.③三角形的角平分线画法与角平分线的画法一样,可以用量角器画,也可通过尺规作图来画.〔2〕三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形部一点.②画三角形中线时只需连结顶点与对边的中点即可.〔3〕三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.三、三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可四、三角形的稳定性2题图D C B AC C C C三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 【例题解析】 【例1】填空1、按角分类 :可分为三角形、三角形、三角形;按边分类:等腰三角形和不等边三角形;等腰三角形又可分为:三角形和不相等的等腰三角形; 2、〔1〕如图,假设,那么AD 是△ABC 的中线;三角形有条中线;三角形的中线将三角形分成相等的两个三角形;〔2〕如图,假设,那么CE 是△ABC 的角平分线;三角形有条角平分线; 〔3〕如图,那么BF 是△ABC 的BC 边上的高;三角形有条高;锐角三角形条高在三角形部;直角三角形条高在三角形部;钝角三角形条高在三角形部;3、以下图形中有稳定性的是 A. 正方形 B. 长方形 C. 三角形 D. 平行四边形【例2】对下面每个三角形,过顶点A 画出中线,角平分线和高.【练】以下四个图形中,线段BE 是△ABC 的高的图形是( )【例3】如图,在ΔABC 中,AE 是中线,AD 是角平分线,AF 是高。
2014年秋季班数学八年级讲义(1)掌握二次根式的相关概念掌握二次根式的运算,及常用技巧【基础知识】1. 求下列各式有意义的所有x 的取值范围。
();();();();();()13221312411521645332-++-++-----x x x x x xx x x x2. 把下列各根式化为最简二次根式:()()(),()(),19600224750325121003234a b a b a b ca b ≥≥≥≥3. 判断下列各组根式是否是同类根式:();;()当时,,,117531516238534202--<<+-m n n m m n n m mn4. 把下列各式的分母有理化:()();();()11232252323111101-++-+--≤≤a aa aa5. 计算:()()()11841213233215121333352253121262-++⎛⎝ ⎫⎭⎪÷÷+⎛⎝ ⎫⎭⎪--+--6. 化简:()()()1424422242242222a ba ba ab ba a a a a a--÷++++++++-7. 化简:()()()()()()()()()()·10262633323464411025125522223222222->------>--+++-+-<<⎛⎝ ⎫⎭⎪------st s m m m x x x x x x a b a b a b b a()||8.已知:a ba b b a==+【提高练习】1. 设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( )(A )有一组; (B )有两组; (C )多于二组; (D )不存在2. 已知实数a满足:|2014|,a a -=那么22014a -=( )(A ) 2013 (B ) 2014 (C ) 2015 (D ) 20163. 满足等式20032003x x y =的正整数对()x y ,的个数是( )(A )1 (B )2 (C )3 (D )44.( )5.6. 化简:((12【巩固练习】1. 已知实数a 满足a a a =-+-19931992,则=-21992a __________________;2. 使等式99=+y x 成立的整数对()y x ,的个数为__________________;3. ,,a b c为有理数,且等式a +29991001a b c ++的值是( )(A )1999(B )2000(C )2001(D )不能确定 4.等于( )(A)5- (B)1 (C )5 (D )1 5.________2013++=.6.的结果是______________。
【课题】勾股定理【学习目标】1.掌握勾股定理的含义;2.理解勾股数,并且会熟练地运用勾股数;3.能够根据勾股定理,解决实际问题。
【课前导学】直角三角形边角关系【课堂导学】考点1:勾股定理(1)勾股定理:直角三角形两直角边的( )分别为a ,b ,斜边为c ,那么( )(3)勾股定理的证明:勾股定理的证明方法很多,常见的是( )。
图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
考点2:勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,( )形,对于( )三角形和( )三角形的三边就不具有这一特征。
考点3:勾股数(1)能够构成直角三角形的三边长的三个( )称为勾股数,即222ab c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。
(2)记住常见的勾股数可以提高解题速度,比如( )等。
考点4:勾股定理的应用(1)已知直角三角形的任意两边长,求( )。
在A B C ∆中,90C ∠=︒,则c,b,a ;(2)已知直角三角形一边,可得另外两边之间的( );(3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的( )问题。
c b a H G F E D C B A b a c b a c c a b c a b ab c c b a E D C B A【例题精讲】例1:如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194例2:下列由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=2,b=3,c=C.a=12,b=10,c=20 D.a=5,b=13,c=12例3:三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形例4:如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米 C.13米D.14米类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.【课堂练习】【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【例题精讲】类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.举一反三【变式1】如图,已知:,,于P. 求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
CM2014年秋季班数学八年级讲义(6)探究三角形中的不等关系(大边对大角,大角对大边) 利用等腰三角形、全等三角形的性质解题的方法和技巧 【提高练习】1. 如图,△ABC 中,AD ⊥BC 于D ,∠ABC =2∠C ,求证:AB +BD =CD2. 如图,已知BD 是∠ABC 的角平分线,AD ⊥BD ,垂足为D ,求证:∠BAD =∠DAC+∠ACB3. 如图,N 为正方形ABCD 的边CD 上一点,且AN =NC +BC ,M 为DC 的中点,求证:12BAN DAM ∠=∠4. 如图,BD 、CE 分别是△ABC 的边AC 和AB 上的高,点P 再BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB ,求证:(1)AP =AQ ;(2)AP ⊥AQQP F ED CBAB5. 如图,在△ABC 中,已知∠FBC=∠ECB =12∠A ,求证:BE =6. 设D 为等腰△ABC 底边BC 的中点,E 为△ABD 内任意一点,求证:∠AEB >∠AEC7. 设△ABC 中,∠A =90°,AD ⊥BC ,垂足为D ,求证:AD +BC >AB +AC8. 草原上四口油井,位于四边形ABCD 的四个顶点(如图),现在要建立一个维修站H ,试问H 建立在何处,才能使它到四口油井的距离之和HA +HB +HC +HD 为最小,说明理由【巩固练习】1. 平行四边形的对角线互相平分,是________命题(填“真”或“假”).2. 如图所示AB//CD ,BE 平分∠ABC ,CE 平分 ∠BCD ,则∠CBE+∠BCE=_________度.3. 设一个等腰三角形的两边分别为4及9,则这个等腰三角形的周长为_______________.A C D BE3题图C A B D 5题图C A B F ED 1题图4. 如图所示BD 平分∠ABC ,CD 平分∠ACB ,若∠A=70°,则∠BDC=______度5. 已知:△ABC ,DE ∥BC ,∠DBF=∠CBF ,∠ECF=∠BCF ,AB=8,AC=7,则△ADE 的周长为____________________6. 命题:“等腰三角形的两个底角相等”改写为“如果----那么-------”:________________________________________________________________________ 7. 如图,∠1=82°,∠2=98°,∠3=80°,则∠4=____________.8. 如图,下列推理正确的是…………………………………………………………( )(A )∵∠1=∠2,∴AD ∥BC (B )∵∠3=∠4,∴AB ∥CD (C )∵∠3=∠5,∴AB ∥DC (D )∵∠3=∠5,∴AD ∥BC 9. 下列命题中是真命题的是………………………………………………………( ) A 、同位角相等 B 、对顶角相等 C 、相等的角是对顶角 D 、同旁内角互补 10. 如图,下列判断:①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………………( ) (A )①、②、③ (B )①、②、④ (C )②、③、④ (D )①、②、③、④11. 在下列条件中,不能判定两个三角形全等的是………………………………( ) A 两边及其夹角对应相等 B 两角及其夹边对应相等 C 两边及其中一边的对角对应相等 D 三边对应相等12. 如图,已知等腰直角三角形ACB 中,∠A 是直角,∠B 的平分线交AC 于D ,过C 引BD的垂线交BD 的延长线于E ,求证:AB +AD =BCM 13. 如图,已知△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连接CE 、DE ,求证:CE =DE14. 如图,已知AB =AC ,∠B =∠C ,EC =BD ,M 是ED 的中点,求证:AM ⊥ED15. 在四边形ABCD 中,已知AB =a ,AD =b ,且BC =DC ,对角线AC 平分∠BAD ,问a 和b的大小符合什么条件时,有∠D+∠B =180°,请画图证明你的结论。
图1
D
C
图
22014年秋季班数学八年级讲义(5)
掌握添加辅助线的基本方法 掌握证明举例中的基本思路 【基础知识】 1. 如图,△ABC 中,∠ABC=∠BAC=45°,点P 在AB 上,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、
E ,已知DC=2,求BE 的长。
2. (1)
90303ABC BAC B AD BC BD CD ∆∠=︒∠=︒⊥=已知:在中,、、,求证:
(2)90330ABC BAC AD BC BD CD B ∆∠=︒⊥=∠=︒已知:在中,、、,求证:
3. 已知:如图1所示,在△ABC 中,∠B =60°,∠BAC 、∠BCA 的角平分线AD 、CE 相交
于点O ,求证:AC =AE +CD
4. 已知:如图2,四边形ABCD 是正方形,点E 、点F 分别是边BC 和边CD
上的点,且∠
FAD =∠FAE ,求证BE +DF =AE
C
D
5. 已知:如图,在四边形ABCD 中, AB =CD ,点E 、F 分别是边AB 、CD 的中点,DE =BF .
求证:∠A =∠C .
6. 求证:在两个锐角三角形中,如果有两边及其中一边上的高对应相等,那么这两个三角
形全等。
(画图、写出已知、求证和证明)
【提高练习】
1. 如图,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点I ,若∠B =35°,BC =AI +AC ,
求∠BAC 的度数
2. 如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,但A 到EF 的距离AH 始终保
持与AB 长相等,问在E 、F 移动过程中: (1)求证:∠EAF =45o
(2)△ECF 的周长是否有变化?请说明理由
3. ,120ABC AB AC BAC ∆=∠=︒已知:在中,
(1)2D BC DE AB DF AC DE DF BC D BC DE AB DF AC DE DF BC ⊥⊥⊥⊥是上的一动点,,,你能发现、、之间的数量关系吗?
()是直线上的一动点,直线,直线
,试探究线段、之间的数量关系。
4. 90ABC BAC AB AC D AC AH BD H ∆∠=︒=⊥已知:在中,、,是的中点,于
12AH BC E FC AC AE F BD DF EC DF ⊥延长交于,交延长线于,()找出图中与相等的线段,试证明?()连接,试探究与的关系?
5. 90ABC BAC M BC ∆∠=︒已知:在中,,是的中点,将直角三角板的直角
12M AB AC F E ME MF ME MF =顶点放于点处,另两条直角边分别交、于、。
()与相等吗?
()如果,反过来能说明题目中的三角板有一个角是直角吗?
如果能,试证明;如果不能,试举一个反例。
6. 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将B
O C △绕点C 按
顺时针方向旋转60得ADC △,连接OD . (1)求证:COD △是等边三角形;
(2)当150α=时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?
A B C D O
110 α
A B C A
B
C
图1
图2
图3
7. (1)如图1,△ABC 和△ADC 是公共斜边AC 的等腰直角三角形,E 、F 分别在AD 和CD
上,∠EBF =45°,试判断线段AE 、EF 、FC 之间的数量关系,并说明理由
(2)如图2,△ABC 和△ADC 是公共底边AC 的等腰三角形,E 、F 分别在AD 和CD 上,∠ADC =60°,∠ABC =120°,∠EBF =60°,试判断线段AE 、EF 、FC 之间的数量关系,并说
明理由
(3)由此我们能得到更一般的结论:当∠ADC 和∠ABC 满足_________________,同时∠ABC 和∠EBF 满足________________时,则AE 、FC 和EF 之间就有以上数量关系。
(4)如图若当点E 、点F 分别在直线..AD 和直线..CD 上运动,那是否又有类似的结论呢?。