对流传热系数计算公式_传热系数计算公式
- 格式:docx
- 大小:36.48 KB
- 文档页数:2
对流传热系数计算公式_传热系数计算公式
一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/ λ
式中:
δ—材料层厚度( m)
λ—材料导热系数 [W/m.k]
多层结构热阻
R=R1+R2+---- Rn=δ1/ λ1+δ2/ λ2+ ---- +δn/ λn 式中: R1、 R2、---Rn —各层材料热阻( m2.k/w)
δ1 、δ2 、 ---δn—各层材料厚度( m)
λ1 、λ2 、 ---λn—各层材料导热系数 [W/m.k]
2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻( m2.k/w)(一般取 0.11)
Re—外表面换热阻( m2.k/w)(一般取 0.04)
R —围护结构热阻( m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0 —围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 / Fp + Fb1+Fb2+Fb3
式中:
Km—外墙的平均传热系数 [W/(m2.k) ]
Kp—外墙主体部位传热系数 [W/( m2.k)]
Kb1、Kb2、 Kb3—外墙周边热桥部位的传热系数 [W/( m2.k)] Fp—外墙主体部位的面积
Fb1、 Fb2、Fb3—外墙周边热桥部位的面积
感谢您的阅读,祝您生活愉快。
对流传热系数的计算公式
对流传热系数是热传导中的一种传热方式,常用于热交换器、冷却塔、加热器等传热设备的设计与计算中。
对于流体在壁面上的流动,其对流传热系数与流速、温度、粘度等变量密切相关。
在实际应用中,针对不同的流体与流动状态,可采用不同的计算公式。
下面列举几种常用的对流传热系数计算公式:
1. 自然对流传热系数公式:
h = 1.13 * (gβΔT)^1/4
其中,h为对流传热系数,g为重力加速度,β为热膨胀系数,ΔT为壁面温度与流体温度的差值。
2. 强制对流传热系数公式:
Nu = CRe^mPr^n
其中,Nu为努塞尔数,Re为雷诺数,Pr为普朗特数,C、m、n 为经验系数。
3. 线性对流传热系数公式:
h = kΔT
其中,k为比例常数,ΔT为温度差值。
需要注意的是,以上公式仅适用于理想条件下的流动状态,而实际应用中因存在多种不确定因素,其计算结果仅供参考,具体设计与计算仍需进行实际测试与验证。
- 1 -。
空气散热计算公式空气散热是指通过空气传递热量,以降低物体的温度。
在实际应用中,我们常常需要计算空气散热的量,以确定适当的散热方式和散热设备。
本文将介绍一些常见的空气散热计算公式。
一、传热功率传热功率指的是单位时间内传递给或从物体中流动的热量,通常用单位时间内传热量的绝对值表示,单位为瓦特(W)。
对于空气散热,传热功率可以通过以下公式计算:Q=h*A*ΔT其中,Q表示传热功率,h表示传热系数,A表示热交换面积,ΔT表示物体温度与环境温度之间的温差。
传热系数h是一个物质特性,取决于流体的性质、流动方式、流速等因素。
对于空气散热而言,传热系数一般需要通过实验测定或参考经验值。
热交换面积A是指热量传递的表面积。
对于平板形式的热交换器,热交换面积等于散热片的表面积。
温差ΔT是指物体温度与环境温度之间的差值。
在实际计算中,可以使用摄氏度或开尔文温标进行表示。
二、对流传热在空气散热中,传热主要是通过对流传热实现的。
对流传热是由于流体动力学引起的热量传递,可以通过以下公式计算:Q=h*A*ΔT其中,Q表示传热功率,h表示对流传热系数,A表示传热面积,ΔT 表示物体温度与环境温度之间的温差。
对流传热系数h是一个关于流动速度、气体性质和传热面积的函数。
对于自然对流(即无外力作用的对流),传热系数一般较低;而对于强制对流(即外力作用下的对流),传热系数一般较高。
传热面积A是传热的表面积,可以视具体情况选择合适的计算方法。
温差ΔT是物体温度与环境温度之间的差值,可以使用摄氏度或开尔文温标进行表示。
三、辐射传热辐射传热是指通过电磁辐射(主要是红外辐射)进行的热量传递。
辐射传热是一个复杂的过程,一般需要通过辐射传热系数来描述。
辐射传热可以通过以下公式计算:Q=ε*σ*A*(T1^4-T2^4)其中,Q表示传热功率,ε表示辐射率,σ表示史蒂芬-波尔兹曼常数,A表示辐射传热面积,T1和T2分别表示物体表面温度和环境温度。
辐射率ε是一个描述物体辐射特性的参数,取决于物体表面材料、几何形状和表面状况等因素。
传热学三大基本公式Nu = 2+0.6(Re^1/2)(Pr^1/3) 。
F=Q/kK*△tm F 是换热器的有效换热面积。
Q 是总的换热量。
k 是污垢系数一般取0.8-0.9K。
是传热系数。
△tm 是对数平均温差。
传热学三种传热方式可以分开学。
传热学相较于理论力学,工程热力学,流体力学而言还是比较简单的,一般大学生掌握了高等数学完全可以自学的。
学习传热学必须有耐心,了解几种换热方式和常见的几个常数公式(努谢尔特数、格拉晓夫数、伯努利常数,傅里叶常数,而且常常推导下几个常用常数公式间的关系,你会惊奇地发现他们其实不少是远亲的),其实解决传热学问题绝大多数都是在和导热系数较劲,有时候是直接涉及。
扩展资料:在热对流方面,英国科学家牛顿于1701年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过它并没有揭示出对流换热的机理。
传热学作为学科形成于19世纪。
1804年,法国物理学家毕奥在热传导方面得出的平壁导热实验结果是导热定律的最早表述。
稍后,法国的傅里叶运用数理方法,更准确地把它表述为后来称为傅里叶定律的微分形式。
1860年,基尔霍夫通过人造空腔模拟绝对黑体,论证了在相同温度下以黑体的辐射率(黑度)为最大,并指出物体的辐射率与同温度下该物体的吸收率相等,被后人称为基尔霍夫定律。
传热的三种方式:热的传递是由于物体内部或物体之间的温度差引起的。
若无外功输入,根据热力学第二定律,热量总是自动地从温度高的地方传递至温度较低的地方。
热能的传递有三种基本方式:热传导、热对流、热辐射,下面分别介绍这三种传热方式(一)热传导物体各部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递成为热传导。
热传导的基本计算公式是傅立叶定律:在单位时间内热传导方式传递的热量与垂直于热流的截面积成正比,与温度梯度成正比,负号表示导热方向与温度梯度方向相反。
其中Q表示热流率,单位为W; dT/dx为温度梯度,单位为°C/m ;A为导热面积,单位为m2;λ为材料的导热系数,又称热导率,单位为W/(m°C) ,也可以为W/(mK) 。
对流换热公式汇总与分析【摘要】流体与固体壁直接接触时所发生的热量传递过程,称为对流换热,它已不是基本传热方式。
本文尝试对对流换热进行简单分类并对无相变对流换热公式简单汇总与分析。
【关键词】对流换热类型公式适用范围对流换热的基本计算形式——牛顿冷却公式:q h(tt f)(W / m2 )w或 Am2上热流量h(t w t f)(W )上式中表面传热系数h 最为关键,表面传热系数是众多因素的函数,即h f (u, t w ,t f , ,c p , , , ,l )综上所述,由于影响对流换热的因素很多,因此对流换热的分析与计算将分类进行,本文所涉及的典型换热类型如表 1 所示。
表 1 典型换热类型1.受迫对流换热1.1内部流动圆管内受迫流动内部流动换热非圆形管内受迫流动受迫对流换热外掠平板外部流动外掠单管外掠管束(光管;翅片管)无相变换热竖壁;竖管无限空间横管自然对流换热水平壁(上表面与下表面)对流换热有限空间夹层空间混合对流换热————受迫对流与自然对流并存垂直壁凝结换热凝结换热水平单圆管及管束外凝结换热相变换热管内凝结换热大空间沸腾换热沸腾换热管内沸腾换热(横管、竖管等)1.1.1 圆管内受迫对流换热(1) 层流换热公式西德和塔特提出的常壁温层流换热关联式为Nu f1.86 Re 1f / 3 Pr 1f / 3 ( d )1 / 3 (f )0.14lw或写成d 1 / 3f0.14Nu f1.86( Pe f l )( )w式中引用了几何参数准则d,以考虑进口段的影响。
l适用范围: 0.48 Pr 16700, 0.0044 (f )9.75 。
w定性温度取全管长流体的平均温度,定性尺寸为管内径 d 。
如果管子较长,以致[(Re Pr d)1/ 3 ( f) 0.14 ]2lw则 Nu f 可作为常数处理,采用下式计算表面传热系数。
常物性流体在热充分发展段的Nu 是Nu f 4.36(q const)Nu f3.66(t w const)(2) 过渡流换热公式对于气体, 0.6Pr f1.5 , 0.5T f1.5 , 2300Re f 104。
传热系数凯恩公式
传热系数凯恩公式是用于计算传热系数的公式,具体如下:
1. 对流传热:
强制对流:h=Nu×k/d,其中,h表示传热系数,Nu表示Nusselt数,k 表示流体的热传导率,d表示流体流动路径的特征长度。
自然对流:h=Nu×k/L,其中,h表示传热系数,Nu表示Nusselt数,k 表示流体的热传导率,L表示体积的特征长度。
2. 导热传热(conduction heat transfer):q=-k×A×∇T/d,其中,q表示单位时间内通过单位面积的热量传递量,k表示固体的热传导率,A表示传热面积,∇T表示温度梯度,d表示固体的厚度。
请注意,以上公式适用于不同的传热类型和条件。
在实际应用中,还需要考虑其他因素,如物性参数、流动条件、换热器类型等。
因此,在使用这些公式时,建议查阅相关文献或咨询专业人士以获取更准确和适用的计算方法。
自然对流与强制对流及计算实例热设计是电子设备开发中必不可少的环节。
本连载从热设计的基础——传热着手,介绍基本的热设计方法。
前面介绍的热传导具有消除个体内温差的效果。
上篇绍的热对流,则具有降低平均温度的效果。
下面就通过具体的计算来分别说明自然对流与强制对流的情况。
首先,自然对流的传热系数可以表述为公式(2)。
热流量=自然对流传热系数×物体表面积×(表面温度-流体温度) (2)很多文献中都记载了计算传热系数的公式,可以把流体的特性值带入公式中进行计算,可以适用于所有流体。
但每次计算的时候,都必须代入五个特性值。
因此,公式(3)事先代入了空气的特性值,简化了公式。
自然对流传热系数h=2 .51C(⊿T/L)0.25(W/m2K) (3)2.51是代入空气的特性值后求得的系数。
如果是向水中散热,2.51需要换成水的特性值。
公式(3)出现了C、L、⊿T三个参数。
C和L从表1中选择。
例如,发热板竖立和横躺时,周围空气的流动各不相同。
对流传热系数也会随之改变,系数C 就负责吸收这一差异。
代表长度L与C是成对定义的。
计算代表长度的公式因物体形状而异,因此,在计算的时候,需要从表1中选择相似的形状。
需要注意的是,表示大小的L位于分母。
这就表示物体越小,对流传热系数越大。
⊿T是指公式(2)中的(表面温度-流体温度)。
温差变大后,传热系数也会变大。
物体与空气之间的温差越大,紧邻物体那部分空气的升温越大。
因此,风速加快后,传热系数也会变大。
公式(3)叫做“半理论半实验公式”。
第二篇中介绍的热传导公式能够通过求解微分方程的方式求出,但自然对流与气流有关,没有完全适用的理论公式。
能建立理论公式的,只有产生的气流较简单的平板垂直放置的情况。
因为在这种情况下,理论上的温度边界线的厚度可以计算出来。
但是,如果发热板水平放置,气流就会变得复杂,计算的难度也会增加。
这种情况下,就要根据原始的理论公式,通过实验求出系数。
对流传热系数计算公式_传热系数计算公式
一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/ λ
式中:
δ—材料层厚度( m)
λ—材料导热系数 [W/m.k]
多层结构热阻
R=R1+R2+---- Rn=δ1/ λ1+δ2/ λ2+ ---- +δn/ λn 式中: R1、 R2、---Rn —各层材料热阻( m2.k/w)
δ1 、δ2 、 ---δn—各层材料厚度( m)
λ1 、λ2 、 ---λn—各层材料导热系数 [W/m.k]
2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻( m2.k/w)(一般取 0.11)
Re—外表面换热阻( m2.k/w)(一般取 0.04)
R —围护结构热阻( m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0 —围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 / Fp + Fb1+Fb2+Fb3
式中:
Km—外墙的平均传热系数 [W/(m2.k) ]
Kp—外墙主体部位传热系数 [W/( m2.k)]
Kb1、Kb2、 Kb3—外墙周边热桥部位的传热系数 [W/( m2.k)] Fp—外墙主体部位的面积
Fb1、 Fb2、Fb3—外墙周边热桥部位的面积
感谢您的阅读,祝您生活愉快。