第12讲.利用旋转添加辅助线.学生版
- 格式:doc
- 大小:1.96 MB
- 文档页数:12
板块 考试要求A 级要求B 级要求C 级要求全等三角形的性质及判定会识别全等三角形掌握全等三角形的概念、判定和性质,会用全等三角形的性质和判定解决简单问题会运用全等三角形的性质和判定解决有关问题基本知识把图形G 绕平面上的一个定点O 旋转一个角度θ,得到图形G ',这样的由图形G 到G '变换叫做旋转变换,点O 叫做旋转中心,θ叫做旋转角,G '叫做G 的象;G 叫做G '的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等; ②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件盯对集中,以便于诸条件的综合与推演.重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。
同时全等三角形的判定也是本章的重点,特别是几种判定方法,尤其是当在直角三角形中时,HL 的判定是整个直角三角形的重点难点:本节的难点是全等三角形性质和判定定理的灵活应用。
为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论弄清楚,哪几个是条件,决定哪个结论,如何用数学符号表示,即书写格式,都要在讲练中反复强化重、难点知识点睛中考要求第十二讲利用旋转添加辅助线【例1】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA【解析】 ∵ABC ∆是等边三角形,∴60ACB ∠=︒,AC BC =.∴60BCD DCA ∠+∠=︒,同理60ACE DCA ∠+∠=︒,DC EC =.∴BCD ACE ∠=∠ 在BCD ∆与ACE ∆ 中, BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩∴BCD ACE ∆∆≌,∴BD AE =.【巩固】(2008年全国初中数学联赛武汉CASIO 杯选拔赛)如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若2BE =,则CD = .图6DECBA【解析】 31-.易知CDB ∆≌CDA ∆≌EDB ∆,从而2BC AC BE ===,2AB =, 由CDA CDB ∠=∠知CD 是ABD ∆一条高的一部分,不难算出答案为31-.【例2】 (1997年安徽省初中数学竞赛题)在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化MNCBAMDNCBA【解析】 如图,将CBN ∆绕点C 顺时针旋转90︒,得CAD ∆,连结MD ,则AD BN n ==,CD CN =,ACD BCN =∠∠,∴MCD ACM ACD =+∠∠∠ACM BCN =∠+∠904545MCN =-==∠. ∴MDC MNC ∆∆≌,∴MD MN x ==又易得454590DAM ∠=+︒=,∴在Rt AMD ∆中,有222m n x +=,故应选(B )例题精讲【例3】 (通州区2009一模第25题)请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.图1ABCDE图2AB CDE【解析】 ⑴ 222DE BD EC =+证明:根据AEC ∆绕点A 顺时针旋转90︒得到ABE '∆ ∴AEC ABE '∆∆≌∴BE EC '=,AE AE '=,C ABE '∠=∠,EAC E AB '∠=∠ 在Rt ABC ∆中 ∵AB AC =∴45ABC ACB ∠=∠=︒ ∴90ABC ABE '∠+∠=︒ 即90E BD '∠=︒∴222E B BD E D ''+= 又∵45DAE ∠=︒∴45BAD EAC ∠+∠=︒ ∴45E AB BAD '∠+∠=︒ 即45E AD '∠=︒∴AED AED '∆∆≌ ∴DE DE '=∴222DE BD EC =+E'EDCBAFEDCB A⑵ 关系式222DE BD EC =+仍然成立证明:将ADB ∆沿直线AD 对折,得AFD ∆,连FE ∴AFD ABD ∆∆≌∴AF AB =,FD DB =FAD BAD ∠=∠,AFD ABD ∠=∠ 又∵AB AC =,∴AF AC =∵45FAE FAD DAE FAD ∠=∠+∠=∠+︒()9045EAC BAC BAE DAE DAB DAB ∠=∠-∠=︒-∠-∠=︒+∠ ∴FAE EAC ∠=∠ 又∵AE AE = ∴AFE ACE ∆∆≌∴FE EC =,45AFE ACE ∠=∠=︒ 180135AFD ABD ABC ∠=∠=︒-∠=︒∴1354590DFE AFD AFE ∠=∠-∠=︒-︒=︒ ∴在Rt DFE ∆中222DF FE DE +=即222DE BD EC =+【例4】 E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.CHF ED BACH FEGD BA【解析】 延长CB 至G ,使BG DF =,连结AG ,易证ABG ADF △≌△,BAG DAF =∠∠,AG AF =.再证AEG AEF △≌△,全等三角形的对应高相等(利用三角形全等可证得),则有AH AB =.【巩固】如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分BAF ∠交BC 边于点E .⑴求证:AF DF BE =+.⑵设DF x =(01x ≤≤),ADF ∆与ABE ∆的面积和S 是否存在最大值?若存在,求出此时x 的值及S .若不存在,请说明理由.FEDC BAGABC DEF【解析】 ⑴ 证明: 如图,延长CB 至点G ,使得BG DF =,连结AG .因为ABCD 是正方形,所以在Rt ADF ∆和Rt ABG ∆中,AD AB =, 90ADF ABG ∠=∠=°,DF BG =. ∴Rt Rt (SAS)ADF ABG ∆∆≌, ∴AF AG =,DAF BAG ∠=∠. 又 ∵ AE 是BAF ∠的平分线. ∴EAF BAE ∠=∠,∴DAF EAF BAG BAE ∠+∠=∠+∠. 即EAD GAE ∠=∠.∵AD BC ∥,∴GEA EAD ∠=∠, ∴GEA GAE ∠=∠,∴AG GE =. 即AG BG BE =+.∴AF BG BE =+,得证.⑵ ADF ABE S S S ∆∆=+1122DF AD BE AB =⋅+⋅.∵1AD AB ==,∴()12S DF BE =+由⑴知,AF DF BE =+,所以12S AF =.在Rt ADF ∆中,1AD =,DF x =,∴AF =∴S 由上式可知,当2x 达到最大值时,S 最大.而01x ≤≤, 所以,当1x =时,S.【巩固】如图所示,在四边形ABCD 中,AB =BC ,∠A =∠C =90°,∠B =135°,K 、N 分别是AB 、BC 上的点,若△BKN 的周长为AB 的2倍,求∠KDN 的度数.N K DCB AFNKEDCB A【解析】 延长BC 至F ,使得CF =AB ,在CF 上取点E ,使得CE =AK ,连接BD 、DE 、DF .∵AB ⊥AD ,BC ⊥CD ,AB =BC ∴Rt △ADB ≌Rt △CDB ∴AD =CD∵AD =CD ,AK =CE ,AB ⊥AD ,BC ⊥CD ∴△ADK ≌△CDE ∴DK =DE∵BK +BN +KN =2AB ,BF =BN +EF +EN =2AB ,EF =CF -CE =AB -AK =BK ∴KN =EN∴△NDK ≌△NDE∴∠KDN =∠EDN =∠CDE +∠NDC =∠CDE +∠ADK∵∠ABC =135° ∴∠KDN =12(180°-135°)=22.5° 点评:本题的辅助线可以看作是将△ADB 割下来,放到△CDF 处,从而将不规则的图形转化为规则的图形,进而利用线段之间的等量关系求解.【例5】 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M ,N 分别在直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长与等边ABC ∆的周长L 的关系.图③图②图①ABCD MNABCD MNN M D CBA⑴如图①,当点M ,N 在边AB ,AC 上,且DM =DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=__________⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN =x ,则Q =_________(用x ,L 表示)【解析】 B M +NC =MN ;32=LQ EABC DM N(2)猜想:仍然成立证明:如图,延长AC 至E ,使CE =BM ,连接DE ,120BD CD BDC =∠=︒且, 30DBC DCB ∴∠=∠=︒由ABC ∆是等边三角形,90MBD NCD ∴∠=∠=︒,()MBD ECD SAS ∴∆∆≌ ,DM DE BDM CDE ∴=∠=∠,60EDN BDC MDN ∴∠=∠-∠=︒ 在MDN ∆与EDN ∆中 DM DE MDN EDN DN DN =⎧⎪∠=⎨⎪=⎩()MDN EDN SAS ∴∆∆≌ MN NE NC BM ∴==+AMN ∆的周长Q AM AN MN =++=()()AM BM AN NC +++=2AB AC AB += 而等边ABC ∆的周长3L AB = 23Q L ∴= (3)223x L +【巩固】(1)如图25-1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;FED CBA(2) 如图25-2在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?不用证明. FED CBAF EDCBA(3) 如图25-3在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.GFED CBAGFEDCBA【解析】 证明:延长EB 到G ,使BG =DF ,联结AG .∵∠ABG =∠ABC =∠D =90°, AB =AD , ∴△ABG ≌△ADF .∴AG =AF , ∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =12∠BAD .∴∠GAE =∠EAF . 又AE =AE ,∴△AEG ≌△AEF . ∴EG =EF . ∵EG =BE +BG . ∴EF = BE +FD(2) (1)中的结论EF = BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE -FD 证明:在BE 上截取BG , 使BG =DF ,连接AG . ∵∠B +∠ADC =180°, ∠ADF +∠ADC =180°, ∴∠B =∠ADF . ∵AB =AD ,∴△ABG ≌△ADF .∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD .∴∠GAE =∠EAF . ∵AE =AE ,∴△AEG ≌△AEF . ∴EG =EF ∵EG =BE -BG【例6】 (2005年四川省中考题)如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.OBEC F A 4321OB ECF A【解析】 连结OB 由上可知,1290+∠=︒∠,2390∠+=∠,13∠=∠,而445C =∠=︒∠,OB OC =.∴OBE OCF ∆∆≌,∴BE FC =,∴BE BF CF BF BC a +=+==.【巩固】等腰直角三角形ABC ,90ABC =︒∠,AB a =,O 为AC 中点,45EOF =︒∠,试猜想,BE 、BF 、EF 三者的关系.OBE C FA OB EG C F A【解析】 如图,过点O 作OG OE ⊥,交BC 于G ,连结OB ,易知OGC OBE ∆∆≌,∵BE CG =,又∵EO OG =,45EOF FOG =∠=∠,OF OF =, ∴OEF OGF ∆∆≌,∴EF FG =∴BE BF EF CG BF FG AB a ++=++==又∵90B =︒∠,∴BE 、BF 、EF 又存在另一关系式222BF BE EF +=【例7】 如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP ⊥AQ ,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP ⊥OQ .QRPOD CBA【解析】 欲证OP ⊥OQ ,即证明∠COP +∠COQ =90°.然而,∠COQ +∠QOD =90°,因此只需证明∠COP =∠DOQ 即可.这归结为证明△COP ≌△DOQ ,又归结为证明CP =DQ ,最后,再归结为证明△ADQ ≌△DCP 的问题.证 在正方形ABCD 中,因为AQ ⊥DP ,所以,在Rt △ADQ 与Rt △RDQ 中有∠RDQ =∠QAD .所以,在Rt △ADQ 与Rt △DCP 中有AD =DC ,∠ADQ =∠DCP =90°,∠QAD =∠PDC , 所以△ADQ ≌△DCP (ASA ),DQ =CP .又在△DOQ 与△COP 中,DO =CO ,∠ODQ =∠OCP =45°, 所以△DOQ ≌△COP (SAS ),∠DOQ =∠COP .从而∠POQ =∠COP +∠COQ =∠DOQ +∠COQ =∠COD =90°, 即OP ⊥OQ .说明 (1)利用特殊图形的特殊性质,常可发现有用的条件,如正方形对角线互相垂直,对角线与边成45°角,及OA =OB =OC =OD 等均在推证全等三角形中被用到.(2)两个三角形的全等与对应元素相等,这两者互为因果,这是利用全等三角形证明问题的基本技巧.【巩固】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DK G CFA【解析】 正方形ABCD 中,1245∠==︒∠,OA OB =而3490∠+=︒∠,4590∠+=︒∠ ∴35=∠∠,∴AOE BOF ∆∆≌∴AE BF =,∴AE FC BF FC BC AB +=+==【例8】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.D CBEFA【解析】 证明:因为四边形ABCD 是正方形,所以AB AD =,90BAD ADE ABF ︒∠=∠=∠=.因为EA AF ⊥,所以90BAF BAE BAE DAE ︒∠+∠=∠+∠=,所以BAF DAE ∠=∠,故Rt ABF ∆≌Rt ADE ∆,故DE BF =.【巩固】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积是16,求DP 的长.PDC BAABCDEP【解析】 如图,过点D 作DE DP ⊥,延长BC 交DE 于点E ,容易证得ADP CDE ∆∆≌(实际上就是把ADP∆逆时针旋转90︒,得到正方形DPBE )∵正方形DPBE 的面积等于四边形ABCD 面积为16,∴4DP =.【例9】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:AN BM =.M D NEC BFA【解析】 ∵ACM ∆、CBN ∆是等边三角形,∴MC AC =,CN CB =,ACN MCB ∠=∠ ∴ACN MCB ∆∆≌,∴AN BM =【点评】此题放在例题之前回忆,此题是旋转中的基本图形.【巩固】如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC于M ,N 点.求证:CM CN =.NMEDCBA【解析】 ∵ABC ∆与DCE ∆都是等边三角形∴BC AC =,CD CE =及60ACB DCE ∠=∠=︒ ∵B ,C ,E 三点共线∴180BCD DCE ∠+∠=︒,180BCA ACE ∠+∠=︒ ∴120BCD ACE ∠=∠=︒ 在BCD ∆与ACE ∆中 BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩∴BCD ACE ∆∆≌, ∴CAN CBM ∠=∠∵120BCD ACE ∠=∠=︒,60BCM NCE ∠=∠=︒ ∴60ACD ∠=︒在BCM ∆与ACN ∆中 60BC AC BCM ACN CBM CAN =⎧⎪∠==︒⎨⎪∠=∠⎩∴BCM ACN ∆∆≌,∴CM CN =.【巩固】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:CF 平分AFB ∠.M D NEC BFAGM H D NEC BF A【解析】 过点C 作CG AN ⊥于G ,CH BM ⊥于H ,由ACN MCB ∆∆≌,利用AAS 进而再证BCH NCD ∆∆≌,可得到CG CH =,故CF 平分AFB ∠.【巩固】如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.请你证明: ⑴AN BM =; ⑵DE AB ∥;⑶CF 平分AFB ∠.M D NEC BFA【解析】 此图是旋转中的基本图形.其中蕴含了许多等量关系.60MCN ∠=与三角形各内角相等,及平行线所形成的内错角及同位角相等; 全等三角形推导出来的对应角相等… 推到而得的:AFC BFC ∠=∠;AN BM =,CD CE =,AD ME =,ND BE =; AM CN ∥,CM BN ∥;DE AB ∥ACN MCB ∆∆≌,ADC MCE ∆∆≌,NDC BEC ∆∆≌; DEC ∆为等边三角形.⑴∵ACM ∆、CBN ∆是等边三角形,∴MC AC =,CN CB =,ACN MCB ∠=∠ ∴ACN MCB ∆∆≌,∴AN BM =⑵由ACN MCB ∆∆≌易推得NDC BEC ∆∆≌,所以CD CE =,又60MCN ∠=, 进而可得DEC ∆为等边三角形.易得DE AB ∥.⑶过点C 作CG AN ⊥于G ,CH BM ⊥于H ,由ACN MCB ∆∆≌,利用AAS 进而再证BCH NCD ∆∆≌,可得AFC BFC ∠=∠,故CF 平分AFB ∠.【例10】 如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.M DNECBA【解析】 ∵ACN MCB ∆∆≌,∴AN BM =,ABM ANC ∠=∠ 又∵D 、E 分别是AN 、BM 的中点,∴BCE NCD ∆∆≌,∴CE CD =,BCE NCD ∠=∠∴60DCE NCD NCE BCE NCE NCB ∠=∠+∠=∠+∠=∠= ∴CDE ∆是等边三角形【巩固】(2008年全国初中数学竞赛海南区初赛)如下图,在线段AE 同侧作两个等边三角形ABC ∆和CDE ∆(120ACE ∠<°),点P 与点M 分别是线段BE 和AD 的中点,则CPM ∆是( )PMBC DEAA .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形【解析】 易得ACD BCE ∆∆≌.所以BCE ∆可以看成是ACD ∆绕着点C 顺时针旋转60︒而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP CM =且,60PCM ∠=°,故CPM ∆是等边三角形,选C .【例11】 平面上三个正三角形ACF ,ABD ,BCE 两两共只有一个顶点,求证:EF 与CD 互相平分.FEDBCA【解析】 连接DE 与DF∵DBA EBC ∠=∠,BAD CAF ∠=∠ ∴DBE ABC ∠=∠,BAC DAF ∠=∠ ∴在DBE ∆与ABC ∆中 DB AB DBE ABC BE BC =⎧⎪∠=∠⎨⎪=⎩∴(SAS)DBE ABC ∆∆≌ ∴DE CA FC == 在D FA ∆与BCA ∆中 DA BA DAF BAC AF AC =⎧⎪∠=∠⎨⎪=⎩∴(SAS)DFA BCA ∆∆≌ ∴DF BC EC ==∴DECF 为平行四边形, ∴EF ,CD 互相平分.【例12】 已知:如图,ABC ∆、CDE ∆、EHK ∆都是等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD ∆也是等边三角形.EKHCDBAMAB DCH KE【解析】 连结EB ,∵CE CD =,CE EA =,BE AD =,所以BE AD =,并且BE 与AD 的夹角为60︒, 延长EB 交AK 于M ,则360300EBH BHD HDE BED HDM MDE MED ∠=︒-∠-∠-∠=︒-∠-∠-∠ ()180********HDM MDE MED HDM HDK =︒-∠+︒-︒-∠-∠=︒-∠=.又因为HK AD BE ==,BH HD =. 所以BEH DKH ∆∆≌. 所以HK HE =,EHD EHD DHK BHE ∠=∠+∠=∠.【例13】 (1997年安徽省竞赛题)如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =M EFHGD CBA【解析】 证明△ABH ≌△AFC ;(2)作P MD FP 于⊥,Q MD HQ 于⊥,先证△AFP ≌△BAD ,△ACD ≌△HAQ ,再证△FPM ≌△HQM【巩固】(2008年怀化市初中毕业学业考试试卷)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.G FE DCBA【解析】 ∵ADC EDG ∠=∠∴CDG ADE ∠=∠ 在CDG ∆和ADE ∆中 CD AD CDG ADE DG DE =⎧⎪∠=∠⎨⎪=⎩∴CDG ADE ∆∆≌ ∴AE CG =【巩固】以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE =BG ,且CE ⊥BG .OGFEDCBA 【解析】 易证△AEC ≌△ABG ,故∠ACE =∠AGB ,又AC ⊥AG ,∠AOG =∠BOC ,故CE ⊥BG .【例14】 (北京市初二数学竞赛试题) 如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.EDCBAF EDCBA【解析】 我们马上就会想到连接AC 、AD ,因为其中有两个直角三角形,但又发现直接求各三角形的面积并不容易,至此思路中断. 我们回到已知条件中去,注意到1BC DE +=,这一条件应当如何利用?联想到在证明线段相等时我们常用的“截长补短法”,那么可否把BC 拼接到DE 的一端且使EF BC =呢(如图所示)?据此,连接AF ,则发现ABC ∆≌AEF ∆,且1FD =,AF AC =,AE AB =,ADF ∆是底、高各为1的三角形,其面积为12,而ACD ∆与AFD ∆全等,从而可知此五边形的面积为1.【巩固】(江苏省数学竞赛试题)如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2.求该五边形的面积.EDCBAFEDCBA【解析】 延长CB 至F ,使得BF =DE ,连接AF 、AC 、AD .∵∠ABC =∠AED =90°,AB =AE ,BF =DE ∴△ABF ≌△AED ∴AF =AD∵CD = BC +DE =BC +BF =CF ,AC =AC ∴△ACF ≌△ACD ∵AB =CD =CF =2∴该五边形的面积为16.点评:本题可看作将五边形ABCDE 分割成三块,通过割补重新组合成一个规则的图形.【巩固】(希望杯全国数学邀请赛初二第二试试题) 在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=,连接AD .求证:AD 平分CDE ∠.EDCBAFEDCBA【解析】 连接AC .由于AB AE =,180ABC AED ∠+∠=.我们以A 为中心,将ABC ∆逆时针旋转到AEF ∆的位置.因AB AE =,所以B 点与E 点重合,而180AEF AED ABC AED ∠+∠=∠+∠=,所以D 、E 、F 在一条直线上,C 点旋转后落在点F 的位置,且AF AC =,EF BC =. 所以DF DE EF DE BC CD =+=+=. 在ACD ∆与AFD ∆中,因为AC AF =,CD FD =,AD AD =, 故ACD ∆≌AFD ∆,因此ADC ADF ∠=∠,即AD 平分CDE ∠.【例15】 (2008山东)在梯形ABCD 中,AB CD ∥,90A ∠=︒,2AB =,3BC =,1CD =,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.ABCDE FE DCBA【解析】 延长BE 交CD 延长线于点F .E ∵是AD 中点,DE AE =∴,AB CD ∵∥,90A ∠=︒,90EDF EAB ∠=∠=︒∴,ABE DFE ∠=∠ 在AEB ∆和FED ∆中, ABE DFE EAB EDF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∵ AEB FED ∆∆∴≌,FE BE =∴又2,3,1AB BC CD ===∵,CF BC =∴ 在FCE ∆和BCE ∆中, FC BC CE CE FE BE =⎧⎪=⎨⎪=⎩∵ FCE BCE ∆∆∴≌,CE EB ⊥∴【习题1】如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD+相等的理由.EDCBA【解析】 ∵AC AB =,CAE BAD ∠=∠,AE AD =∴AEC ADB ∆∆≌ ∴CE BD =又∵BD BC CD AC CD =+=+ ∴CE AC CD =+【习题2】(湖北省黄冈市2008年初中毕业生升学考试)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【解析】 ∵ADC EDF ∠=∠∴ADE CDF ∠=∠ 在ADE ∆和CDF ∆中 DAE DCF AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ADE CDF ∆∆≌ ∴DE DF =【习题3】如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.Q P DCBAQP FDCBA【解析】 把△CDQ 绕点C 旋转90°到△CBF 的位置,CQ =CF .∵AQ +AP +QP =2,家庭作业又AQ +QD +AP +PB =2,∴QD +BP =QP .又DQ =BF ,∴PQ =PF .∴QCP FCP ∆∆≌.∴∠QCP =∠FCP . 又∵∠QCF =90°,∴∠PCQ =45°.【习题4】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.HG NM C BA【解析】 由ACN MCB ∆∆≌,利用AAS 进而再证BCH NCD ∆∆≌,可得到CG CH =.【备选1】(北京市数学竞赛试题,天津市数学竞赛试题) 如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA NM ED C BA【解析】 如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=,60MDN ∠=,所以60BDM NDC ∠+∠=. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=.在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=,D M D E =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【备选2】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.月测备选APMCQ BAP MC QB【解析】 连接CM .因为AC BC =且90ACB ∠=,所以45B ∠=.因为M 是AB 的中点,所以90AMC BMC ∠=∠=,45ACM ∠=且CM BM =,则ACM B ∠=∠. 因为MQ MP ⊥,所以90QMC CMP PMB ∠=-∠=∠,所以QCM PBM ∆∆≌, 所以QM PM =.因此MPQ ∆是等腰直角三角形,在P 的运动过程中形状不变. MPQ ∆的面积与边MP 的大小有关.当点P 从B 出发到BC 中点时,面积由大变小; 当P 是BC 中点时,三角形的面积最小;P 继续向点C 运动时,面积又由小变大.【备选3】如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.FED CBA FEDMCBA【解析】 延长CB 至M ,使得BM D F =,连接AM .易证得:ABM ADF ∆∆≌,从而可得:AFD BAF EAF BAE BAM BAE EAM ∠=∠=∠+∠=∠+∠=∠, AM B EAM ∠=∠,故AE EM BE BM BE DF ==+=+.【备选4】等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA【解析】 由条件1AE CF +=,且1DF CF +=,得AE DF =.因为AB DB =,60A BDF ∠=∠=,所以ABE DBF ∆∆≌, 因此BE BF =,ABE DBF ∠=∠.因为60EBF EBD DBF EBD ABE ABD ∠=∠+∠=∠+∠=∠=, 所以BEF ∆为等边三角形.。
学科教师辅导讲义学员姓名:学科教师:徐泽文年级:初二辅导科目:数学授课日期主题证明举例(一)学习目标1. 了解添置辅助线的基本方法,会添置几类常见的辅助线;2. 逐步培养数学语言运用能力和逻辑表达能力。
教学内容案例1:回顾添加辅助线的描述方法已知:如图,在△ABC中,AB=2BC,∠B=60°,若想证明∠ACB=90°;下列对图中所作辅助线描述不恰当的是()。
A.在AB上取一点D,使BD=CDB. 取AB的中点D,联结CDC. 在AB上截取BD=BCD.在AB上截取AD=BC参考答案:A案例2:已知:如图,Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,若求证AD=2CD,则下列辅助线的描述正确的是()A. 过点D做AB的垂线DE,使DE平分ABB. 过点D做AB的垂线DE与AB交于点E,使DE平分ABC .取AB的中点E,联结DE,使AD⊥BCD.过点D作DE⊥AB交AB于点E参考答案:D案例3:请用准确的语句描述下图所添加的辅助线参考答案:分别延长BA、CD交于点E;思考:通过上面三个题目,同学们总结一下添加辅助线的方法和语言描述:1.作线段:连接L L;2.作平行线:过点L L作L L//L L;3.作垂线(作高):过点L L作L L L L,垂足为L L;4.作中线:取L L中点L L,连接L L;5.延长并截取线段:延长L L使L L等于L L;6.截取等长线段:在L L上截取L L,使L L等于L L;7.作角平分线:作L L平分L L;或者作角L L等于已知角L L;8.作一个角等于已知角:作角L L等于L L;案例4:已知:如图,在△ABC中,AD是∠BAC的角平分线,∠ABC=2∠ACB求证:AB+BD=AC.在利用截长补短法解题时,请用准确的语句描述下图所添加的辅助线:在上截取= 。
参考答案:AC,AE,AB思考:通过上面四个题目,同学们总结一下添加辅助线需要注意的几种方法:1.连线构造全等或等腰三角形;2.截长补短知识一、连线构造全等或等腰三角形例1:如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.求证:AF⊥CD教法指导:证明线段垂直,借助于三角形,可以引导学生考虑构造三角形,再证明三角形全等,从而得到等腰三角形的中线与高线重合.参考答案:证明:联结AC、AD,在△ABC和△AED中,AB=AE,∠B=∠E,BC=ED∴△ABC≌△AED(SAS).∴AC=AD.∴△ACD是等腰三角形.又∵点F是CD的中点,∴AF⊥CD.例2:如图,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD延长线于点E.求证:BD=2CE.教法指导:证明线段之间的倍数关系,借助于特殊三角形,题目中已经有了直角三角形,可以引导学生考虑借助直角三角形,题目中条件不足,可以通过添加辅助线构造直角三角形,找相等线段,找到相应的关系. 参考答案:证明:延长CE、BA交于F点,如图,∵BE⊥EC,∴∠AEF=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE ⊥CF , ∴CF =2CE , ∵△ABC 中,AC =AB ,∠A =90°, ∴∠CBA =45°, ∴∠F =(180-45)°÷2=67.5°,∠FBE =22.5°, ∴∠ADB =67.5°,∵在△ADB 和△AFC 中,∠F =∠ADB ,∠BAC =∠F AC ,AB =AC ∴△ADB ≌△AFC (AAS ), ∴BD =FC , ∴BD =2CE .知识二、截长补短法例3:如图:已知EC 与AD 相交于点B ,∠AEC = ∠A +∠C ,EB = BC .求证:AB = BD+DC .教法指导:证明线段之间的关系,借助于全等三角形,可以通过添加辅助线构造全等三角形,找相等线段,再找到相应的关系. 参考答案:证明:如图,在AB 上截取BF =BD ,联结EF∵在△BCD 和△BEF 中, BD =BF ,∠CBD =∠EBF ,BC =BE ∴△BCD ≌△BEF (SAS ),∴CD =EF ,∠BEF =∠C ∵∠AEC = ∠A +∠C ∴∠AEF = ∠A ∴AF =EF ,∴AF =CD ∴AB =AF +BF =BD +CD .例4:(1)如图:在△ABC 中,AD ⊥BC 于点D ,∠B =2∠C ,求证:AB + BD = DC .ACDEBFACEDB教法指导:证明线段之间的关系,借助于等腰三角形,可以通过添加辅助线构造全等三角形,找相等线段,再找到相应的关系.参考答案:证明:如图,在DC上取DE=BD,联结AE∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,在△ACE中,∠AEB=∠C+∠CAE,又∵∠B=2∠C,∴2∠C=∠C+∠CAE,∴∠C=∠CAE,∴AE=CE,∴CD=CE+DE=AB+BD.(2)如图,在△ABC中,AD⊥BC于点D,AB+BD=DC.求证:∠B=2∠C教法指导:证明角之间的倍数关系,借助找等角来解决问题,等角思考的方向全等三角形或等腰三角形.参考答案:证明:如图,在DC上取DE=BD,联结AE∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,∵CD=CE+DE=AB+BD∴AE=CE,∴∠C=∠CAE在△ACE中,∠AEB=∠C+∠CAE,∴∠B=2∠C例5:如图,已知在△ABC中,∠A = 2∠B,CD平分∠ACB,试猜想BC、AD、AC三线段之间有着怎样的数量关系,并加以证明.参考答案:BC=AD﹢AC,理由如下:如图,在BC上取CE=AC,联结DE∵在△ACD和△ECD中, AC=CE,∠ACD=∠ECD,CD=CDDB CADCBAE∴△ACD≌△ECD(SAS),∴AD=DE,∠A =∠DEC在△BDE中,∠DEC=∠B+∠BDE,又∵∠A=2∠B,∴2∠B=∠B+∠BDE,∴∠B=∠BDE,∴BE=DE,∴BC=BE+CE=AD+AC.1.如图,在△ABC中,AB=AC,BD与CE相交于点O,BO=CO.求证:∠B=∠C.证明:联结BC,∵BO=CO,∴∠OBC=∠OCB,∵BA=CA,∴∠ABC=∠ACB,∴∠ABO=∠ACO2.如图,在四边形ABDC中,点E是线段CD上的一点,∠CAE=∠EAB,(1)若∠DBE=∠EBA,AD//BC,求证:AB=AC+BD;(2)若点E为CD中点,AB=AC+BD,求证:∠DBE=∠EBA。
全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。
动态几何的探究(一)利用图形的基本运动(旋转)添加辅助线位育初级中学郑育丽一.背景:1.研究的问题:在变化、运动过程中,如何发掘不变的性质与不变的量如何利用旋转添加辅助线2.研究的重点:利用旋转添加辅助线3.选择该课题研究的目的:从学生实际出发,以学生为本,利用现代教学手段“几何画板”动态的直观性帮助学生解决学习中的两大难点:在变化、运动过程中,如何探究发掘不变的性质与不变的量及如何由旋转联想到辅助线的添加,使学生由感性认识上升到理性认识。
利用实验操作发现猜想,利用几何画板验证猜想,利用论证几何证明猜想。
只有在变化、运动中,不断发掘不变的性质与不变的量,才能把握住规律,才能增强探索、发现、归纳的能力。
二.设计1.教学目标:⑴.掌握动态几何的探究的方法。
⑵..理解为何利用旋转可以添加辅助线。
⑶.知道利用旋转添加辅助线的条件。
⑷.掌握利用旋转添加辅助线的方法。
⑸.渗透数学思想:①.利用特殊性寓于普遍性之中,以个(线段的运动)知全(线段所在的三角形的运动)。
②.理解动与静的辨证关系,动中求静,静中窥动,在动动静静中揭示问题的本质。
③多角度的观察问题。
多角度的描述辅助线的添加。
④发现条件的改变而结论不变的根本原因是产生结论不变的条件没有变。
⑤渗透分类的数学思想及理解探究条件问题的充要性。
2.教学重点:掌握利用旋转添加辅助线的方法。
3.教学难点:掌握利用旋转添加辅助线的方法。
4.教学时间:两课时5.教学过程:(一)以旧引新,提出问题⒈复习⑴回顾例11:老师问:在前几节几何证明中,我们知道了辅助线有哪些作用学生答:添加辅助线的作用是使分散的条件集中在一个三角形或使条件与问题在位置上有个有机的组合,使相应的定理能针对运用,即达到条件与问题有机的结合。
老师问:还有什么作用 学生一时受阻老师启发:请翻开课本八年级第一学期第七十一页,请看: 例11.已知:如左下图,D 是BC 上的一点, BD=DC ,∠1=∠2。
初中数学辅助线添加技巧:旋转方法总结1.旋转是中考压轴题中常见题型,在解这类题目时,什么时候需要构造旋转,怎么构造旋转.下面,就不同类型的旋转问题,给出构造旋转图形的解题方法:遇中点,旋转180°,构造中心对称; 遇90°,旋90°,造垂直; 遇60°,旋60°,造等边; 遇等腰,旋等腰.综上四点得到旋转的本质特征:等线段,共顶点,就可以有旋转.2.图形旋转后我们需要证明旋转全等,而旋转全等中的难点实际上是倒角.下面给出旋转常用倒角,只要是旋转,必然存在这两个倒角之一.如图1,若AOB COD ∠=∠,必有AOC BOD ∠=∠,反之亦然. 如图2,若A D ∠=∠,必有B C ∠=∠.图2图1OABCDDCB AO倒角是在初中数学学习中常用的名词,其意思是通过角之间的等量关系,得到我们所需要的角度的关系的过程.典例精析例1.(1)如图1,边长为1的正方形ABCD ,绕点A 逆时针旋转30°到正方形AB'C'D',图中我们阴影部分的面积是( )A.1-BC.1 D .12(2)正方形ABCD 在坐标系中的位置如图2所示,将正方形ABCD 绕点D 顺时针旋转90°后,B 点的坐标为 .图2图1D'C'BA解:(1)A ;(2)(4,0).点拨:本例第2小问是在平面直角坐标系中考查旋转变换的作图,是数形结合的完美体现.首先要确定旋转中心是点D 而不是坐标原点O ,此处易出现错误,然后利用平面直角坐标系的特征确定正方形ABCD 绕点D 旋转90°后B'的位置,这类题型常见于正方形网格中的旋转作图.例2.如图,E 、F 分别是正方形ABCD 的边BC 、DC 上的点,且∠EAF =45°,求证:EF =BE +DF .FED CBA证明:延长CB 到点G ,使得BG =DF ,连接AG .GF ED CBA∵四边形ABCD 是正方形, ∴90,D ABG AB AD ∠=∠=︒=. ∴ADF ABG △≌△. ∴,AF AG DAF BAG =∠=∠. ∵45EAF ∠=︒, ∴45DAF BAE ∠+∠=︒.∴45DAG BAE ∠+∠=︒,即45EAG ∠=︒. ∵AE AE =, ∴AFE AGE △≌△.∴EF EG EB BG BE DF ==+=+.点拨:旋转图形可将分散的条件集中到一个图形中,从而可充分利用已知条件,找到有效的解题方法.这种方法在正方形、正三角形以及其它正多边形中都有着广泛的应用.本题是旋转一个经典模型(半角模型),其中结论较多.例3.如图,以ABC △的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,连接EC 交AB 于点H ,连接BG 交CE 于点M ,求证:BG ⊥CE .MH GFEDCBA证明:∵四边ABDE 、ACFG 是正方形, ∴,,90AE AB AC AG EAB GAC ==∠=∠=︒. ∴EAB BAC GAC BAC ∠+∠=∠+∠. ∴EAC GAB ∠=∠. ∴EAC GAB =△△. ∴AEC ABG ∠=∠.∵90,AEC AHE AHE BHM ∠+∠=︒∠=∠, ∴90ABG BHM ∠+∠=︒. ∴90EMB ∠=︒. ∴BG CE ⊥.点拨:本题旋转的基本模型,充分体现了利用旋转全等解题,本题是以ABC △为基本,以其两边分别向外构造正方形,构成旋转全等(其中用到了8字倒角),和其类似的还可以构造正三角形以及正五边形.例4.如图,在等腰ABC △中,,AB AC ABC α=∠=,在四边形BDEC 中,DB =DE ,2BDE α∠=,M 为CE 的中点,连接AM 、DM .M EDCB A(1)在图中画出DEM △关于点M 成中心对称的图形; (2)求证:AM DM ⊥;(3)当α= 时,AM DM =. 解:(1)M FEDCB A(2)在(1)中连接AD 、AF .M FEDCB A由(1)中的中心对称可知,DEM FCM △≌△, ∴,,DE FC BD DM FM DEM FCM ===∠=∠, ∵2BDE α∠=,∴ABD ABC CBD ∠=∠+∠360BDE DEM BCE α=+︒-∠-∠-∠360DEM BCE α=︒--∠-∠.∵360360ACF ACE FCM BCE FCM α∠=︒-∠-∠=︒--∠-∠, ∴ABD ACF ∠=∠. ∵AB AC =, ∴ABD ACF =△△. ∴AD AF =. ∵DM FM =, ∴AM DM ⊥. (3)45α=︒.∵,,AB AC AD AF BAC DAF ==∠=∠, ∴ADF ABC α∠=∠=.若AM DM =,则ADM △为等腰直角三角形,即45ADM ∠=︒, ∴45α=︒点拨:本题中第(1)问已经作出了中心对称图形,所以利用中心对称证全等的思路很清晰.本题的难点是利用周角和四边形的内角和为的有关知识倒角.初中几何常用的倒角是平行线的三线八角、对顶角、等边对等角等.例5.已知:在△ABC 中,BC =a ,AC =b ,以AB 为边作等边三角形ABD . 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a =b =3,且∠ACB =60°,则CD = ;(2)如图2,当点D 与点C 位于直线AB 的同侧时,a =b =6,且∠ACB =90°,则CD = ;(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.D CBAA B CDABCD图1 图2 图3(1)(2)(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.联结AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.例6.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.ABCDMN AB CD M NN M 图3图2图1D CBA解:(1)=证明:∵AC 平分∠MAN ,∠MAN =120°, ∴∠CAB =∠CAD =60°, ∵∠ABC =∠ADC =90°, ∴∠ACB =∠ACD =30°, ∴12AB AD AC ==, ∴AB +AD =A C . (2)成立.证法一:如图,过点C 分别作AM ,AN 的垂线,垂足分别为E ,F ,ABCD M N F E∵AC 平分∠MAN , ∴CE =CF ,∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, ∴∠CDE =∠ABC , ∵∠CED =∠CFB =90°, ∴△CED ≌△CFB , ∴ED =FB ,∴AB +AD =AF +BF +AE -ED =AF +AE ,由(1)知AF +AE =AC , ∴AB +AD =AC ,证法二:如图,在AN 上截取AG =AC ,连接CG ,AB CD M NG∵∠CAB =60°,AG =AC ,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC , ∴△CBG ≌△CDA , ∴BG =AD ,∴AB +AD =AB +BG =AG =AC ;(3)①证明:由(2)知,ED =BF ,AE =AF ,ABC D M N FE在Rt △AFC 中,cos AFCAF AC∠=, 即cos2AFACα=, ∴cos2AF AC α=,∴AB +AD =AF +BF +AE -ED =AF +AE =2AF 2cos 2AC α=.把α=60°,代入得AB AD +=. ②2cos2α点拨:在第(2)小题中,由题意可知,60BCD ∠=︒,有60°角就可把有关图形旋转60°,所以我们作,CE AM CF AN ⊥⊥的实质,就是将CBF △以顶点C 为旋转中心顺时针旋转了60°,从而构造了全等三角形,使此题有了解题思路.例7.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明; (2)当α=30°时,求证:△AOE 1为直角三角形.AB CDE 1F 1O FE 图2图1O DC BA解:(1)AE 1=BF 1.证明:∵O 为正方形ABCD 的中心, ∴OA =OD ,∵OF =2OA ,OE =2OD , ∴OE =OF ,∵将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1 ∴OE 1=OF 1,∵∠F 1OB =∠E 1OA ,OA =OB , ∴△E 1AO ≌△F 1BO , ∴AE 1=BF 1;(2)证明:取OE 1中点G ,连接AG ,ABCDE 1F 1O G∵∠AOD =90°,α=30°, ∴∠E 1OA =90°-α=60°, ∵OE 1=2OA , ∴OA =OG ,∴∠E 1OA =∠AGO =∠OAG =60°,∴AG =GE 1,∴∠GAE 1=∠GE 1A =30°, ∴∠E 1AO =90°,∴△AOE 1为直角三角形.例8.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点.D'C'MFE DCBA(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD')与AB 交于一点E ,MC 即MC')同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQ D'C'M FE DCBA∵∠C =∠B =60°∴12CP BQ AB ==,CP +BQ =AB 又∵ADPQ 是矩形,AD =PQ ,故BC =2AD , 由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°,故△MDC 是等边三角形. (2)解:△AEF 的周长存在最小值,理由如下:连接AM ,由(1)平行四边形ABMD 是菱形,△MAB ,△MAD 和△MC'D'是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ).在△BME 与△AMF 中,BM =AM , ∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ).∴BE =AF , ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF . ∵MF 的最小值为点M 到ADEFAEF 的周长=AE +AF +EF =AB +EF , △AEF的周长的最小值为2. 跟踪训练1.如图,在△ABC 中,AB =AC ,90BAC ∠=︒,点D 是BC 上的任意一点,探究:22BD CD +与2AD 的关系,并证明你的结论.CBA2.如图,P 是等边△ABC 内一点,若AP =3,PB =4,PC =5,求APB ∠的度数.PCBA3.如图1,在ABCD □中,AE BC ⊥于点E ,E 恰为BC 的中点,tan 2B =.(1)求证:AD AE =;(2)如图2,点P 在线段BE 上,作EF DP ⊥于点F ,连结AF .求证:DF EF -=;(3)请你在图3中画图探究:当P 为线段EC 上任意一点(P 不与点E 重合)时,作EF 垂直直线DP ,垂足为点F ,连结AF .线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.图1EDCBA图2PF ABCDE图3ABCDE4.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE ′,连接E ′D ,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,直接写出你的猜想; (2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE =30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图3图2图1CE ADBCE AD BEDCBA5.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).6.在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连接EC ,取EC 的中点M ,连接DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,探索BM 、DM 的关系并给予证明;(2)如果将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCG PAB EF图2DAB EF CPG图1图2图1AEBMD CMEDB CA7.已知正方形ABCD 和等腰Rt △BEF ,EF =BE ,∠BEF =90°,按图1旋转,使点F 在BC 上,取DF 中点G ,连接EG 、CG .(1)探索EG 、CG 的关系,并说明理由;(2)将图1中△BEF 绕点B 顺时针旋转45°得图2,连接DF ,取DF 的中点G .问(1)中的结论是否成立?并说明理由.(3)将图1中△BEF 绕点B 转动任意度数(旋转角在0到90°之间)得图3,连接DF ,取DF 的中点G ,问(1)中的结论是否成立,请说明理由.图3BF DC GEABFDCGE AG F图2图1E DBCA中考前瞻将正方形ABCD 绕中心O 顺时针旋转角α得到正方形1111A B C D ,如图1所示. (1)当45α=︒时,如图2,若线段OA 与边11A D 的交点为E ,线段1OA 与AB 的交点为F ,可得下列结论成立①EOP FOP △≌△,②1PA PA =,试选择一个证明;(2)当090α︒<<︒时,第(1)小题的结论1PA PA =还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程,记正方形1111A B C D 与AB 边交于P 、Q 两点,探究POQ ∠的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出POQ 的度数.PQ PD 1AA 1BB 1CC 1DD 1C 1B 1A 1F E F图2图1EDBCA。
全等三角形(4种模型2种添加辅助线方法)1.题型一:一线三等角模型2.题型二:手拉手模型3.题型三:半角模型4.题型四:旋转模型5.题型五:倍长中线法6.题型六:截长补短法题型一一线三等角模型过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:题型二手拉手模型【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;12题型三半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
解题技巧:在图1中,△AEB 由△AND 旋转所得,可得△AEM ≌△AMN ,∴BM +DN =MN∠AMB =∠AMNAB =AH△CMN 的周长等于正方形周长的一半在图2中将△ABC 旋转至△BEF ,易得△BED ≌△BCD 同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转--证全等--得到相关结论.题型四旋转模型31一、奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题2二、费马点模型费马点就是到三角形的三个顶点距离之和最小的点.最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以掌握费马点等此类最值经典题是必不可少的.题型五倍长中线法三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等4在△ABC 中AD 是BC边中线延长AD 到E ,使DE =AD ,连接BE作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE延长MD 到N ,使DN =MD ,连接CD截长补短法截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a +b =c 时,用截长补短.1.补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2.截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
第十二讲全等三角形的常用辅助线作法【知识梳理】:1、找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
2、三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
3、常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
【专题精讲】:例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。
求证:BD=2CE。
思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。
解答过程:(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。
求证:ΔABC是等腰三角形。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。
2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。
解答过程:(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。
小学-数学-上册-打印版
运用画辅助线法和转化法解决问题
例三角形的3个角合起来能组成一个平角,五边形的5个角合起来能组成几个平角呢?六边形呢?
分析连接五边形某一顶点到与其不相邻的其他顶点的所有对角线,将五边形转化成几个三角形。
能转化成几个三角形,就能组成几个平角。
六边形也是如此。
解答五边形的5个角合起来能组成3个平角,六边形的6个角合起来能组成4个平角。
总结
1.连接n边形某一顶点到与其不相邻的其他顶点的所有对角线,可以将n边形分成(n-2)个三角形。
2.n边形的内角合起来能组成(n-2)个平角。
小学-数学-上册-打印版。
基本知识把图形G绕平面上的一个定点O旋转一个角度θ,得到图形G',这样的由图形G到G'变换叫做旋转变换,点O叫做旋转中心,θ叫做旋转角,G'叫做G的象;G叫做G'的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等;知识点睛中考要求第十二讲利用旋转添加辅助线②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件盯对集中,以便于诸条件的综合与推演.【例1】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA【巩固】(2008年全国初中数学联赛武汉CASIO 杯选拔赛)如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若BE =CD = .重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。
同时全等三角形的判定也是本章的重点,特别是几种判定方法,尤其是当在直角三角形中时,HL 的判定是整个直角三角形的重点重、难点例题精讲图6DECBA【例2】 (1997年安徽省初中数学竞赛题)在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化M N CBA【例3】 (通州区2009一模第25题)请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.图1ABCDE图2AB CDE【例4】 E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.CHFEDBA【巩固】如图,正方形ABCD的边长为1,点F在线段CD上运动,AE平分BAF∠交BC边于点E.⑴求证:AF DF BE=+.⑵设DF x=(01x≤≤),ADF∆与ABE∆的面积和S是否存在最大值?若存在,求出此时x的值及S.若不存在,请说明理由.FEDCBA【巩固】如图所示,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K、N分别是AB、BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.NKDCBA【例5】在等边ABC∆的两边AB,AC所在直线上分别有两点M,N,D为ABC∆外一点,且60MDN∠=︒,120BDC∠=︒,BD CD=,探究:当点M,N分别爱直线AB,AC上移动时,BM,NC,MN之间的数量关系及AMN∆的周长与等边ABC∆的周长L的关系.图③图②图①ABCD MNABCD MNN M D CBA⑴如图①,当点M ,N 在边AB ,AC 上,且DM =DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=__________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN =x ,则Q =_________(用x ,L 表示)【巩固】(1)如图25-1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;FED CBA(2) 如图25-2在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?不用证明.FEDCBA FEDCBA(3) 如图25-3在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【例6】(2005年四川省中考题)如图,等腰直角三角形ABC中,90B=︒∠,AB a=,O为AC中点,EO OF⊥.求证:BE BF+为定值.OBECFA【巩固】等腰直角三角形ABC,90ABC=︒∠,AB a=,O为AC中点,45EOF=︒∠,试猜想,BE、BF、EF三者的关系.OBECFA【例7】如图所示.正方形ABCD中,在边CD上任取一点Q,连AQ,过D作DP⊥AQ,交AQ于R,交BC于P,正方形对角线交点为O,连OP,OQ.求证:OP⊥OQ.QRPOD CBA【巩固】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DK G CFA【例8】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.D CBEFA【巩固】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积是16,求DP 的长.PDCBA【例9】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:AN BM =.MDNEC BFA【巩固】如图,B,C,E三点共线,且ABC∆与DCE∆是等边三角形,连结BD,AE分别交AC,DC于M,N点.求证:CM CN=.NMEDCBA【巩固】已知:如图,点C为线段AB上一点,ACM∆、CBN∆是等边三角形.求证:CF平分AFB∠.MDNEC BFA【巩固】如图,点C为线段AB上一点,ACM∆、CBN∆是等边三角形.请你证明:⑴AN BM=;⑵DE AB∥;⑶CF平分AFB∠.MDNEC BFA【例10】如图,点C为线段AB上一点,ACM∆、CBN∆是等边三角形,D是AN中点,E是BM中点,求证:CDE∆是等边三角形.M DNEC BA【巩固】(2008年全国初中数学竞赛海南区初赛)如下图,在线段AE同侧作两个等边三角形ABC∆和CDE∆(120ACE∠<°),点P与点M分别是线段BE和AD的中点,则CPM∆是( ) A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形PMBCDEA【例11】平面上三个正三角形ACF,ABD,BCE两两共只有一个顶点,求证:EF与CD平分.FEDBCA 【例12】已知:如图,ABC∆、CDE∆、EHK∆都是等边三角形,且A、D、K共线,AD DK=.求证:HBD∆也是等边三角形.EKHCDBA【例13】 (1997年安徽省竞赛题)如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =M EFHGD CBA【巩固】(2008年怀化市初中毕业学业考试试卷)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.G FE DCBA【巩固】以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE =BG ,且CE ⊥BG .OGFEDCBA【例14】 (北京市初二数学竞赛试题) 如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.EDCBA【巩固】(江苏省数学竞赛试题)如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2.求该五边形的面积. EDCB A【巩固】(希望杯全国数学邀请赛初二第二试试题) 在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=,连接AD .求证:AD 平分CDE ∠.E D C BA【例15】 (2008山东)在梯形ABCD 中,AB CD ∥,90A ∠=︒,2AB =,3BC =,1CD =,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.A BCD E【习题1】如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD +相家庭作业等的理由.EDC B A【习题2】(湖北省黄冈市2008年初中毕业生升学考试)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FE DC BA【习题3】如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.QP D CBA【习题4】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.HGNMC B A月测备选。