旋转辅助线
- 格式:doc
- 大小:162.00 KB
- 文档页数:5
例谈利用旋转变换作辅助线解题作者:邓朋伟来源:《科学大众·教师版》2014年第06期摘要:笔者在一次测验中发现,学生对于一道经典题的解答错误率极高。
笔者对学生的错误情况和原因进行了分析并反思自己的教学,从而产生了一些思考。
关键词:数学教学;几何题中图分类号:G633.6 文献标识码:A 文章编号:1006-3315(2014)06-011-002题目:已知正方形ABCD,E是BC上一点,F是CD上一点,且∠EAF=45°,求证EF=BE+DF一、错误分析1.基本思路未形成结论是一个不对称式,解决的思路是化成对称式。
方法有两种,①是将等式左边的EF分成两段分别证与等式右侧两段分别相等。
②是将等式右侧的两条线段合成一条线段与等式左侧相等。
解答中,学生选择①,在EF上取点G,使EG=BE。
然后认为一定能够能证明,麻醉自己,得证。
2.基本思维不能突破从心理学角度讲在原有图形上添设辅助线条件容易想到,拓展在图形外添设辅助线这一点很难突破,这也是学生为什么只是作AQLEF或EG=BE连AG的重要原因,基本思维学生有待突破。
二、教学反思上述出现的问题,对教师提出了一定的要求。
笔者在让学生突破上述两个问题时,除了加强对证明的思路的培养外,更要加强学生解决问题途径的拓展及思路的引导。
如何添设辅助线在此类问题中感觉到尤为的重要。
下面通过一些例题,谈谈如何利用旋转变换作辅助线解决此类问题。
通过添设适当的辅助线,将图形中分散、远离的元素,通过变换和转化,使它们相对集中、聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。
旋转变换就是当图形具有邻边相等这一特征时,可以把图形的某部分,绕相等邻边的公共端点旋转到另一位置的引辅助线方法。
旋转变换主要用途是把分散元素通过旋转集中起来,从而为证题创造必要的条件。
旋转变换经常用在等腰三角形、等边三角形及正方形中。
1.用旋转变换添设辅助线在等腰三角形中应用例1:已知,如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上任一点。
板块 考试要求A 级要求B 级要求C 级要求全等三角形的性质及判定会识别全等三角形掌握全等三角形的概念、判定和性质,会用全等三角形的性质和判定解决简单问题会运用全等三角形的性质和判定解决有关问题基本知识把图形G 绕平面上的一个定点O 旋转一个角度θ,得到图形G ',这样的由图形G 到G '变换叫做旋转变换,点O 叫做旋转中心,θ叫做旋转角,G '叫做G 的象;G 叫做G '的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等; ②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件盯对集中,以便于诸条件的综合与推演.重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。
同时全等三角形的判定也是本章的重点,特别是几种判定方法,尤其是当在直角三角形中时,HL 的判定是整个直角三角形的重点难点:本节的难点是全等三角形性质和判定定理的灵活应用。
为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论弄清楚,哪几个是条件,决定哪个结论,如何用数学符号表示,即书写格式,都要在讲练中反复强化重、难点知识点睛中考要求第十二讲利用旋转添加辅助线【例1】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA【解析】 ∵ABC ∆是等边三角形,∴60ACB ∠=︒,AC BC =.∴60BCD DCA ∠+∠=︒,同理60ACE DCA ∠+∠=︒,DC EC =.∴BCD ACE ∠=∠ 在BCD ∆与ACE ∆ 中, BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩∴BCD ACE ∆∆≌,∴BD AE =.【巩固】(2008年全国初中数学联赛武汉CASIO 杯选拔赛)如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若2BE =,则CD = .图6DECBA【解析】 31-.易知CDB ∆≌CDA ∆≌EDB ∆,从而2BC AC BE ===,2AB =, 由CDA CDB ∠=∠知CD 是ABD ∆一条高的一部分,不难算出答案为31-.【例2】 (1997年安徽省初中数学竞赛题)在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化MNCBAMDNCBA【解析】 如图,将CBN ∆绕点C 顺时针旋转90︒,得CAD ∆,连结MD ,则AD BN n ==,CD CN =,ACD BCN =∠∠,∴MCD ACM ACD =+∠∠∠ACM BCN =∠+∠904545MCN =-==∠. ∴MDC MNC ∆∆≌,∴MD MN x ==又易得454590DAM ∠=+︒=,∴在Rt AMD ∆中,有222m n x +=,故应选(B )例题精讲【例3】 (通州区2009一模第25题)请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.图1ABCDE图2AB CDE【解析】 ⑴ 222DE BD EC =+证明:根据AEC ∆绕点A 顺时针旋转90︒得到ABE '∆ ∴AEC ABE '∆∆≌∴BE EC '=,AE AE '=,C ABE '∠=∠,EAC E AB '∠=∠ 在Rt ABC ∆中 ∵AB AC =∴45ABC ACB ∠=∠=︒ ∴90ABC ABE '∠+∠=︒ 即90E BD '∠=︒∴222E B BD E D ''+= 又∵45DAE ∠=︒∴45BAD EAC ∠+∠=︒ ∴45E AB BAD '∠+∠=︒ 即45E AD '∠=︒∴AED AED '∆∆≌ ∴DE DE '=∴222DE BD EC =+E'EDCBAFEDCB A⑵ 关系式222DE BD EC =+仍然成立证明:将ADB ∆沿直线AD 对折,得AFD ∆,连FE ∴AFD ABD ∆∆≌∴AF AB =,FD DB =FAD BAD ∠=∠,AFD ABD ∠=∠ 又∵AB AC =,∴AF AC =∵45FAE FAD DAE FAD ∠=∠+∠=∠+︒()9045EAC BAC BAE DAE DAB DAB ∠=∠-∠=︒-∠-∠=︒+∠ ∴FAE EAC ∠=∠ 又∵AE AE = ∴AFE ACE ∆∆≌∴FE EC =,45AFE ACE ∠=∠=︒ 180135AFD ABD ABC ∠=∠=︒-∠=︒∴1354590DFE AFD AFE ∠=∠-∠=︒-︒=︒ ∴在Rt DFE ∆中222DF FE DE +=即222DE BD EC =+【例4】 E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.CHF ED BACH FEGD BA【解析】 延长CB 至G ,使BG DF =,连结AG ,易证ABG ADF △≌△,BAG DAF =∠∠,AG AF =.再证AEG AEF △≌△,全等三角形的对应高相等(利用三角形全等可证得),则有AH AB =.【巩固】如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分BAF ∠交BC 边于点E .⑴求证:AF DF BE =+.⑵设DF x =(01x ≤≤),ADF ∆与ABE ∆的面积和S 是否存在最大值?若存在,求出此时x 的值及S .若不存在,请说明理由.FEDC BAGABC DEF【解析】 ⑴ 证明: 如图,延长CB 至点G ,使得BG DF =,连结AG .因为ABCD 是正方形,所以在Rt ADF ∆和Rt ABG ∆中,AD AB =, 90ADF ABG ∠=∠=°,DF BG =. ∴Rt Rt (SAS)ADF ABG ∆∆≌, ∴AF AG =,DAF BAG ∠=∠. 又 ∵ AE 是BAF ∠的平分线. ∴EAF BAE ∠=∠,∴DAF EAF BAG BAE ∠+∠=∠+∠. 即EAD GAE ∠=∠.∵AD BC ∥,∴GEA EAD ∠=∠, ∴GEA GAE ∠=∠,∴AG GE =. 即AG BG BE =+.∴AF BG BE =+,得证.⑵ ADF ABE S S S ∆∆=+1122DF AD BE AB =⋅+⋅.∵1AD AB ==,∴()12S DF BE =+由⑴知,AF DF BE =+,所以12S AF =.在Rt ADF ∆中,1AD =,DF x =,∴AF =∴S 由上式可知,当2x 达到最大值时,S 最大.而01x ≤≤, 所以,当1x =时,S.【巩固】如图所示,在四边形ABCD 中,AB =BC ,∠A =∠C =90°,∠B =135°,K 、N 分别是AB 、BC 上的点,若△BKN 的周长为AB 的2倍,求∠KDN 的度数.N K DCB AFNKEDCB A【解析】 延长BC 至F ,使得CF =AB ,在CF 上取点E ,使得CE =AK ,连接BD 、DE 、DF .∵AB ⊥AD ,BC ⊥CD ,AB =BC ∴Rt △ADB ≌Rt △CDB ∴AD =CD∵AD =CD ,AK =CE ,AB ⊥AD ,BC ⊥CD ∴△ADK ≌△CDE ∴DK =DE∵BK +BN +KN =2AB ,BF =BN +EF +EN =2AB ,EF =CF -CE =AB -AK =BK ∴KN =EN∴△NDK ≌△NDE∴∠KDN =∠EDN =∠CDE +∠NDC =∠CDE +∠ADK∵∠ABC =135° ∴∠KDN =12(180°-135°)=22.5° 点评:本题的辅助线可以看作是将△ADB 割下来,放到△CDF 处,从而将不规则的图形转化为规则的图形,进而利用线段之间的等量关系求解.【例5】 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M ,N 分别在直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长与等边ABC ∆的周长L 的关系.图③图②图①ABCD MNABCD MNN M D CBA⑴如图①,当点M ,N 在边AB ,AC 上,且DM =DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=__________⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN =x ,则Q =_________(用x ,L 表示)【解析】 B M +NC =MN ;32=LQ EABC DM N(2)猜想:仍然成立证明:如图,延长AC 至E ,使CE =BM ,连接DE ,120BD CD BDC =∠=︒且, 30DBC DCB ∴∠=∠=︒由ABC ∆是等边三角形,90MBD NCD ∴∠=∠=︒,()MBD ECD SAS ∴∆∆≌ ,DM DE BDM CDE ∴=∠=∠,60EDN BDC MDN ∴∠=∠-∠=︒ 在MDN ∆与EDN ∆中 DM DE MDN EDN DN DN =⎧⎪∠=⎨⎪=⎩()MDN EDN SAS ∴∆∆≌ MN NE NC BM ∴==+AMN ∆的周长Q AM AN MN =++=()()AM BM AN NC +++=2AB AC AB += 而等边ABC ∆的周长3L AB = 23Q L ∴= (3)223x L +【巩固】(1)如图25-1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;FED CBA(2) 如图25-2在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?不用证明. FED CBAF EDCBA(3) 如图25-3在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.GFED CBAGFEDCBA【解析】 证明:延长EB 到G ,使BG =DF ,联结AG .∵∠ABG =∠ABC =∠D =90°, AB =AD , ∴△ABG ≌△ADF .∴AG =AF , ∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =12∠BAD .∴∠GAE =∠EAF . 又AE =AE ,∴△AEG ≌△AEF . ∴EG =EF . ∵EG =BE +BG . ∴EF = BE +FD(2) (1)中的结论EF = BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE -FD 证明:在BE 上截取BG , 使BG =DF ,连接AG . ∵∠B +∠ADC =180°, ∠ADF +∠ADC =180°, ∴∠B =∠ADF . ∵AB =AD ,∴△ABG ≌△ADF .∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD .∴∠GAE =∠EAF . ∵AE =AE ,∴△AEG ≌△AEF . ∴EG =EF ∵EG =BE -BG【例6】 (2005年四川省中考题)如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.OBEC F A 4321OB ECF A【解析】 连结OB 由上可知,1290+∠=︒∠,2390∠+=∠,13∠=∠,而445C =∠=︒∠,OB OC =.∴OBE OCF ∆∆≌,∴BE FC =,∴BE BF CF BF BC a +=+==.【巩固】等腰直角三角形ABC ,90ABC =︒∠,AB a =,O 为AC 中点,45EOF =︒∠,试猜想,BE 、BF 、EF 三者的关系.OBE C FA OB EG C F A【解析】 如图,过点O 作OG OE ⊥,交BC 于G ,连结OB ,易知OGC OBE ∆∆≌,∵BE CG =,又∵EO OG =,45EOF FOG =∠=∠,OF OF =, ∴OEF OGF ∆∆≌,∴EF FG =∴BE BF EF CG BF FG AB a ++=++==又∵90B =︒∠,∴BE 、BF 、EF 又存在另一关系式222BF BE EF +=【例7】 如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP ⊥AQ ,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP ⊥OQ .QRPOD CBA【解析】 欲证OP ⊥OQ ,即证明∠COP +∠COQ =90°.然而,∠COQ +∠QOD =90°,因此只需证明∠COP =∠DOQ 即可.这归结为证明△COP ≌△DOQ ,又归结为证明CP =DQ ,最后,再归结为证明△ADQ ≌△DCP 的问题.证 在正方形ABCD 中,因为AQ ⊥DP ,所以,在Rt △ADQ 与Rt △RDQ 中有∠RDQ =∠QAD .所以,在Rt △ADQ 与Rt △DCP 中有AD =DC ,∠ADQ =∠DCP =90°,∠QAD =∠PDC , 所以△ADQ ≌△DCP (ASA ),DQ =CP .又在△DOQ 与△COP 中,DO =CO ,∠ODQ =∠OCP =45°, 所以△DOQ ≌△COP (SAS ),∠DOQ =∠COP .从而∠POQ =∠COP +∠COQ =∠DOQ +∠COQ =∠COD =90°, 即OP ⊥OQ .说明 (1)利用特殊图形的特殊性质,常可发现有用的条件,如正方形对角线互相垂直,对角线与边成45°角,及OA =OB =OC =OD 等均在推证全等三角形中被用到.(2)两个三角形的全等与对应元素相等,这两者互为因果,这是利用全等三角形证明问题的基本技巧.【巩固】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DK G CFA【解析】 正方形ABCD 中,1245∠==︒∠,OA OB =而3490∠+=︒∠,4590∠+=︒∠ ∴35=∠∠,∴AOE BOF ∆∆≌∴AE BF =,∴AE FC BF FC BC AB +=+==【例8】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.D CBEFA【解析】 证明:因为四边形ABCD 是正方形,所以AB AD =,90BAD ADE ABF ︒∠=∠=∠=.因为EA AF ⊥,所以90BAF BAE BAE DAE ︒∠+∠=∠+∠=,所以BAF DAE ∠=∠,故Rt ABF ∆≌Rt ADE ∆,故DE BF =.【巩固】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积是16,求DP 的长.PDC BAABCDEP【解析】 如图,过点D 作DE DP ⊥,延长BC 交DE 于点E ,容易证得ADP CDE ∆∆≌(实际上就是把ADP∆逆时针旋转90︒,得到正方形DPBE )∵正方形DPBE 的面积等于四边形ABCD 面积为16,∴4DP =.【例9】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:AN BM =.M D NEC BFA【解析】 ∵ACM ∆、CBN ∆是等边三角形,∴MC AC =,CN CB =,ACN MCB ∠=∠ ∴ACN MCB ∆∆≌,∴AN BM =【点评】此题放在例题之前回忆,此题是旋转中的基本图形.【巩固】如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC于M ,N 点.求证:CM CN =.NMEDCBA【解析】 ∵ABC ∆与DCE ∆都是等边三角形∴BC AC =,CD CE =及60ACB DCE ∠=∠=︒ ∵B ,C ,E 三点共线∴180BCD DCE ∠+∠=︒,180BCA ACE ∠+∠=︒ ∴120BCD ACE ∠=∠=︒ 在BCD ∆与ACE ∆中 BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩∴BCD ACE ∆∆≌, ∴CAN CBM ∠=∠∵120BCD ACE ∠=∠=︒,60BCM NCE ∠=∠=︒ ∴60ACD ∠=︒在BCM ∆与ACN ∆中 60BC AC BCM ACN CBM CAN =⎧⎪∠==︒⎨⎪∠=∠⎩∴BCM ACN ∆∆≌,∴CM CN =.【巩固】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:CF 平分AFB ∠.M D NEC BFAGM H D NEC BF A【解析】 过点C 作CG AN ⊥于G ,CH BM ⊥于H ,由ACN MCB ∆∆≌,利用AAS 进而再证BCH NCD ∆∆≌,可得到CG CH =,故CF 平分AFB ∠.【巩固】如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.请你证明: ⑴AN BM =; ⑵DE AB ∥;⑶CF 平分AFB ∠.M D NEC BFA【解析】 此图是旋转中的基本图形.其中蕴含了许多等量关系.60MCN ∠=与三角形各内角相等,及平行线所形成的内错角及同位角相等; 全等三角形推导出来的对应角相等… 推到而得的:AFC BFC ∠=∠;AN BM =,CD CE =,AD ME =,ND BE =; AM CN ∥,CM BN ∥;DE AB ∥ACN MCB ∆∆≌,ADC MCE ∆∆≌,NDC BEC ∆∆≌; DEC ∆为等边三角形.⑴∵ACM ∆、CBN ∆是等边三角形,∴MC AC =,CN CB =,ACN MCB ∠=∠ ∴ACN MCB ∆∆≌,∴AN BM =⑵由ACN MCB ∆∆≌易推得NDC BEC ∆∆≌,所以CD CE =,又60MCN ∠=, 进而可得DEC ∆为等边三角形.易得DE AB ∥.⑶过点C 作CG AN ⊥于G ,CH BM ⊥于H ,由ACN MCB ∆∆≌,利用AAS 进而再证BCH NCD ∆∆≌,可得AFC BFC ∠=∠,故CF 平分AFB ∠.【例10】 如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.M DNECBA【解析】 ∵ACN MCB ∆∆≌,∴AN BM =,ABM ANC ∠=∠ 又∵D 、E 分别是AN 、BM 的中点,∴BCE NCD ∆∆≌,∴CE CD =,BCE NCD ∠=∠∴60DCE NCD NCE BCE NCE NCB ∠=∠+∠=∠+∠=∠= ∴CDE ∆是等边三角形【巩固】(2008年全国初中数学竞赛海南区初赛)如下图,在线段AE 同侧作两个等边三角形ABC ∆和CDE ∆(120ACE ∠<°),点P 与点M 分别是线段BE 和AD 的中点,则CPM ∆是( )PMBC DEAA .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形【解析】 易得ACD BCE ∆∆≌.所以BCE ∆可以看成是ACD ∆绕着点C 顺时针旋转60︒而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP CM =且,60PCM ∠=°,故CPM ∆是等边三角形,选C .【例11】 平面上三个正三角形ACF ,ABD ,BCE 两两共只有一个顶点,求证:EF 与CD 互相平分.FEDBCA【解析】 连接DE 与DF∵DBA EBC ∠=∠,BAD CAF ∠=∠ ∴DBE ABC ∠=∠,BAC DAF ∠=∠ ∴在DBE ∆与ABC ∆中 DB AB DBE ABC BE BC =⎧⎪∠=∠⎨⎪=⎩∴(SAS)DBE ABC ∆∆≌ ∴DE CA FC == 在D FA ∆与BCA ∆中 DA BA DAF BAC AF AC =⎧⎪∠=∠⎨⎪=⎩∴(SAS)DFA BCA ∆∆≌ ∴DF BC EC ==∴DECF 为平行四边形, ∴EF ,CD 互相平分.【例12】 已知:如图,ABC ∆、CDE ∆、EHK ∆都是等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD ∆也是等边三角形.EKHCDBAMAB DCH KE【解析】 连结EB ,∵CE CD =,CE EA =,BE AD =,所以BE AD =,并且BE 与AD 的夹角为60︒, 延长EB 交AK 于M ,则360300EBH BHD HDE BED HDM MDE MED ∠=︒-∠-∠-∠=︒-∠-∠-∠ ()180********HDM MDE MED HDM HDK =︒-∠+︒-︒-∠-∠=︒-∠=.又因为HK AD BE ==,BH HD =. 所以BEH DKH ∆∆≌. 所以HK HE =,EHD EHD DHK BHE ∠=∠+∠=∠.【例13】 (1997年安徽省竞赛题)如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =M EFHGD CBA【解析】 证明△ABH ≌△AFC ;(2)作P MD FP 于⊥,Q MD HQ 于⊥,先证△AFP ≌△BAD ,△ACD ≌△HAQ ,再证△FPM ≌△HQM【巩固】(2008年怀化市初中毕业学业考试试卷)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.G FE DCBA【解析】 ∵ADC EDG ∠=∠∴CDG ADE ∠=∠ 在CDG ∆和ADE ∆中 CD AD CDG ADE DG DE =⎧⎪∠=∠⎨⎪=⎩∴CDG ADE ∆∆≌ ∴AE CG =【巩固】以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE =BG ,且CE ⊥BG .OGFEDCBA 【解析】 易证△AEC ≌△ABG ,故∠ACE =∠AGB ,又AC ⊥AG ,∠AOG =∠BOC ,故CE ⊥BG .【例14】 (北京市初二数学竞赛试题) 如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.EDCBAF EDCBA【解析】 我们马上就会想到连接AC 、AD ,因为其中有两个直角三角形,但又发现直接求各三角形的面积并不容易,至此思路中断. 我们回到已知条件中去,注意到1BC DE +=,这一条件应当如何利用?联想到在证明线段相等时我们常用的“截长补短法”,那么可否把BC 拼接到DE 的一端且使EF BC =呢(如图所示)?据此,连接AF ,则发现ABC ∆≌AEF ∆,且1FD =,AF AC =,AE AB =,ADF ∆是底、高各为1的三角形,其面积为12,而ACD ∆与AFD ∆全等,从而可知此五边形的面积为1.【巩固】(江苏省数学竞赛试题)如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2.求该五边形的面积.EDCBAFEDCBA【解析】 延长CB 至F ,使得BF =DE ,连接AF 、AC 、AD .∵∠ABC =∠AED =90°,AB =AE ,BF =DE ∴△ABF ≌△AED ∴AF =AD∵CD = BC +DE =BC +BF =CF ,AC =AC ∴△ACF ≌△ACD ∵AB =CD =CF =2∴该五边形的面积为16.点评:本题可看作将五边形ABCDE 分割成三块,通过割补重新组合成一个规则的图形.【巩固】(希望杯全国数学邀请赛初二第二试试题) 在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=,连接AD .求证:AD 平分CDE ∠.EDCBAFEDCBA【解析】 连接AC .由于AB AE =,180ABC AED ∠+∠=.我们以A 为中心,将ABC ∆逆时针旋转到AEF ∆的位置.因AB AE =,所以B 点与E 点重合,而180AEF AED ABC AED ∠+∠=∠+∠=,所以D 、E 、F 在一条直线上,C 点旋转后落在点F 的位置,且AF AC =,EF BC =. 所以DF DE EF DE BC CD =+=+=. 在ACD ∆与AFD ∆中,因为AC AF =,CD FD =,AD AD =, 故ACD ∆≌AFD ∆,因此ADC ADF ∠=∠,即AD 平分CDE ∠.【例15】 (2008山东)在梯形ABCD 中,AB CD ∥,90A ∠=︒,2AB =,3BC =,1CD =,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.ABCDE FE DCBA【解析】 延长BE 交CD 延长线于点F .E ∵是AD 中点,DE AE =∴,AB CD ∵∥,90A ∠=︒,90EDF EAB ∠=∠=︒∴,ABE DFE ∠=∠ 在AEB ∆和FED ∆中, ABE DFE EAB EDF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∵ AEB FED ∆∆∴≌,FE BE =∴又2,3,1AB BC CD ===∵,CF BC =∴ 在FCE ∆和BCE ∆中, FC BC CE CE FE BE =⎧⎪=⎨⎪=⎩∵ FCE BCE ∆∆∴≌,CE EB ⊥∴【习题1】如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD+相等的理由.EDCBA【解析】 ∵AC AB =,CAE BAD ∠=∠,AE AD =∴AEC ADB ∆∆≌ ∴CE BD =又∵BD BC CD AC CD =+=+ ∴CE AC CD =+【习题2】(湖北省黄冈市2008年初中毕业生升学考试)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【解析】 ∵ADC EDF ∠=∠∴ADE CDF ∠=∠ 在ADE ∆和CDF ∆中 DAE DCF AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ADE CDF ∆∆≌ ∴DE DF =【习题3】如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.Q P DCBAQP FDCBA【解析】 把△CDQ 绕点C 旋转90°到△CBF 的位置,CQ =CF .∵AQ +AP +QP =2,家庭作业又AQ +QD +AP +PB =2,∴QD +BP =QP .又DQ =BF ,∴PQ =PF .∴QCP FCP ∆∆≌.∴∠QCP =∠FCP . 又∵∠QCF =90°,∴∠PCQ =45°.【习题4】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.HG NM C BA【解析】 由ACN MCB ∆∆≌,利用AAS 进而再证BCH NCD ∆∆≌,可得到CG CH =.【备选1】(北京市数学竞赛试题,天津市数学竞赛试题) 如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA NM ED C BA【解析】 如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=,60MDN ∠=,所以60BDM NDC ∠+∠=. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=.在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=,D M D E =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【备选2】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.月测备选APMCQ BAP MC QB【解析】 连接CM .因为AC BC =且90ACB ∠=,所以45B ∠=.因为M 是AB 的中点,所以90AMC BMC ∠=∠=,45ACM ∠=且CM BM =,则ACM B ∠=∠. 因为MQ MP ⊥,所以90QMC CMP PMB ∠=-∠=∠,所以QCM PBM ∆∆≌, 所以QM PM =.因此MPQ ∆是等腰直角三角形,在P 的运动过程中形状不变. MPQ ∆的面积与边MP 的大小有关.当点P 从B 出发到BC 中点时,面积由大变小; 当P 是BC 中点时,三角形的面积最小;P 继续向点C 运动时,面积又由小变大.【备选3】如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.FED CBA FEDMCBA【解析】 延长CB 至M ,使得BM D F =,连接AM .易证得:ABM ADF ∆∆≌,从而可得:AFD BAF EAF BAE BAM BAE EAM ∠=∠=∠+∠=∠+∠=∠, AM B EAM ∠=∠,故AE EM BE BM BE DF ==+=+.【备选4】等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA【解析】 由条件1AE CF +=,且1DF CF +=,得AE DF =.因为AB DB =,60A BDF ∠=∠=,所以ABE DBF ∆∆≌, 因此BE BF =,ABE DBF ∠=∠.因为60EBF EBD DBF EBD ABE ABD ∠=∠+∠=∠+∠=∠=, 所以BEF ∆为等边三角形.。
三角形全等辅助线————旋转与平移共同的特点:都有长度相等,且有一端点重合的线段中点旋转:A'CB等腰直角三角形, 等边三角形旋转CBAEBA正方形旋转FDCFEDCBA【精选例题】旋转中点类【例1】以ABC ∆的两边AB 、AC 为腰分别向外作等腰R t A B D ∆和等腰R t A C E ∆,90BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图①当ABC ∆为直角三角形时,AM 与DE 的位置关系是;线段AM 与DE 的数量关系是;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<< 后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.【例2】(顺义区2009一模第25题)已知:在Rt ABC ∆中,AB BC =,在Rt ADE ∆中,AD DE =,连结EC ,取EC 的中点M ,连结DM 和BM .⑴若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,探索BM 、DM 的关系并给予证明;图1ABCDEM⑵如果将图①中的ADE ∆绕点A 逆时针旋转小于45︒的角,如图②,那么⑴中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.图2MEDCBA【例3】在四边形ABCD 中,设M , N 分别为CD , AB 的中点,求证(12MN AD BC +≤,当且仅当AD BC ∥时等号成立.N MDCBA【例4】如图所示,在ABC ∆的AB 边上取两点E 、F ,使AE BF =,连接CE 、CF ,求证:AC BC +>EC FC +.CBA O E F对角互补类【例5】如图,90ABC ∠=︒,BD 为ABC ∠的角平分线,将一三角板的直角顶点固定在点D ,另外两边分别交AB ,BC 于E ,F 两点,证明:DE DF =EDAB C【例6】如图,120ABC ∠=︒,BD 为ABC ∠的角平分线,60DEF ∠=︒且角的两边分别交AB ,BC 于E ,F 两点,证明:DE DF =ABCD【例7】如图,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积为18,求DP 的长.PDCBA【例8】直角三角形ABC 中9068A AB BC ∠=︒==,,;P 为BC 的中点,ABC ∆绕着点P 逆时针旋转90︒到DEF ∆,求重叠部分PQKR 的面积.【例9】已知,在四边形ABCD 中,90ABC ADC ∠=∠=︒,对角线AC 平分BAD ∠,在DA 的延长线上任取一点E ,连接EC ,作12ECF BCD ∠=∠,使CF 与AB 的延长线交于F ,连结EF ,请画出完整图形,探究:线段BF 、EF 、ED 之间具有怎样的数量关系,并说明理由DCBA【例10】(1)如图1,四边形ABCD 中,AB CB =,60ABC ∠=︒,120ADC ∠=︒,请你猜想线段DA 、DC 之和与线段BD 的数量关系,并证明你的结论;图1DBA(2)如图2,四边形ABCD 中,AB BC =,60ABC ∠=︒,若点P 为四边形ABCD 内一点,且120APD ∠=︒,请你猜想线段PA 、PD 、PC 之和与线段BD 的数量关系,并证明你的结论.P图2DC BA平移【例11】如图所示,在ABC ∆中,90B ∠=︒,M 为AB 上的一点,且AM BC =;N 为BC 上的一点,且CN BM =.连接AN 、CM 交于点P ,求证:45APM ∠=︒.PN M CBA【例12】 (07年北京中考如图,已知ABC ∆⑴请你在BC 边上分别取两点D 、E (BC 的中点除外,连结AD 、AE ,写出使此图中只存..在两对...面积相等的三角形的相应条件,并表示出面积相等的三角形;CB A⑵请你根据使⑴成立的相应条件,证明AB AC AD AE +>+.⑴DE CB A【例13】如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E )B C (F ) PlllB FC 图14-1图14-2图14-3平移加旋转【例14】如图,已知E 是正方形ABCD 的边AB 的中点,∠B 的外角∠CBG 的平分线BF 交DE 的垂线EF于F 。
全等三角形常见五种辅助线添法专训【目录】辅助线添法一 倍长中线法辅助线添法二 截长补短法辅助线添法三 旋转法辅助线添法四 作平行线法辅助线添法五 作垂线法【经典例题一倍长中线法】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】1(2023春·吉林·八年级校考阶段练习)【阅读理解】数学兴趣小组活动时,老师提出如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明提出了如下解决方法,延长线段AD至点E,使DE=AD,连接BE.请根据小明的方法回答下列问题.(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.HL(2)探究得出AD的取值范围.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【问题解决】(3)如图2,在△ABC中,CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【变式训练】1(2022秋·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≅△CAD用到的判定定理是:(用字母表示);(2)AD的取值范围是;(3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB= AC.2(2023·江苏·八年级假期作业)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.3(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明的解法如下:延长AD 到点E ,使DE =AD ,连接CE .在△ABD 与△ECD 中BD =DC∠ADB =∠EDCAD =DE∴△ABD ≅△ECD (SAS )∴AB =.又∵在△AEC 中EC -AC <AE <EC +AC ,而AB =EC =7,AC =5,∴<AE <.又∵AE =2AD .∴<AD <.【探索应用】如图②,AB ∥CD ,AB =25,CD =8,点E 为BC 的中点,∠DFE =∠BAE ,求DF 的长为.(直接写答案)【应用拓展】如图③,∠BAC =60°,∠CDE =120°,AB =AC ,DC =DE ,连接BE ,P 为BE 的中点,求证:AP ⊥DP .【经典例题二截长补短法】【模型分析】截长补短的方法适用于求证线段的和差倍分关系.截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等).【模型图示】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段.例:如图,求证BE+DC=AD方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE (2)补短:将短线段延长,证与长线段相等例:如图,求证BE+DC=AD方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE1(2023·江苏·八年级假期作业)把两个全等的直角三角形的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,∠MDN两边分别交AC、BC于点M、N,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【变式训练】1(2023·江苏·八年级假期作业)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=6,CE=4,求AC的长.2(2023·江苏·八年级假期作业)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB,AC,CD之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.(2)如图③,当∠ACB≠90°,AD为△ABC的外角平分线时,线段AB,AC,CD之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.3(2023·江苏·八年级假期作业)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=12∠BAD.(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.【经典例题三旋转法】【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等.注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用.【模型图示】例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN方法:旋转△ABM至△ACF处,证NE=MN1(2022秋·湖北孝感·八年级统考期中)已知:△ABC≌△DEC,∠ACB=90°,∠B=32°.(1)如图1当点D在AB上,∠ACD.(2)如图2猜想△BDC与△ACE的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)【变式训练】1(2023春·全国·八年级专题练习)(1)如图①,在正方形ABCD中,E、F分别是BC、DC上的点,且∠EAF=45°,连接EF,探究BE、DF、EF之间的数量关系,并说明理由;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、DC上的点,且∠EAF= 1∠BAD,此时(1)中的结论是否仍然成立?请说明理由.22(2021秋·天津和平·八年级校考期中)在△BAC中,∠BAC=90°,AB=AC,AE是过A的一条直线,BD⊥AE于点D,CE⊥AE于E,(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明;(3)若直AE绕点A旋转到图(3)的位置,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.3(2021秋·河南周口·八年级统考期末)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【经典例题四作平行线法】2(2022秋·江苏·八年级专题练习)如图所示:△ABC是等边三角形,D、E分别是AB及AC延长线上的一点,且BD=CE,连接DE交BC于点M.求让:MD=ME【变式训练】4(2022秋·江苏·八年级专题练习)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA =CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.5(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且∠BAE=∠CDE,求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.图(1):延长DE到F使得EF=DE图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F图(3):过C点作CF∥AB交DE的延长线于F.6(2023春·全国·七年级专题练习)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.【经典例题五作垂直法】1(2022秋·湖北武汉·八年级统考期中)我们定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①直接写出∠E与∠A的数量关系;②连接AE,猜想∠BAE与∠CAE的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若已知DE=DC =AD,求证:∠BEC是△ABC中∠BAC的遥望角.【变式训练】1(2022秋·八年级课时练习)如图1,已知四边形ABCD,连接AC,其中AD⊥AC,BC⊥AC,AC =BC,延长CA到点E,使得AE=AD,点F为AB上一点,连接FE、FD,FD交AC于点G.(1)求证:△EAF≌△DAF;(2)如图2,连接CF,若EF=FC,求∠DCF的度数.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.【重难点训练】4(2023·江苏·八年级假期作业)如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB-AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5(2023·江苏·八年级假期作业)如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.①请证明△CED≌△ABD;②中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.6(2023春·全国·七年级专题练习)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.7(2023·江苏·八年级假期作业)(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.8(2023·江苏·八年级假期作业)课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC,求证:∠ABC=2∠ACB,小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=,连接DF请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD=AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题(书写证明过程);(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.9(2023春·江苏·八年级专题练习)如图,在锐角ΔABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.10(2023·江苏·八年级假期作业)问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.11(2023·全国·九年级专题练习)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.12(2023春·全国·七年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)13(2022秋·八年级课时练习)如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,(1)求证:DP=DQ;(2)过P作PE⊥AC于E,若BC=4,求DE的长.14(2022秋·全国·八年级专题练习)如图,在△ABC中,AC=BC,AD平分∠CAB.(1)如图1,若ACB=90°,求证:AB=AC+CD;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图3,若∠ACB=100°,求证:AB=AD+CD.15(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF ,则EF =BE +DF ,试说明理由.证明:延长CD 到G ,使DG =BE ,在△ABE 与△ADG 中,AB =AD∠B =∠ADG =90°BE =DG∴△ABE ≌△ADG 理由:(SAS )进而证出:△AFE ≌___________,理由:(__________)进而得EF =BE +DF .【变式探究】如图,四边形ABCD 中,AB =AD ,∠BAD =90°点E 、F 分别在边BC 、CD 上,∠EAF =45°.若∠B 、∠D 都不是直角,则当∠B 与∠D 满足等量关系________________时,仍有EF =BE +DF .请证明你的猜想.【拓展延伸】如图,若AB =AD ,∠BAD ≠90°,∠EAF ≠45°,但∠EAF =12∠BAD ,∠B =∠D =90°,连接EF ,请直接写出EF 、BE 、DF 之间的数量关系.。
B C E D A45 F BC H ED A F B C D FE A 全等三角形的综合运用(2)【知识要点】一、全等三角形、等腰三角形的综合运用;二、特殊的构造手法:半角旋转、截长补短.构造专题二:半角旋转问题1.如图1,正方形ABCD 中,E 、F 分别为BC 、CD 上的两点,且∠EAF =45°.(1)求证:BE +DF=EF ;(若正方形的连长为a ,则△CEF 的周长等于2a )(2)求证:AE 平分∠BEF ;AF 平分∠DFE ;(3)作AH ⊥EF ,求证:AH =AB .(4)如图2,若E 在CB 的延长线上,F 在DC 的延长线上,且∠EAF =45°,试探索线段BE 、DF 与线段EF 的数量关系.2.如图,正方形ABCD 中,E 为BC 边上一点,沿直线AE 折叠正方形ABCD ,使点B 落在形内的点H ,延长EH 交CD 于点F.(1)求证:∠EAF =45°;(2)求证:BE +DF =EF ;(3)求证:AF 平分∠DFE .3.如图1,∠POQ=90°,OD平分∠POQ,将边长为2的正方形OABC的两顶点A、C分别在OP、OQ上,线段AB交OD于点M,线段BC交OQ于点N..(1)现将正方形OABC绕O点顺时针旋转,当A点第一次落在OD上时停止旋转,则边OA在旋转过程中所扫过的面积为;(2)如图2,在(1)中的旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△BMN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.4.已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MN,猜想线段BM、DN和线段MN之间有何确定的数量关系?写出你的结论并证明.5.如图1,在等腰Rt△ABC中,AB=AC,∠BAC=90°,M为BC的中点,D、E分别在两腰AB、AC上,且图 1E M BA C D图 2E M BA C D D A E C45 B ∠DME =45°.(1)求证:AD +DE =CE (即△ADE 的周长等于AB );(2)如图2,若点D 在BA 的延长线上时,其它条件不变,探索线段AD 、DE 与线段CE 之间的数量关系.6.如图,在等腰Rt △ABC 中,AB =AC ,∠BAC =90°,D 、E 为BC 上的两点,∠DAE =45°,求证:以BD 、CE 、DE 为边的三角形为直角三角形(直角三角形的勾股定理:BD 2+CE 2=DE 2).7.已知△ABC 为等边三角形,△BCD 为顶角为120°的等腰三角形,DB=DC ,∠BDC=120°.A D ECF B A D E C 30︒F BA D E C60︒F B C D B F E A(1)如图1,E 、F 分别在AB 、AC 上,且∠EDF=60°,求证:BE+CF=EF (△AEF 的周长等于2AB );(2)如图2,E 为BA 延长线上一点,F 为BC 延长线上一点,且∠EDF=60°,试探索线段BE 、CF 与线段EF 之间的数量关系.(3)如图3,E 、F 分别在BD 、CD 上,且∠EAF=30°,求证:BE+CF=EF (△DEF 的周长等于2BD );(4)如图,先将图1中的△BDC 沿BC 翻折,使D 点落在等边△ABC 内部,E 、F 分别在AB 、AC 上,且∠EDF=60°,求证:△AEF 的周长等于AB.8.如图,在四边形ABCD 中,AB =AC ,∠B +∠C =180°,E 、F 分别在BD 、CD 上,且∠EAF 等于∠BACBD C A F ME E C BDA F 的一半,那么线段BE 、CF 与线段EF 之间满足怎样的数量关系?写出你结论并证明.9.如图,四边形ABCD 中,AD ∥BC ,AB =AD =CD ,∠BAD =∠ADC =120°,点E 为CD 上的一个动点,F为BC 上一点,∠EAF =60°,过点E 作EM ∥BC 交AF 于点M ,求证:EM=DE+BF .。
几何辅助线练习之旋转类L施转(1)定义:在平面内,一个图形绕者一个定点旋转-定的角度得到另一个图形的变化叫作旋转,定点叫作旋转中心•旋转的角度叫作旋转你如果一个图形上的点A经过旋转变为点A'・那么这两个点叫作旋转的对应点.如图5 1所示堤△A()〃绕定点。
逆时针旋转30°得到的.其中点人与点A'叫作对应点,线段OB与线段OB'叫作对应线段, ZA与ZA'叫作对应角.点()叫作旋转中心,ZAM的度数叫作旋转的角度.(2)性质.①图形的旋转是图形上的每一点在平面I:绕某个固定点旋转丙定角度的位置移动;②对应点到旋转中心的距离相等;③旋转前后图形的大小和形状没有改变;④两组対应点分别与旋转中心的连线所成的角相等,都铮于旋转角;⑤旋转中心是唯一不动的点.2.蘆转对称图形定义:住平面内.-个图形绕肴一个定点旋转一定的角度后•能够与原图形貳合•这样的图形则旋转对称图形.旋转技巧1.旋转是中考压轴题中的常见题型,在解这类题目时•什么时候需要构造旋转•怎么构造旋转.下面,就不同类型的旋转问题,给岀构造旋转图形的解题方法:遇中点,旋180°,构造中心对称;遇90°,旋90°,造垂直;遇60°,旋60°,造等边;遇等腰,旋顶角.综上四点得出旋转的本质特征:等线段•共顶点,就可以有旋转.2.图形旋转后我们需要证明旋转全等,而旅转全等中的难点实际上是倒角.下面给出旋转常用倒角•只要是旋转•必然存在这两个倒角之一.如图5-2(a)所示,若ZAOB=^C()D,必有ZAOC=ZBOD•反之亦然.如图5-2(b)所示,若ZA=ZD*必有ZB=ZC.⑴如图5-3(a)所示•边长为1的正方形ABCD.绕点A逆时针旋转30。
到正方形A&C "•图中阴影部分的而积为( )A. 1一會B遵 C. 1 一亨D.*o O 4 c⑵正方形ABCD住坐标系中的位锂如图5-3(b)所示.将正方形AHCD绕I)点顺时针旋转90°后、B点的坐标为 ______ .如图5-4所示,E、F分别是正方形ABCD的边BC.DC上的点,且ZEAF = 45°,求证:EF= BE+ DF.如图所示,以△ ABC的边AC^AB为一边,分别向三角形的外侧作正方形ACFG和正方形ABDE. 连接EC交A23于点H,连接BG交CE于点M,求证: EG 丄CKH.如图5-6所示•在等腰ZVlBC中・AB二AGZABC=//E四边形BDEC ^J)B=DE,ZBDE=2a.M为CE的中点,连接AMJJM.(1)在图中画出△ DEM关于点M成中心对称的图形;(2)求证:AM±DM;(3)当a= ____ 时.AM=DM.已知:在厶ABC中・BC=a・AC=Z>・以AB为边作等边三角形ABD.探究下列问题:(1)如图"7(a)所示,当点D与点C位于直线AB的两侧时,a = b = 3、且/AC3 = 60°,则CD= ____ ;⑵如图5-7(1))所示•当点D与点C位丁•直线AB的同侧时,a=6=6,HZACB = 90°,则CD 二____ ;(3)如图5-7(c)所示,当ZACB变化・!1点D与点C位于直线AB的两侧时,求CD的最大值及相应的ZACB的度数.uC知:/MAN、AC平分ZMAN.(1)在图5-8(a)中•若120°9ZABC=ZADC-90°JB+AD----------------------------- AC.(填写・f . “V” 9 *•= ”)'⑵在图5-8(b)中.若ZMnN=120°,ZABC+ZAIX>=180°•则⑴中的结论是否仍然成立?若成立,请给出证明诺不成立,请说明理由・⑶在图5 8(c)中:①若ZMAN—6&.ZABC十ZADC=180°•判断AB丄AD与AC的数啟关系•并说明理由;②若ZA4AN=a(0yaV180°),ZABC+ZADC=180°,则AB+AD= --------------- 人C(用含a的三角函数表示,直接写出结果,不必证明)V如图5-9(a)所示•。
平面几何辅助线之旋转专题类型一:060造等边的边长,求内部一点是等边如图ABC ,5PB ,4PA ,3PC ,ABC P ,.1∆===∆的度数求若外一点是等边如图APB ,5PC ,4PB ,3PA ,ABC P ,,2∠===∆2220AC BC DC :,30BCD ,AD BD AB ,ABCD ,,3=+=∠==求证中四边形如图类型二:旋转090,造垂直的面积求四边形的长度为另一条对角线都是直角和其中和直角三角形分为等腰直角三角形被对角线四边形如图ABCD ,2AC ,C A ,CBD ABD BD ABCD ,,4∠∠的长求为一边作正方形以中如图PD ,ABCD AB ,4PB ,2PA ,45APB ,PAB ,,50===∠∆GHCG :)2(DFDE :)1(,H AB CG ,EF G ,F BC ,DE DF ,AC E ,AB D ,90ACB ,BC AC ,ABC ,,60==⊥=∠=∆证明证明于点交延长的中点为点于交直线任意一点上是直线若的中点为中如图CEAF BE :ABEFB ,AD F ,CD ABCD E ,,7==∠求证平分且上的点是边上任意一点的边是正方形如图的面积求四边形若为等腰直角三角形求证连接得到顺时针旋转绕点将中已知如图ACED ,2AC ,1BC )2(ACD :)1(CE,CD ,AED ,90A ABC ,135ACB ,ABC ,,800==∆∆∆=∠∆类型三:旋0180,造中心对称______,,86,O ,O ,ABCD ,,9则阴影部分的面积为时和长分别为当菱形的两条对角线的分成阴影和空白部分点的三条直线将菱形过是两条对角线的交点是菱形四边形如图的度数求边上的中线为中在如图BAC ,AC AD ,BC AD ,AC 2AB ,ABC ,,10∠⊥=∆的长度求出线段若不变则说明变化规律若变化的长度是否发生变化线段在移动过程中试问当动点于点作于点交连接且的延长线上在线段动点不重合与点点上在线段动点连接线段擦去折痕的条件下在如图的长求边的面积比为与若连接交于点已知折痕与边如图点处边上的落在使得顶点折叠将矩形的一条边已知矩形EF ,,,?EF ,N M,E,BP MF F,PB MN PM,BN ,AB N )A P,M (AP M BP,OP,AO,,(1),(2)CD 4,:1PDA OCP OA,OP,AP,,O BC ,)1(,P CD B ,ABCD ,8AD ABCD ,11⊥=∆∆=类型四:大角夹半角.______,AC AF 3AE :,AB 2AD ,)3(2FHAE :H,AD CH C 2AB,AD ,(2)ACAF AE ACF,BCE :AB,AD ,(1))F(E,AD AB,,C 60,ABCD 60,)120BAD (ABCD 120,,120000=+==⊥==+∆≅∆==∠t t 则的值为常数探究得若如图深入探究求证于点作过点若如图类比发现②①求证若如图初步尝试不包括线段的端点于点在的两直线分别交线段较短的直角边和斜边所重合角的顶点始终与点且所在平面内旋转在平行四边形的直角三角板如图放置将一块含进行探究的平行四边形为某学习小组对有一内角数学活动课上?AMN )2(NCBM MN :)1(,MN ,N AC ,M AB ,60D ,120BDC ,BDC ,3ABC ,,1300的周长为多少求证连接于点交于点使其两边分别交角为顶点作一个以且是等腰三角形的等边三角形是边长为如图∆+==∠∆∆类型五:旋转任意角它说明理由的差使它的面积等于形以已知点为顶点的多边请你在图中确定一个连接中如图,S S ,,CE ,AC AB ,AE AD ,DAE BAC ,ABC ,,14ADE ABC 0∆∆-===∠=∠∆a 的长求连接且面积之比为菱形使菱形为边作一个菱形以线段延长线上的任意一点对角线是菱形点如图DG ,DG ,5106AF 8,EC 5,:2ABCD,~AEFG ,AEFG AE ,CA ABCD E ,,15==的长求线段时②当①求证于点交延长如图时逆时针旋转绕点当正方形请说明理由若不成立请证明若成立成立吗如图时逆时旋转绕点当正方形成立此时边上分别在是正方形四边形是等腰直角三角形如图BG ,2AD ,4AB CFBD :,G CF BD ,,45A ADEF (2),:,?CF BD ,,)90(0A ADEF (1)CF BD CF,BD ,AC AB,F D,,ADEF ,ABC ,,16000==⊥=<<⊥=∆θθ的值求值时为最大当在旋转过程中逆时针方向旋转绕点将正方形若连接作正方形的中点是点是等腰直角三角形已知如图AF ,AE ,,D DEFG ,2DE BC ,AE ,DEFG ,BC D ,90BAC ,ABC ,,170===∠∆,?MN DN BM,,A MAN (2),?MN DN BM,,DN BM A MAN ,(1)MNDN BM ,DN BM A AMN ,N,M,)(DC ,CB ,A MAN ,45MAN ,ABCD ,,180请直接写出你的猜想系之间又有怎样的数量关和线段旋转到如图的位置时绕点当并加以证明写出猜想之间有怎样的数量关系和线段时旋转到绕点当如图易证时旋转到绕点当如图于点或它们的延长线它的两边分别交顺时针旋转绕点中正方形已知∠≠∠=+=∠∠=∠并证明关系请写出它们之间的数量若不成立请证明若成立中的结论是否仍然成立且上的点分别边中在四边形如图不用证明中的结论是否仍然成立上的点且分别是边中在四边形如图求证且上的点分别是边中在正方形拓展,,:,?)1(,BAD 21EAF ,CD BC,F E,,180ADC B ,AD AB ,ABCD ,)3(?)1(,BAD 21EAF CD BC,F E,,180D B ,AD AB ,ABCD ,)2(FD BE EF :,BAD 21EAF ,CD BC,F E,,90D B ,AD AB ,ABCD )1(,000∠=∠=∠+∠=∠=∠=∠+∠=+=∠=∠=∠=∠=类型一:旋造等边,60031225)23()3234(CD AD AC ,ACD R ,323CD PC PD 23PC 21CD ,30CPD DAP ,AP CD C 150PQB AQP AQB APC 90PQB 5PB ,3QB ,4PQ ,PQB 4AP PQ ,60AQP APQ 3PC QB ,4AP AQ ,60PAQ ,APC AQB ,PQ AQB,60A APC ,:,122222200000+=++=+=∆=-====∠⊥=∠+∠=∠=∠=∠===∆===∠∆=====∠∠=∠∆∆中在因此则的延长线于点交作过点故中在从而是等边三角形故则连接得到逆时针旋转绕点等如图【答案】解t 000000306090APB ,90BPM 3MP ,5BM ,4PB PACMAB ,PAC MAB AMP 60MAP ,MA PA ,MP ,MAB 60A PAC ,:,2=-=∠=∠∴===∴∆≅∆∠=∠∴∆∴=∠=∆∆为等边三角形由旋转可知连接得到逆时针旋转绕点将如图【答案】解222222000000AC BC DC ACDE ,BC CE DE CE DC ,DCE R 906030BCE BCD DCE 60BCE CEBE BC ,BCE ACDE ,60CBE ,BE BC CE ,DBF 60B ABC ,:,3=+===+∆∴=+=∠+∠=∠∴=∠∴==∆∴==∠=∴∆∆ 又中在即是等边三角形连接得到顺时针旋转绕点将如图【答案】证明t 类型二:旋造垂直,9002222S S 'ACC ACC'AC'AC C'D,C,180ABC ADC ADC ADC 'CDC :'C C ,D B ,90A ABC ,:,4'ACC ABCD 00=÷⨯==∴∆∴=∴=∠+∠=∠+∠=∠∆四边形的面积是等腰直角三角形又在同一条直线上则有点到重合与使点选择绕将三角形如图【答案】解 5242PB 'PP B 'P PD 2'PP ,2PA 90PB 'P ,45'APP ,90'PAP A'P PA ,B P'PD ,AB 'P PAD AB 'P 90A PAD ,ABCD ,:,522220000=+=+==∴===∠=∠=∠∴==≅∆∆∆ 可得得到旋转顺时针绕点可将为正方形因为四边形如图【答案】解GHCG GDGH HDGGHD 90GDC HDG ,90GCD GHD 90CDH ABCD CDGGCD DGCG FGEG DG EF G ,90EDF FGEG CG EF G ,90ACB DG,)2(DFDE CDFADE CDF ADE CD AD DCF A CDF ADE R CDFADE 90CDF EDC EDF DEDF 90CDF 45DAE DCF ,90EDC EDA ABCD BCAC BDAD CD BCAC ,AB D ,90ACB CD,)1(:,600000000=∴=∠∴∠=∠∴=∠+∠=∠+∠∴=∠∴⊥∠=∠∴=∴==∴=∠==∴=∠=∴∆≅∆∴⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆∠=∠∴=∠+∠=∠∴⊥==∠=∠=∠+∠∴⊥∴===∴==∠ 又的中点为的中点为连接如图中和在又的中点为连接如图【答案】证明t CEAF CE CG EG BE GEBG EBGFBC 5BC//AD EBGFBC 43423221CGAF ,31,G 5BCGABF BCG ,90B BAF ,:,70+=+==∴∠=∠∴∠=∠=∠∴∠=∠∠+∠=∠+∠∴∠=∠∴∠=∠=∠=∠∠=∠∴∆≅∆∴∆∆ 即得到点逆时针旋转绕将如图【答案】证明221122212221DE CD 21AD AC 21S S S 1BC DE 90ADC ADE CDE 135ADE ,)1(22AD AC CD 2AD AC ,45ACD ADC ACD ,:)2(ACD ADAC ,90CAD AEDABC 90ABC AED ,:)1(,8CDE ACD ADEC 022000+=⨯⨯⨯+⨯⨯=⋅+⋅=+=∴===∠-∠=∠∴=∠=+=∴===∠=∠∴∆∆∴==∠∴∆≅∆∴∆≅∆∆∆四边形知由是等腰直角三角形如图解是等腰直角三角形得到的旋转如图证明【答案】 类型三:旋造中心对称,180012122421O 248621,86:12,9故答案为阴影部分的面积点是菱形两条对角线的交菱形的面积和分别为菱形的两条对角线的长解析【答案】=⨯=∴=⨯⨯=∴ 00001209030EAC ABAE BAC 30BAE BE AB 21,2BE AB ,2AC AB 90EAC E BEAC EDBADC DCDB ,EDB ADC ,DE DA EDB ADC DCDB ,BC AD 90EAC ,AC AD BE ,AD DE ,E AD ,:,10=+=∠+∠=∠∴=∠∴==∴==∠=∠∴=∴∆≅∆∴=∠=∠=∆∆=∴=∠∴⊥=即中和在平分连接使到点延长如图【答案】解52, EF ,N M,,)1(52PB 21EF 5448PB 90C 8,BC 4,PC :(1)PB 21QB 21PQ 21QF EQ EF QB 21QF )AAS (NFB MFQ NB MQ BNF QMF BFN QFM NFB MFQ BNFQMF AN //MQ PQ 21EQ PQME ,MQ MP QMBN ,PM BN MQMP MQPABP APB AN//MQ ,AB AP ,Q PB ,AN //MQ ,,EF )2(10CD 102OP AP AB 5:4)8(90C ,PCO R 8CO ,OP 4AD 21CP 2141DA CP PA OP 4:1PDA OCP PDA~OCP CD 32902190B APO 903190D C ABCD ,)1(:,112202220它的长度为的长度不变线段在移动过程中当点的条件下在中的结论可得由中和在于点交作如图的长度不发生变化线段的长为边解得由勾股定理得中在则设的面积比为与又由折叠可得是矩形四边形如图【答案】解∴==∴=+=∴=∠===+=+=∴=∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠∠=∠∆∆∠=∠∴=∴⊥==∴==∴∠=∠=∠∴=∴===∴=+-==∠∆-====∴===∴∆∆∆∆∴∠=∠∠=∠∴=∠+∠∴=∠=∠=∠+∠∴=∠=∠∴ x x x t x x类型四:大角交半角2FHAE CHACFH AE HCF~ACE ACECHF 60ECF 60ACH 30CAD 90ACD BAC 90ACD AD CD AC 32CH AH AC ADCH 3DH AD AH 42AB AD 3CH ,2CD ,DH ,:(2)ACAB BE AE AF AE AFBE ACF,BCE ACFBCE ACFBCE AC BC CAFB ACF BCE ACFBCE 60ACE ACF ACE BCE 60ECF ACBC ,60ACB ,60CAD B ACD ,ABC ABAD 60B D 120BAD ,ABCD ,:)1(,1202222200000=∴=∴∆∆∴∠=∠∴=∠=∠∴=∠∴=∠=∠∴=∠∴=+∴=+=∴⊥=-=∴==∴=====∴∴∆≅∆∆≅∆∴⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆∠=∠∴=∠+∠=∠+∠∴=∠==∠=∠=∠∴∆∆∴==∠=∠∴=∠ xxx x 由题意得,设如图证明+=+=②中和在都是等边三角形是平行四边形四边形①如图证明【答案】7732123314AC AF 3AE 3414AM 3HN 3AH FN 33HN 3AHN AM EM )FN NH AH (3)AM EM (3AF AE 3212AH ,33AM a3,HC CM HM ,22CN HC 30CHN AHM 90M ,60MAH ,3EM ,3CM ,6FN ,NC 31EM FN CM CN 3CNCM AB AD CN AD CM AB EMFN CM CN CEM~CFN 90CNF M AECCFN 180CFN AFC 180AFC EAEC 180EAF ECF H AD CM ,M BA ,BABA CM ,N AD CN ,7)3(000故答案为则设=3,=交于点与延长线于交于作如图==+∴=-+=-++==-++-====∴==-===∴=∠=∠∴=∠=∠======∴=∴⋅⋅=∴∆∆∴=∠=∠∠=∠∴=∠+∠=∠+∠∴=∠+∠⊥⊥a a a a a HN a a b a a6AC AB AN CN MB AM MN AN AM :AMN CNMB BF MB MF MN )SAS (DMF DMN DN DF NDM FDM DM DM DMF DMN 60CDN BDM 60MDN CNBF ,DN DF ,CDN BDF CDNBDF BDF120D CND ,90DCA DBA 60BCA BAC ABC 3ABC 30DBC BCD 120BDC ,BDC :)1(,13000=+=+++=++∆∴+=+==∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆=∠+∠∴=∠==∠=∠∴∆≅∆∴∆∆=∠=∠∴=∠=∠=∠∴∆=∠=∠∴=∠∆的周长是中和在得到逆时针旋转绕点将如图得等边三角形是边长为且是等腰三角形证明【答案】 类型五:旋转任意角ADEABC ADEABD ACE ABD ADEABD ABCE BCED ACEAVBD 0ADE ABC S S S S S S S S S S S S CAE,BAD AC AB CAE BAD AE AD CAE BAD CAEBAD DACDAE DAC BAC DAE BAC :S S BCED BD,:,14∆∆∆∆∆∆∆∆∆∆∆∆-=--+=--=∴=∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆∠=∠∠-∠=∠-∠∴=∠=∠=四边形四边形中和则在即理由的差的面积等于则四边形连接如图【答案】解α26BE DG 2615OB OE BE EOB R 13)10(OA AB OB AOB R ,AC BD ABCD 10AB 2AE ,5:2AB :AE 5OA AE OE 268AC EC AE ,32AC OA 6AC 5106AF 5:2AG :AF 5:2ABCD,~AEFG BEDG BAE DAB A DAG ,ABCD ~AEFG ,O AC BD ,:,1522222222==∴=+=+=∆∴=-=-=∆⊥=∴===+=∴=-=-==÷=∴=∴==∴=∴∆∠∆∴中在中在中菱形又且又且面积之比为菱形菱形的度数可以得到顺时针旋转绕点将菱形于点交连接如图【答案】解t t CFBD )SAS (CAF BAD AFAD CAF BAD ACAB CAF BAD CAFBAD DACDAF CAF DACBAC BAD 90DAF BAC ,AF AD ,AC AB ,ADEF ,ABC ,:BCF )1(,160=∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆∠=∠∴∠-∠=∠∠-∠=∠=∠=∠==∴∆中和在是正方形四边形是等腰直角三角形如图理由成立【答案】5108CG BC BG BGC R CG3843104CG CM BA BM CMG ~BMA 3104AM AB BM 38344AM AC CM 34AB 31AM 31CN FN FCN tan AB AM ABM tan ABM R 24AC AB BC ,3AN AC CN ,4AB AC ,ABC 1AE 21FN AN 2DE AD AE 2DE AD ,ADEF ,N AC FN ,:CFBD 90BAC BGC CMG~BMA CMGBMA GCMABM CAFBAD ,M AC BG ,:)2(222222220=-=∆∴=∴=∴∆∆=+==-=-=∴==∴====∠∆∴=+==-=∴==∆===∴=+=∴==⊥⊥∴=∠=∠∴∆∆∴∠=∠∠=∠∴∆≅∆中,在中在中在等腰直角中在正方形于点作过点如图②解于点交设如图①证明t t F 1323EF AE AF AEF R 90E ,DEFG 321DE AD AE ,1BC 21AD ,2BC ,BC D ,90BAC ,ABC ,AE ,AE D ,E D,A,,:,17222200=+=+=∆∴=∠=+=+===∴==∠∆中在中正方形此时的中点是点是等腰直角三角形的长最大上时在线段且点三点在一条直线上当如图【答案】解tFDBE EF BGBE EG EFEG AEFAEG AEAE EAFGAE BAD 21EAF EAD DAF EAD BAG AFAG ,DAF BAG ADFABG ADAB ADFB 180ADC ADF ,180ADC B AG,DF BG ,BG BE ,:FDBE EF ,FD BE EF )3(,FD BE EF )1)(2(FDBE EF BGBE EG EFEG AEFAEG AEAE EAFGAE BAD21EAF EAFBAD 323121,AF AG ADFABG ADAB ,90D ABC ABG AG,DF BG ,G EB ,)1(,MNBM DN ,AEN AMN ,ADE ABM ,AE ,MB DE DC ,)2(,,AEN AMN ,ADE ABM ,BM DE ,AE ,E ND ,,MN DN BM )1(:,18000-=∴-=∴=∴∆≅∆∴=∠=∠∴∠=∠=∠+∠=∠+∠∴=∠=∠∴∆≅∆∴=∠=∠∴=∠+∠=∠+∠=-=+=+=+=∴+==∴∆≅∆∴=∠=∠∴=∠=∠-∠=∠+∠=∠+∠∴∠=∠=∴∆≅∆∴==∠=∠=∠==-∆≅∆∆≅∆=∆≅∆∆≅∆==+ 连接使上截取在如图证明应当是不成立结论仍然成立中的结论又连接使到延长如图【答案】拓展可得到结论同理再证易证连接上截取在如图即可得出结论再证易证使连接到延长如图【答案】解类型一:旋造等边,60031225)23()3234(CD AD AC ,ACD R ,323CD PC PD 23PC 21CD ,30CPD DAP ,AP CD C 150PQB AQP AQB APC 90PQB 5PB ,3QB ,4PQ ,PQB 4AP PQ ,60AQP APQ 3PC QB ,4AP AQ ,60PAQ ,APC AQB ,PQ AQB,60A APC ,:,122222200000+=++=+=∆=-====∠⊥=∠+∠=∠=∠=∠===∆===∠∆=====∠∠=∠∆∆中在因此则的延长线于点交作过点故中在从而是等边三角形故则连接得到逆时针旋转绕点等如图【答案】解t 000000306090APB ,90BPM 3MP ,5BM ,4PB PACMAB ,PAC MAB AMP 60MAP ,MA PA ,MP ,MAB 60A PAC ,:,2=-=∠=∠∴===∴∆≅∆∠=∠∴∆∴=∠=∆∆为等边三角形由旋转可知连接得到逆时针旋转绕点将如图【答案】解222222000000AC BC DC ACDE ,BC CE DE CE DC ,DCE R 906030BCE BCD DCE 60BCE CEBE BC ,BCE ACDE ,60CBE ,BE BC CE ,DBF 60B ABC ,:,3=+===+∆∴=+=∠+∠=∠∴=∠∴==∆∴==∠=∴∆∆ 又中在即是等边三角形连接得到顺时针旋转绕点将如图【答案】证明t 类型二:旋造垂直,9002222S S 'ACC ACC'AC'AC C'D,C,180ABC ADC ADC ADC 'CDC :'C C ,D B ,90A ABC ,:,4'ACC ABCD 00=÷⨯==∴∆∴=∴=∠+∠=∠+∠=∠∆四边形的面积是等腰直角三角形又在同一条直线上则有点到重合与使点选择绕将三角形如图【答案】解 5242PB 'PP B 'P PD 2'PP ,2PA 90PB 'P ,45'APP ,90'PAP A'P PA ,B P'PD ,AB 'P PAD AB 'P 90A PAD ,ABCD ,:,522220000=+=+==∴===∠=∠=∠∴==≅∆∆∆ 可得得到旋转顺时针绕点可将为正方形因为四边形如图【答案】解GHCG GDGH HDGGHD 90GDC HDG ,90GCD GHD 90CDH ABCD CDGGCD DGCG FGEG DG EF G ,90EDF FGEG CG EF G ,90ACB DG,)2(DFDE CDFADE CDF ADE CD AD DCF A CDF ADE R CDFADE 90CDF EDC EDF DEDF 90CDF 45DAE DCF ,90EDC EDA ABCD BCAC BDAD CD BCAC ,AB D ,90ACB CD,)1(:,600000000=∴=∠∴∠=∠∴=∠+∠=∠+∠∴=∠∴⊥∠=∠∴=∴==∴=∠==∴=∠=∴∆≅∆∴⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆∠=∠∴=∠+∠=∠∴⊥==∠=∠=∠+∠∴⊥∴===∴==∠ 又的中点为的中点为连接如图中和在又的中点为连接如图【答案】证明t CEAF CE CG EG BE GEBG EBGFBC 5BC//AD EBGFBC 43423221CGAF ,31,G 5BCGABF BCG ,90B BAF ,:,70+=+==∴∠=∠∴∠=∠=∠∴∠=∠∠+∠=∠+∠∴∠=∠∴∠=∠=∠=∠∠=∠∴∆≅∆∴∆∆ 即得到点逆时针旋转绕将如图【答案】证明221122212221DE CD 21AD AC 21S S S 1BC DE 90ADC ADE CDE 135ADE ,)1(22AD AC CD 2AD AC ,45ACD ADC ACD ,:)2(ACD ADAC ,90CAD AEDABC 90ABC AED ,:)1(,8CDE ACD ADEC 022000+=⨯⨯⨯+⨯⨯=⋅+⋅=+=∴===∠-∠=∠∴=∠=+=∴===∠=∠∴∆∆∴==∠∴∆≅∆∴∆≅∆∆∆四边形知由是等腰直角三角形如图解是等腰直角三角形得到的旋转如图证明【答案】 类型三:旋造中心对称,180012122421O 248621,86:12,9故答案为阴影部分的面积点是菱形两条对角线的交菱形的面积和分别为菱形的两条对角线的长解析【答案】=⨯=∴=⨯⨯=∴ 00001209030EAC ABAE BAC 30BAE BE AB 21,2BE AB ,2AC AB 90EAC E BEAC EDBADC DCDB ,EDB ADC ,DE DA EDB ADC DCDB ,BC AD 90EAC ,AC AD BE ,AD DE ,E AD ,:,10=+=∠+∠=∠∴=∠∴==∴==∠=∠∴=∴∆≅∆∴=∠=∠=∆∆=∴=∠∴⊥=即中和在平分连接使到点延长如图【答案】解52, EF ,N M,,)1(52PB 21EF 5448PB 90C 8,BC 4,PC :(1)PB 21QB 21PQ 21QF EQ EF QB 21QF )AAS (NFB MFQ NB MQ BNF QMF BFN QFM NFB MFQ BNFQMF AN //MQ PQ 21EQ PQME ,MQ MP QMBN ,PM BN MQMP MQPABP APB AN//MQ ,AB AP ,Q PB ,AN //MQ ,,EF )2(10CD 102OP AP AB 5:4)8(90C ,PCO R 8CO ,OP 4AD 21CP 2141DA CP PA OP 4:1PDA OCP PDA~OCP CD 32902190B APO 903190D C ABCD ,)1(:,112202220它的长度为的长度不变线段在移动过程中当点的条件下在中的结论可得由中和在于点交作如图的长度不发生变化线段的长为边解得由勾股定理得中在则设的面积比为与又由折叠可得是矩形四边形如图【答案】解∴==∴=+=∴=∠===+=+=∴=∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠∠=∠∆∆∠=∠∴=∴⊥==∴==∴∠=∠=∠∴=∴===∴=+-==∠∆-====∴===∴∆∆∆∆∴∠=∠∠=∠∴=∠+∠∴=∠=∠=∠+∠∴=∠=∠∴ x x x t x x类型四:大角交半角2FHAE CHACFH AE HCF~ACE ACECHF 60ECF 60ACH 30CAD 90ACD BAC 90ACD AD CD AC 32CH AH AC ADCH 3DH AD AH 42AB AD 3CH ,2CD ,DH ,:(2)ACAB BE AE AF AE AFBE ACF,BCE ACFBCE ACFBCE AC BC CAFB ACF BCE ACFBCE 60ACE ACF ACE BCE 60ECF ACBC ,60ACB ,60CAD B ACD ,ABC ABAD 60B D 120BAD ,ABCD ,:)1(,1202222200000=∴=∴∆∆∴∠=∠∴=∠=∠∴=∠∴=∠=∠∴=∠∴=+∴=+=∴⊥=-=∴==∴=====∴∴∆≅∆∆≅∆∴⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆∠=∠∴=∠+∠=∠+∠∴=∠==∠=∠=∠∴∆∆∴==∠=∠∴=∠ xxx x 由题意得,设如图证明+=+=②中和在都是等边三角形是平行四边形四边形①如图证明【答案】7732123314AC AF 3AE 3414AM 3HN 3AH FN 33HN 3AHN AM EM )FN NH AH (3)AM EM (3AF AE 3212AH ,33AM a3,HC CM HM ,22CN HC 30CHN AHM 90M ,60MAH ,3EM ,3CM ,6FN ,NC 31EM FN CM CN 3CNCM AB AD CN AD CM AB EMFN CM CN CEM~CFN 90CNF M AECCFN 180CFN AFC 180AFC EAEC 180EAF ECF H AD CM ,M BA ,BABA CM ,N AD CN ,7)3(000故答案为则设=3,=交于点与延长线于交于作如图==+∴=-+=-++==-++-====∴==-===∴=∠=∠∴=∠=∠======∴=∴⋅⋅=∴∆∆∴=∠=∠∠=∠∴=∠+∠=∠+∠∴=∠+∠⊥⊥a a a a a HN a a b a a6AC AB AN CN MB AM MN AN AM :AMN CNMB BF MB MF MN )SAS (DMF DMN DN DF NDM FDM DM DM DMF DMN 60CDN BDM 60MDN CNBF ,DN DF ,CDN BDF CDNBDF BDF120D CND ,90DCA DBA 60BCA BAC ABC 3ABC 30DBC BCD 120BDC ,BDC :)1(,13000=+=+++=++∆∴+=+==∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆=∠+∠∴=∠==∠=∠∴∆≅∆∴∆∆=∠=∠∴=∠=∠=∠∴∆=∠=∠∴=∠∆的周长是中和在得到逆时针旋转绕点将如图得等边三角形是边长为且是等腰三角形证明【答案】 类型五:旋转任意角ADEABC ADEABD ACE ABD ADEABD ABCE BCED ACEAVBD 0ADE ABC S S S S S S S S S S S S CAE,BAD AC AB CAE BAD AE AD CAE BAD CAEBAD DACDAE DAC BAC DAE BAC :S S BCED BD,:,14∆∆∆∆∆∆∆∆∆∆∆∆-=--+=--=∴=∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆∠=∠∠-∠=∠-∠∴=∠=∠=四边形四边形中和则在即理由的差的面积等于则四边形连接如图【答案】解α26BE DG 2615OB OE BE EOB R 13)10(OA AB OB AOB R ,AC BD ABCD 10AB 2AE ,5:2AB :AE 5OA AE OE 268AC EC AE ,32AC OA 6AC 5106AF 5:2AG :AF 5:2ABCD,~AEFG BEDG BAE DAB A DAG ,ABCD ~AEFG ,O AC BD ,:,1522222222==∴=+=+=∆∴=-=-=∆⊥=∴===+=∴=-=-==÷=∴=∴==∴=∴∆∠∆∴中在中在中菱形又且又且面积之比为菱形菱形的度数可以得到顺时针旋转绕点将菱形于点交连接如图【答案】解t t CFBD )SAS (CAF BAD AFAD CAF BAD ACAB CAF BAD CAFBAD DACDAF CAF DACBAC BAD 90DAF BAC ,AF AD ,AC AB ,ADEF ,ABC ,:BCF )1(,160=∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆∠=∠∴∠-∠=∠∠-∠=∠=∠=∠==∴∆中和在是正方形四边形是等腰直角三角形如图理由成立【答案】5108CG BC BG BGC R CG3843104CG CM BA BM CMG ~BMA 3104AM AB BM 38344AM AC CM 34AB 31AM 31CN FN FCN tan AB AM ABM tan ABM R 24AC AB BC ,3AN AC CN ,4AB AC ,ABC 1AE 21FN AN 2DE AD AE 2DE AD ,ADEF ,N AC FN ,:CFBD 90BAC BGC CMG~BMA CMGBMA GCMABM CAFBAD ,M AC BG ,:)2(222222220=-=∆∴=∴=∴∆∆=+==-=-=∴==∴====∠∆∴=+==-=∴==∆===∴=+=∴==⊥⊥∴=∠=∠∴∆∆∴∠=∠∠=∠∴∆≅∆中,在中在中在等腰直角中在正方形于点作过点如图②解于点交设如图①证明t t F 1323EF AE AF AEF R 90E ,DEFG 321DE AD AE ,1BC 21AD ,2BC ,BC D ,90BAC ,ABC ,AE ,AE D ,E D,A,,:,17222200=+=+=∆∴=∠=+=+===∴==∠∆中在中正方形此时的中点是点是等腰直角三角形的长最大上时在线段且点三点在一条直线上当如图【答案】解tFD BE EF BGBE EG EFEG AEFAEG AEAE EAFGAE BAD 21EAF EAD DAF EAD BAG AFAG ,DAF BAG ADFABG ADAB ADFB 180ADC ADF ,180ADC B AG,DF BG ,BG BE ,:FDBE EF ,FD BE EF )3(,FD BE EF )1)(2(FDBE EF BGBE EG EFEG AEFAEG AEAE EAFGAE BAD21EAF EAFBAD 323121,AF AG ADFABG ADAB ,90D ABC ABG AG,DF BG ,G EB ,)1(,MNBM DN ,AEN AMN ,ADE ABM ,AE ,MB DE DC ,)2(,,AEN AMN ,ADE ABM ,BM DE ,AE ,E ND ,,MN DN BM )1(:,18000-=∴-=∴=∴∆≅∆∴=∠=∠∴∠=∠=∠+∠=∠+∠∴=∠=∠∴∆≅∆∴=∠=∠∴=∠+∠=∠+∠=-=+=+=+=∴+==∴∆≅∆∴=∠=∠∴=∠=∠-∠=∠+∠=∠+∠∴∠=∠=∴∆≅∆∴==∠=∠=∠==-∆≅∆∆≅∆=∆≅∆∆≅∆==+ 连接使上截取在如图证明应当是不成立结论仍然成立中的结论又连接使到延长如图【答案】拓展可得到结论同理再证易证连接上截取在如图即可得出结论再证易证使连接到延长如图【答案】解。
一、回顾相关知识1.定义:在平面内,把一个图形绕着某一个定点沿着某个方向旋转一定的角度,这样的图形运动称为旋转.这个定点叫做,转动的角叫做.2.图形的旋转有三个基本条件(1);(2);(3).3.旋转的性质:(1)对应点到旋转中心的距离;(2)对应点与旋转中心所连线段的夹角等于;(3)旋转前后的图形;(对应角相等,对应边相等)(4)对应线段所在直线的夹角等于旋转角或者与旋转角互补。
(非书本定理,请自行研究)二、总结几种常见类型模型一:等腰三角形的旋转(如右图,已知AB=AC)问:△ABD如何通过旋转得到△ACE?请描述旋转过程。
答:。
模型二:等边三角形的旋转(如右图,已知AB=AC=BC)问:△ACD如何通过旋转得到△BCE?请描述旋转过程。
答:。
模型三:正方形的旋转(如右图,已知四边形ABCD是正方形)问:△ABE如何通过旋转得到△ADF?请描述旋转过程。
答:。
模型四:四边形的旋转(如右图,已知四边形ABCD中,AB=AC,∠B+∠ACD=180°)问题1:△ABD如何通过旋转得到△ACE?请描述旋转过程。
答:。
问题2:顺次连接ADCEA得到的图形是三角形还是四边形?为什么?答:。
观察以上四种常见模型,你觉得这些藏着旋转变换的图形都有什么共同点?共同点:①共顶点;②等线段模型五:正方形含半角模型已知:如图,在正方形ABCD中,∠EAF=45°,绕点A顺时针旋转△ADF到△ABG,使AD与AB重合.探究:①△AEF≌;②线段EF、BE、DF有什么关系?请直接写出;;③若正方形边长为a,则△CEF的周长=。
例题1、如图,P为等边三角形ABC内一点,PA=5,PB=4,PC=3.求∠BPC的度数1、如图,在四边形ABCD中,AD=8,CD=12,∠ABC=∠ACB=∠ADC=45°.则BD的长是.2、如图,四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1.求四边形ABCD的面积.3、如图,在△ABC中,∠BAC=140°,AB=AC,点D,E在BC上,∠DAE=70°,∠ADE=45°.请探究BD,DE,CE之间的等量关系,并证明你的结论.4.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD(2)如图②,连接BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,CD=3,BD=3,求△ACD的面积;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究AB、CD、CE之间的数量关系,并证明.5、如图,点P是正方形ABCD内一点,连接AP、BP、CP,若AP=1,BP=2,CP=3,求∠APB的度数.6、【问题探究】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD=.一、回顾相关知识答案:1、旋转中心旋转角2、旋转中心旋转方向旋转角3、相等旋转角全等模型一:等腰三角形的旋转答案:模型一:△ABD绕点A逆时针旋转∠BAC的度数,得到△ACE模型二:△ACD绕点C逆时针旋转60°,得到△BCE模型三:△ABE绕点A逆时针旋转90°,得到△ADF模型四:1、△ABD绕点A逆时针旋转∠BAC的度数,得到△ACE2、三角形。
初中数学辅助线添加技巧:旋转方法总结1.旋转是中考压轴题中常见题型,在解这类题目时,什么时候需要构造旋转,怎么构造旋转.下面,就不同类型的旋转问题,给出构造旋转图形的解题方法:遇中点,旋转180°,构造中心对称; 遇90°,旋90°,造垂直; 遇60°,旋60°,造等边; 遇等腰,旋等腰.综上四点得到旋转的本质特征:等线段,共顶点,就可以有旋转.2.图形旋转后我们需要证明旋转全等,而旋转全等中的难点实际上是倒角.下面给出旋转常用倒角,只要是旋转,必然存在这两个倒角之一.如图1,若AOB COD ∠=∠,必有AOC BOD ∠=∠,反之亦然. 如图2,若A D ∠=∠,必有B C ∠=∠.图2图1OABCDDCB AO倒角是在初中数学学习中常用的名词,其意思是通过角之间的等量关系,得到我们所需要的角度的关系的过程.典例精析例1.(1)如图1,边长为1的正方形ABCD ,绕点A 逆时针旋转30°到正方形AB'C'D',图中我们阴影部分的面积是( )A.1-BC.1 D .12(2)正方形ABCD 在坐标系中的位置如图2所示,将正方形ABCD 绕点D 顺时针旋转90°后,B 点的坐标为 .图2图1D'C'BA解:(1)A ;(2)(4,0).点拨:本例第2小问是在平面直角坐标系中考查旋转变换的作图,是数形结合的完美体现.首先要确定旋转中心是点D 而不是坐标原点O ,此处易出现错误,然后利用平面直角坐标系的特征确定正方形ABCD 绕点D 旋转90°后B'的位置,这类题型常见于正方形网格中的旋转作图.例2.如图,E 、F 分别是正方形ABCD 的边BC 、DC 上的点,且∠EAF =45°,求证:EF =BE +DF .FED CBA证明:延长CB 到点G ,使得BG =DF ,连接AG .GF ED CBA∵四边形ABCD 是正方形, ∴90,D ABG AB AD ∠=∠=︒=. ∴ADF ABG △≌△. ∴,AF AG DAF BAG =∠=∠. ∵45EAF ∠=︒, ∴45DAF BAE ∠+∠=︒.∴45DAG BAE ∠+∠=︒,即45EAG ∠=︒. ∵AE AE =, ∴AFE AGE △≌△.∴EF EG EB BG BE DF ==+=+.点拨:旋转图形可将分散的条件集中到一个图形中,从而可充分利用已知条件,找到有效的解题方法.这种方法在正方形、正三角形以及其它正多边形中都有着广泛的应用.本题是旋转一个经典模型(半角模型),其中结论较多.例3.如图,以ABC △的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,连接EC 交AB 于点H ,连接BG 交CE 于点M ,求证:BG ⊥CE .MH GFEDCBA证明:∵四边ABDE 、ACFG 是正方形, ∴,,90AE AB AC AG EAB GAC ==∠=∠=︒. ∴EAB BAC GAC BAC ∠+∠=∠+∠. ∴EAC GAB ∠=∠. ∴EAC GAB =△△. ∴AEC ABG ∠=∠.∵90,AEC AHE AHE BHM ∠+∠=︒∠=∠, ∴90ABG BHM ∠+∠=︒. ∴90EMB ∠=︒. ∴BG CE ⊥.点拨:本题旋转的基本模型,充分体现了利用旋转全等解题,本题是以ABC △为基本,以其两边分别向外构造正方形,构成旋转全等(其中用到了8字倒角),和其类似的还可以构造正三角形以及正五边形.例4.如图,在等腰ABC △中,,AB AC ABC α=∠=,在四边形BDEC 中,DB =DE ,2BDE α∠=,M 为CE 的中点,连接AM 、DM .M EDCB A(1)在图中画出DEM △关于点M 成中心对称的图形; (2)求证:AM DM ⊥;(3)当α= 时,AM DM =. 解:(1)M FEDCB A(2)在(1)中连接AD 、AF .M FEDCB A由(1)中的中心对称可知,DEM FCM △≌△, ∴,,DE FC BD DM FM DEM FCM ===∠=∠, ∵2BDE α∠=,∴ABD ABC CBD ∠=∠+∠360BDE DEM BCE α=+︒-∠-∠-∠360DEM BCE α=︒--∠-∠.∵360360ACF ACE FCM BCE FCM α∠=︒-∠-∠=︒--∠-∠, ∴ABD ACF ∠=∠. ∵AB AC =, ∴ABD ACF =△△. ∴AD AF =. ∵DM FM =, ∴AM DM ⊥. (3)45α=︒.∵,,AB AC AD AF BAC DAF ==∠=∠, ∴ADF ABC α∠=∠=.若AM DM =,则ADM △为等腰直角三角形,即45ADM ∠=︒, ∴45α=︒点拨:本题中第(1)问已经作出了中心对称图形,所以利用中心对称证全等的思路很清晰.本题的难点是利用周角和四边形的内角和为的有关知识倒角.初中几何常用的倒角是平行线的三线八角、对顶角、等边对等角等.例5.已知:在△ABC 中,BC =a ,AC =b ,以AB 为边作等边三角形ABD . 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a =b =3,且∠ACB =60°,则CD = ;(2)如图2,当点D 与点C 位于直线AB 的同侧时,a =b =6,且∠ACB =90°,则CD = ;(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.D CBAA B CDABCD图1 图2 图3(1)(2)(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.联结AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.例6.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.ABCDMN AB CD M NN M 图3图2图1D CBA解:(1)=证明:∵AC 平分∠MAN ,∠MAN =120°, ∴∠CAB =∠CAD =60°, ∵∠ABC =∠ADC =90°, ∴∠ACB =∠ACD =30°, ∴12AB AD AC ==, ∴AB +AD =A C . (2)成立.证法一:如图,过点C 分别作AM ,AN 的垂线,垂足分别为E ,F ,ABCD M N F E∵AC 平分∠MAN , ∴CE =CF ,∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, ∴∠CDE =∠ABC , ∵∠CED =∠CFB =90°, ∴△CED ≌△CFB , ∴ED =FB ,∴AB +AD =AF +BF +AE -ED =AF +AE ,由(1)知AF +AE =AC , ∴AB +AD =AC ,证法二:如图,在AN 上截取AG =AC ,连接CG ,AB CD M NG∵∠CAB =60°,AG =AC ,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC , ∴△CBG ≌△CDA , ∴BG =AD ,∴AB +AD =AB +BG =AG =AC ;(3)①证明:由(2)知,ED =BF ,AE =AF ,ABC D M N FE在Rt △AFC 中,cos AFCAF AC∠=, 即cos2AFACα=, ∴cos2AF AC α=,∴AB +AD =AF +BF +AE -ED =AF +AE =2AF 2cos 2AC α=.把α=60°,代入得AB AD +=. ②2cos2α点拨:在第(2)小题中,由题意可知,60BCD ∠=︒,有60°角就可把有关图形旋转60°,所以我们作,CE AM CF AN ⊥⊥的实质,就是将CBF △以顶点C 为旋转中心顺时针旋转了60°,从而构造了全等三角形,使此题有了解题思路.例7.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明; (2)当α=30°时,求证:△AOE 1为直角三角形.AB CDE 1F 1O FE 图2图1O DC BA解:(1)AE 1=BF 1.证明:∵O 为正方形ABCD 的中心, ∴OA =OD ,∵OF =2OA ,OE =2OD , ∴OE =OF ,∵将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1 ∴OE 1=OF 1,∵∠F 1OB =∠E 1OA ,OA =OB , ∴△E 1AO ≌△F 1BO , ∴AE 1=BF 1;(2)证明:取OE 1中点G ,连接AG ,ABCDE 1F 1O G∵∠AOD =90°,α=30°, ∴∠E 1OA =90°-α=60°, ∵OE 1=2OA , ∴OA =OG ,∴∠E 1OA =∠AGO =∠OAG =60°,∴AG =GE 1,∴∠GAE 1=∠GE 1A =30°, ∴∠E 1AO =90°,∴△AOE 1为直角三角形.例8.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点.D'C'MFE DCBA(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD')与AB 交于一点E ,MC 即MC')同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQ D'C'M FE DCBA∵∠C =∠B =60°∴12CP BQ AB ==,CP +BQ =AB 又∵ADPQ 是矩形,AD =PQ ,故BC =2AD , 由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°,故△MDC 是等边三角形. (2)解:△AEF 的周长存在最小值,理由如下:连接AM ,由(1)平行四边形ABMD 是菱形,△MAB ,△MAD 和△MC'D'是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ).在△BME 与△AMF 中,BM =AM , ∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ).∴BE =AF , ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF . ∵MF 的最小值为点M 到ADEFAEF 的周长=AE +AF +EF =AB +EF , △AEF的周长的最小值为2. 跟踪训练1.如图,在△ABC 中,AB =AC ,90BAC ∠=︒,点D 是BC 上的任意一点,探究:22BD CD +与2AD 的关系,并证明你的结论.CBA2.如图,P 是等边△ABC 内一点,若AP =3,PB =4,PC =5,求APB ∠的度数.PCBA3.如图1,在ABCD □中,AE BC ⊥于点E ,E 恰为BC 的中点,tan 2B =.(1)求证:AD AE =;(2)如图2,点P 在线段BE 上,作EF DP ⊥于点F ,连结AF .求证:DF EF -=;(3)请你在图3中画图探究:当P 为线段EC 上任意一点(P 不与点E 重合)时,作EF 垂直直线DP ,垂足为点F ,连结AF .线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.图1EDCBA图2PF ABCDE图3ABCDE4.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE ′,连接E ′D ,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,直接写出你的猜想; (2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE =30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图3图2图1CE ADBCE AD BEDCBA5.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).6.在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连接EC ,取EC 的中点M ,连接DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,探索BM 、DM 的关系并给予证明;(2)如果将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCG PAB EF图2DAB EF CPG图1图2图1AEBMD CMEDB CA7.已知正方形ABCD 和等腰Rt △BEF ,EF =BE ,∠BEF =90°,按图1旋转,使点F 在BC 上,取DF 中点G ,连接EG 、CG .(1)探索EG 、CG 的关系,并说明理由;(2)将图1中△BEF 绕点B 顺时针旋转45°得图2,连接DF ,取DF 的中点G .问(1)中的结论是否成立?并说明理由.(3)将图1中△BEF 绕点B 转动任意度数(旋转角在0到90°之间)得图3,连接DF ,取DF 的中点G ,问(1)中的结论是否成立,请说明理由.图3BF DC GEABFDCGE AG F图2图1E DBCA中考前瞻将正方形ABCD 绕中心O 顺时针旋转角α得到正方形1111A B C D ,如图1所示. (1)当45α=︒时,如图2,若线段OA 与边11A D 的交点为E ,线段1OA 与AB 的交点为F ,可得下列结论成立①EOP FOP △≌△,②1PA PA =,试选择一个证明;(2)当090α︒<<︒时,第(1)小题的结论1PA PA =还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程,记正方形1111A B C D 与AB 边交于P 、Q 两点,探究POQ ∠的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出POQ 的度数.PQ PD 1AA 1BB 1CC 1DD 1C 1B 1A 1F E F图2图1EDBCA。
旋转练习题
【例1】
如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P'BA ,则∠PBP'的度数是( ) A.45°B.60°
C.90°D.120°
【例2】
如图,正方形BAFE与正方形ACGD共点于A,连接BD、CF,求证:BD=CF并求出∠DOH的度数。
【例3】
如图,正方形ABCD中,∠F AD=∠F AE。
求证:BE+DF=AE。
1.题干中出现对图形的旋转——现成的全等
2.图形中隐藏着旋转位置关系的全等形——找到并利用
3.题干中没提到旋转,图形中也没有旋转关系存在——通过作辅助线构造旋转!
【例4】
已知:如图:正方形ABCD中,∠MAN=45°,∠MAN的两边分别交CB、DC于点M、N。
求证:BM+DN=MN。
【例5】
如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,证明:DN2+BM2=MN2
【例6】
如图,已知△OAB和△OCD是等边三角形,连结AC和BD,相交于点E,AC和BO交于点F,连结BC。
求∠AEB的大小。
【例7】
如图所示:△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且AP=3,CP=2,BP=1,求∠BPC 的度数。
本课总结
问题一:题中出现什么的时候,我们应该想到旋转?(构造旋转的条件)
1.图中有相等的边(等腰三角形、等边三角形、正方形、正多边形) 2.这些相等的边中存在共端点。
3.如果旋转(将一条边和另一条边重合),会出现特殊的角:大角夹半角、手拉手、被分割的特殊角。
问题二:旋转都有哪些模型?
构造旋转辅助线模型: 1.大角夹半角
2.手拉手(寻找旋转) 3.被分割的特殊角
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.如图,P 是正ABC ∆内的一点,且BP 是∠ABC 的角平分线,若将PBC ∆绕点P 旋转到P BA '∆,则PBP '∠的
度数是( ) A .45° B .60° C .90° D .120°
P '
A
B
C
P
2.如图:△ABC 中,AB =AC ,BC 为最大边,点D 、E 分别在BC 、AC 上,BD =CE ,F 为BA 延长线上一点,BF =CD ,则下列正确的是( ) A .DF =DE B .DC =DF C .EC =EA D .不确定
C
B
A
F D
E
3.如图,四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,则下列正确的是( ) A .BD 2=AB 2+BC 2 B .BD 2<AB 2+BC 2 C .BD 2>AB 2+BC 2 D .不确定
B
D
A
C
4.已知ABC △中,90ACB ∠=°,CD AB ⊥于D ,AE 为角平分线交CD 于F ,则图中的直角三角形有( ) A .7个 B .6个 C .5个 D .4个
F
E
D
C B
A
5.如图,DA ⊥AB ,EA ⊥AC ,AD =AB ,AE =AC ,则下列正确的是( ) A .ABD ACE △≌△ B .ADF AES △≌△
C .BMF CMS △≌△
D .ADC AB
E △≌△ S
F
E
D
C
B
A M
6.如图,已知P 为正方形ABCD 的对角线AC 上的一点(不与A 、C 重合),PE ⊥BC 与点E ,PF ⊥CD 与点F ,
若四边形PECF 绕点C 逆时针旋转,连结BE 、DF ,则下列一定正确的是( ) A .BP =DP B .BE 2+EC 2=BC 2 C .BP =DF D .BE =DF
D
C
B
A
E
P
F
7.如图,等腰直角△ADB 与等腰直角△AEC 共点于A ,连结BE 、CD ,则下列一定正确的是( ) A .BE =DC B .AD ∥CE C .BE ⊥CE D .BE =CE
A
B
C
D
O E
8.如图,等边三角形ABE 与等边三角形AFC 共点于A ,连接BF 、CE ,则∠EOB 的度数为( ) A .45° B .60° C .90° D .120°
O
G F
E
C
B
A
9.如图,在四边形ABCD 中,AB AD =,90B D ==︒∠∠,E 、F 分别是边BC 、CD 上的点,
且12
EAF BAD =∠∠。
则下列一定正确的是( ) A .EF BE FD =+ B .EF BE FD >+
C .EF BE F
D <+
D .222EF B
E FD =+
F
E
D C
B
A
10.在正方形ABCD 中,BE =3,EF =5,DF =4,则∠BAE +∠DCF 为( ) A .45° B .60° C .90° D .120°
F
E
D
C
B
A。