点击查看2013年新疆高考数学文试卷完整版含图片
- 格式:doc
- 大小:594.50 KB
- 文档页数:8
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( )(A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2)= ( )(A)-1 - i (B)-1 + i (C)1 + i (D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C:= 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A)p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y=4 x的焦点,P为C上一点,若丨PF丨=4 ,则△POF 的面积为(A)2 (B)2 (C)2 (D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cosA+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考数学全国卷1(完整版试题+答案+解析)2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置.参考公式:样本数据x1,x2,x n的标准差s222(x1x)(xx)(xx)2nn其中x为样本平均数球的面积公式S 24R第Ⅰ卷(选择题共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数112ii(i是虚数单位)的虚部是A.32B.12C.3D.122.已知R是实数集,Mx1,Nyyx11,则NC R M3.xA.(1,2)B.0,2C.D.1,24.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是A.1B.2C.3D.45.设S n为等比数列{a n}的前n项和,8a2a50 ,则S4 S 2A.5B.8C.8D.156.已知函数f(x)sin(2x),若存在a(0,),使得f(xa)f(xa)恒成立,则 a6的值是-1-/112013年高考数学全国卷1(完整版试题+答案+解析) A.B.C.D.63427.已知m、n表示直线,,,表示平面,给出下列四个命题,其中真命题为(1)m,n,nm,则(2),m,n,则nm(3)m,m,则∥(4)m,n,mn,则A.(1)、(2)B.(3)、(4)C.(2)、(3)D.(2)、(4)8.已知平面上不共线的四点O,A,B,C,若|AB| OA3OB2OC,则等于|BC|A.1B.2C.3D.49.已知三角形ABC的三边长成公差为2的等差数列,且最大角的正弦值为32,则这个三角形的周长是A.18B.21C.24D.1510.函数f 1(x)lgx的零点所在的区间是xA.0,1B.1,10C.10,100D.(100,)11.过直线yx上一点P引圆22670xyx的切线,则切线长的最小值为A.22B.322C.102D.2 212.已知函数f(x)xax2b .若a,b都是区间0,4内的数,则使f(1)0成立的概率是A.34B.14C.38D.582y2x13.已知双曲线的标准方程为1916,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A的任意一点,直线A1P,A2P与直线xa分别交于两点M,N,若2FMFN0,则a的值为A.169B.95C.259D.165-2-/112013年高考数学全国卷1(完整版试题+答案+解析)第Ⅱ卷(非选择题共90分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.3.第Ⅱ卷共包括填空题和解答题两道大题.二、填空题:本大题共4小题,每小题4分,共16分.开始14.如图所示的程序框图输出的结果为__________.a2,i1否15.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在i10一个球面上,则该球的表面积为__________.是1aa1输出1a11第14题图ii1结束第13题图216.地震的震级R与地震释放的能量E的关系为R(lgE11.4).2011年3月11日,日3本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的倍.17.给出下列命题:①已知a,b都,m是正数,且ab 11ab,则ab;②已知f(x)是f(x)的导函数,若xR,f(x)0,则f(1)f(2)一定成立;③命题“xR,使得2210xx”的否定是真命题;④“x1,且y1”是“xy2”的充要条件.其中正确命题的序号是.(把你认为正确命题的序号都填上)-3-/112013年高考数学全国卷1(完整版试题+答案+解析)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)xxx已知向量a(1,cos)与b(3sincos,y)共线,且有函数yf(x).2222(Ⅰ)若f(x)1,求cos(2x)的值;3(Ⅱ)在ABC中,角A,B,C,的对边分别是a,b,c,且满足2acosCc2b,求函数f(B)的取值范围.18.(本小题满分12分)已知等差数列a n的前n项和为S n,公差d0,且S3S550,a1,a4,a13成等比数列.(Ⅰ)求数列a的通项公式;n(Ⅱ)设bnan是首项为1,公比为3的等比数列,求数列b的前n项和Tn.n-4-/112013年高考数学全国卷1(完整版试题+答案+解析)18.(本小题满分12分)已知四棱锥ABCDE,其中ABBCACBE1,CD2,CD面ABC,BE∥CD,F为AD的中点.D(Ⅰ)求证:EF∥面ABC;(Ⅱ)求证:面ADE面ACD;F (III)求四棱锥ABCDE的体积.ECAB19.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y与腐蚀时间x之间对应的一组数据:时间x(秒)51015203040深度y(微米)61010131617现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y关于x的线性回归方程4139y?x,规定由线性回归方程得到的估计数据与所选出的检验数据的误1326差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.-5-/112013年高考数学全国卷1(完整版试题+答案+解析) 20.(本小题满分12分)已知函数axbf(x)在点(1,f(1))的切线方程为xy30.2x1(Ⅰ)求函数f(x)的解析式;(Ⅱ)设g(x)lnx,求证:g(x)f(x)在x[1,)上恒成立.21.(本小题满分14分)实轴长为43的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且A FAF,△AF1F2的面积为3.12(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若AC2AB,求直线l的斜率k.yAF1BoF2xC-6-/112013年高考数学全国卷1(完整版试题+答案+解析)参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)BDBADBBDBCCB二.填空题(本大题共4小题,每小题4分,共16分.)13.214. 19322.310216.①③三.解答题17.(本小题满分12分)解:(Ⅰ)∵a与b共线∴3sin1x2xcos2xcos2yy3sin x2cosx22x3xxx1cossin(1cos)sin(2226)12⋯⋯⋯⋯3分1∴f(x)sin(x)1,即62 sin(x )612⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分2 cos(3 2x)cos2(x)32x2x2cos()12sin(36) 112⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ)已知2acosCc2b由正弦定理得:2sinAcosCsinC2sinB2sin(AC)2sinAcosCsinC2sinAcosC2cosAsinC∴f1cosA,∴在ABC中∠21(B)sin(B)62 A3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵∠A∴320B,3B6656⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分1∴sin(B)1,26 1f(B)323 ∴函数f(B)的取值范围为](1,2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 -7-/112013年高考数学全国卷1(完整版试题+答案+解析)18.(本小题满分12分) 解:(Ⅰ)依题意得3a132 2d45 5ad1250⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(a 1 3d) 2 a ( 1 a 12d 1)解得a 1 d 3 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分2a n a 1(n1)d32(n1)2n1,即a n 2n1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ) b na nn 3 1 , n1(21)3nb n a3nn1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分2(21)3nT n 53n337123n1n3T n 335373(2n1)3(2n1)3⋯⋯⋯⋯⋯⋯⋯⋯9分 2n1n2T n 3232323(2n1)332 3(1 1 n 3 3 1 ) (2n n 1)32n n 3∴n T n n3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是A D,AC 的中点12∴FG ∥CD,且FG=DC=1.D ∵BE ∥CD ∴FG 与BE 平行且相等F∴EF ∥BG .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分EEF 面ABC,BG 面ABC ∴EF ∥面ABCGC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分AB (Ⅱ)∵△ABC为等边三角形∴BG⊥AC又∵DC⊥面ABC,BG面ABC∴DC⊥BG-8-/112013年高考数学全国卷1(完整版试题+答案+解析)∴BG垂直于面ADC的两条相交直线AC,DC,∴BG⊥面ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∵EF∥BG∴EF⊥面ADC∵EF面ADE,∴面ADE⊥面ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分(Ⅲ)连结EC,该四棱锥分为两个三棱锥E-ABC和E-ADC.1313333V A VV11.BCDEEABCEACD34321264⋯⋯⋯⋯⋯⋯⋯⋯⋯12分另法:取BC的中点为O,连结A O,则A OBC,又CD平面ABC,∴CDAO,BCCDC,∴AO平面BCDE,∴AO为V ABCDE的高,3(12)131333AO,S BCDE,V.ABCDE222322420.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A包含的基本事件有10种.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分所以102P(A).所以选取的2组数据恰好不相邻的概率是15323.⋯⋯⋯⋯⋯⋯⋯⋯⋯6分4139219219(Ⅱ)当x10时,y?10,|10|2;13262626⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分4139379379y?30,|当x30时,16|2;13262626所以,该研究所得到的回归方程是可靠的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分21.(本小题满分12分)解:(Ⅰ)将x1代入切线方程得y2ba∴f(1)2,化简得ba4.11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分f(x) a(2x 1)(1(axb)222x)x-9-/112013年高考数学全国卷1(完整版试题+答案+解析)2a2(ba)2bbf(1)1. 442⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分解得:a2,b2 ∴2x2 f(x).2 x1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 (Ⅱ)由已知得 ln2x2x 在[1,)上恒成立2 x12xx 化简得(1)ln22x 即x 2lnxlnx2x 20在[1,)上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分设h(x)x 2lnxlnx2x2,h(x)2xlnxx1 x2 1∵x1∴2xlnx0,x2,即h(x)0.x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 ∴h(x)在[1,)上单调递增,h (x)h(1)0 ∴g(x)f(x)在x[1,)上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 22.(本小题满分14分) 22xy解(1)设椭圆方程为221(0)abab,AF 1m,AF 2n m 2 2 n 2 4c由题意知 m n43⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 mn6解得c 29,∴b 21293.2y 2x∴椭圆的方程为1123⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵y A c3,∴y A 1,代入椭圆的方程得x A 22,2将点A 坐标代入得抛物线方程为x 8y.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设直线l的方程为y1k(x22),B(x1,y1),C(x2,y2)-10-/112013年高考数学全国卷1(完整版试题+答案+解析)由AC2AB 得2222(x22)x ,1 化简得2x 1x22 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 联立直线与抛物线的方程y x 2 1 8 k (x2 y 2) , 得x 28kx162k80∴x 1228k ①⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 联立直线与椭圆的方程y x 1 k (22y4x 22 12 ) 2x 2kkxkk 22得(14k)(8162)3216280 ∴ 2162k8kx22② 2214k⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 2162k8k ∴22222xx2(8k22)1k 22142k整理得:)0(16k42)(1214k∴ 22 k ,所以直线l 的斜率为 44 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14分-11-/11。
2013全国各地高考数学试题及详解汇编(理科●一)目录1.新课标卷1 (2)2.新课标Ⅱ卷 (10)3. 大纲卷 (21)4.北京卷 (27)5.山东卷 (37)6.陕西卷 (41)7.湖北卷 (49)8.天津卷 (61)9.重庆卷 (71)2013年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B. 2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( )A 、-4 (B )-45 (C )4 (D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=2243(34)(34)(34)i i i ++-+=3455i +,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>)的离心率为5,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,5c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C .5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题.【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A.7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( )A 、3B 、4C 、5D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题.【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为 A .168π+ B .88π+ C .1616π+ D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6C 、7D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题. 【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。
2013年普通高等学校招生全国统一考试理 科 数 学(新课标I 卷)使用省份:河北、河南、山西、陕西注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则 (A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样(C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=(5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,-(B )[]25,-(C )[]34,-(D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+(B )8π8+(C )π6116+(D )16π8+(9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。
试题类型B2013年普通高等学校招生全国统一考试数学试卷(新课标I) 第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A = {x |x 2-2x<4, x ∈R },B ={|5x x -<<,则(A )A ∩B =φ(B )AB R = (C )B A ⊆ (D )A B ⊆(2)若复数z 满足(3-4i)z=4+3i ,则z 的虚部为(A )4(B )45-(C )4 (D )45(3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是:(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :22221(0,0)x y a b a b -=>>C 的渐近线方程为(A )14y x =±(B )13y x =±(C )12y x =± (D )y x =±(5)执行右图的程序框图,如果输入的[]1,3r ∈-,则输出的s 属于(A )[]3,4-错误!未找到引用源。
(B )[]5,2-(C )[]4,3-错误!未找到引用源。
(D )[]2,5-(6),有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为(A )35003cm π(B )38663cm π(C )313723cm π(D )320483cm π(7)设等差数列{}n a 的前n 项和为n s ,若12m s -=-,0m s =,13m s +=,则m =(A )3(B )4(C )5(D )6(8)某几何体的三视图如图所示,则该几何休的体积为(A )168π+错误!未找到引用源。
1、下列各句中,没有语病的一项是A.首届“书香之家”颁奖典礼,是设在杜甫草堂古色古香的仰止堂举行的,当场揭晓了书香家庭、书香校园、书香企业、书香社区等获奖名单。
B.专家强调,必须牢固树立保护生态环境就是保护生产力的理念,形成绿水青山也是金山银山的生态意识,构建与生态文明相适应的发展模式。
C.市旅游局要求各风景区进一步加强对景区厕所、停车场的建设和管理,整治和引导不文明旅游的各种顽疾和陋习,有效提升景区的服务水平。
D.《四川省农村扶贫开发条例》是首次四川针对贫困人群制定的地方性法规,将精准扶贫确定为重要原则,从最贫困村户人手,让老乡过上好日子。
2、下面的文字有一处语病,请写出序号并加以修改。
(3分)①某科学研究所后院有座坟,②坟前竖着一块纪念碑,③碑上用中英文镌刻着“谨纪念为生命科学研究而献身的实验动物”的铭文。
④善待实验动物的尊严,是科学工作者的责任。
(1)有语病的一处的序号:(1分)(2)修改:。
(2分)3、填入下面空缺处的语句,最恰当的一项是我需要清静……最好去处是到个庙宇前小河旁边大石头上坐坐,。
雨季来时上面长了些绿绒似地苔类。
雨季一过,苔已干枯了,在一片未干枯苔上正开着小小蓝花白花,有细脚蜘蛛在旁边爬。
A.阳光和雨露把这石头漂白磨光了 B.这石头被阳光和雨露漂白磨光了C.阳光和雨露已把这石头漂白磨光了的 D.这石头是被阳光和雨露漂白磨光了的4、下面一段话有三个句子,其中一句有语病,请指出并针对语病进行修改,修改后的句子要保持原意。
(4分)①在长江三峡中,瞿塘峡最为雄奇险峻,峡内有不少令人惊叹的名胜古迹。
②在瞿塘峡北岸绝壁上,有一条沿江修建、全长65千米的古栈道,连通奉节白帝城与巫山青莲溪,全程异常艰险,这就是著名的夔巫古栈道。
③瞿塘峡南岸的白盐山有一处巨大的临江石壁,上面书写着自宋以来的篆、隶、楷、行等字体的数十块摩崖石刻,气势恢宏,与瞿塘峡雄伟的气势相得益彰。
有语病的句子是:__________________(只填序号)(2分)针对语病的修改__________________(2分)5、下列词语中,没有错别字的一项是A.妨碍功夫片钟灵毓秀管中窥豹,可见一斑B.梳妆吊胃口瞠目结舌文武之道,一张一驰C.辐射入场券循章摘句风声鹤唳,草木皆兵D.蜚然直辖市秘而不宣城门失火,殃及池鱼。
2013年普通高等学校招生全国统一考试理科数学新课标II 卷(贵州 甘肃 青海 西藏 黑龙江 吉林 宁 夏 内蒙古 新疆 云南 海南)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M = {x | (x -1)2 < 4, x ∈R },N ={-1, 0, 1, 2, 3},则M ∩ N =(A ){0, 1, 2} (B ){-1, 0, 1, 2} (C ){-1, 0, 2, 3} (D ){0, 1, 2, 3}答案:A【解】将N 中的元素代入不等式:(x -1)2 < 4进行检验即可. (2)设复数z 满足(1-i )z = 2 i ,则z =(A )-1+ i (B )-1- i (C )1+ i (D )1- i答案:A【解法一】将原式化为z = 2i1- i,再分母实数化即可.【解法二】将各选项一一检验即可.(3)等比数列{a n }的的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1 =(A )13(B )- 13(C )19(D )- 19答案:C【解】由S 3 = a 2 +10a 1 ⇒ a 3 = 9a 1 ⇒ q 2 = 9 ⇒ a 1 =a 5q 4 = 19(4)已知m , n 为异面直线,m ⊥平面α,n ⊥平面β . 直线l 满足l ⊥m ,l ⊥n ,l ⊂ /α,l ⊂ /β, 则:(A )α∥β且l ∥α (B )α⊥β且l ⊥β (C )α与β 相交,且交线垂直于l (D )α与β 相交,且交线平行于l 答案:D【解】显然α与β 相交,不然α∥β 时⇒ m ∥n 与m , n 为异面矛盾. α与β 相交时,易知交线平行于l .(5)已知(1+a x )(1+x )5的展开式中x 2的系数为5,则a = (A )- 4 (B )- 3(C )- 2 (D )- 1 答案:D 【解】x 2的系数为5 ⇒C 25+a C 15 = 5 ⇒a = - 1(6)执行右面的程序框图,如果输入的N =10,那么输出的S =(A )1+ 12 + 13 + … + 110(B )1+ 12! + 13! + … + 110!(C )1+ 12 + 13 + … + 111(D )1+12! + 13! + … + 111!答案:B【解】变量T , S , k 的赋值关系分别是: T n+1 =T nk n, S n+1 = S n+ T n+1, k n+1 = k n + 1.( k 0 =1, T 0 = 1, S 0 = 0) ⇒ k n= n + 1, T n= T nTn -1×T n -1T n -2× …×T 1T 0×T 0= 1k n -1×1k n -2×…×1k 0 = 1n !, S n= (S n - S n -1) + (S n -1- S n -2) + … + (S 1- S 0) + S 0 = T n+ T n -1 + … + T 0= 1+12! + 13!+ … + 1n !满足k n> N 的最小值为k 10= 11,此时输出的S 为S 10(7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1, 0, 1),(1, 1, 0),(0, 1, 1),(0, 0, 0),画该四面体三视图中的正视图时,以z O x 平面为投影面,则得到正视图可以为答案:A 【解】(8)设a = log 36,b = log 510,c = log 714,则(A )c > b > a(B )b > c > a(C )a > c > b(D )a > b > c答案:D【解】a = 1 + log 32,b = 1 + log 52,c = 1 + log 72log 23 < log 25 < log 27 ⇒ log 32 > log 52 > log 72 ⇒ a > b > c(9)已知a > 0,x , y 满足约束条件⎩⎪⎨⎪⎧x≥1x + y≤3y ≥a (x - 3) , 若z =2x + y 的最小值为1,则a =(A )14(B )12(C )1(D )2(A)(B) (C) (D)lxy C1A (1, 2)B (3, 0)o答案:B【解】如图所示,当z =1时,直线2x + y = 1与x = 1的交点C (1, -1) 即为最优解,此时a = k BC = 12(10)已知函数f (x ) = x 3 + a x 2 + b x + c ,下列结论中错误的是(A ) x 0∈R , f (x 0)= 0(B )函数y = f (x )的图像是中心对称图形(C )若x 0是f (x )的极小值点,则f (x )在区间(-∞, x 0)单调递减 (D )若x 0是f (x )的极值点,则f '(x 0 ) = 0 答案:C【解】f (x ) 的值域为(-∞, +∞), 所以(A )正确; f (x ) = [x 3 + 3x 2• a 3 + 3x •( a 3)2 + ( a 3)3 ]+ b x - 3x •( a 3)2 + c - ( a3)3= (x + a 3)3 + (b - a 23)(x + a 3) + c - ab 3 - 2a 327因为g (x ) = x 3 + (b -a 23)x 是奇函数,图像关于原点对称, 所以f (x ) 的图像关于点(- a 3 , c - ab 3 - 2a 327)对称.所以(B )正确;显然(C )不正确;(D )正确.(11)设抛物线C :y 2 =2p x ( p > 0)的焦点为F ,点M 在C 上,| MF |=5,若以MF 为直径的圆过点(0, 2),则C 的方程为 (A )y 2 = 4x 或y 2 = 8x (B )y 2 = 2x 或y 2 = 8x (C )y 2 = 4x 或y 2 = 16x (D )y 2 = 2x 或y 2 = 16x 答案:C【解】设M (x 0, y 0),由| MF |=5 ⇒ x 0 + p 2 = 5 ⇒ x 0 = 5 - p2圆心N (x 02 + p 4 , y 02 )到y 轴的距离| NK | = x 02 + p 4 = 12| MF |,则圆N 与y 轴相切,切点即为K (0, 2),且NK 与y 轴垂直⇒ y 0 = 4 ⇒2p (5 - p2 ) = 16 ⇒ p = 2或8 .(12)已知点A (-1, 0),B (1, 0),C (0, 1),直线y = a x +b (a > 0)将△ABC 分割为面积相等的两部分,则b 的取值范围是:(A )(0, 1)(B )(1-22 , 12)(C )(1-22 , 13](D) [ 13,12) 答案:B【解】情形1:直线y = a x +b 与AC 、BC 相交时,如图所示,设MC = m , NC = n , 由条件知S △MNC = 12 ⇒ mn = 1显然0 < n≤ 2 ⇒ m =1n ≥ 22又知0 < m≤ 2 , m ≠n 所以22≤ m ≤ 2 且m ≠1D 到AC 、BC 的距离为t , 则t m + t n = DN MN + DMMN = 1⇒ t = mn m +n ⇒1t = m + 1mf (m ) = m + 1m (22 ≤ m ≤ 2 且m ≠1)的值域为(2, 322 错误!未指定书签。
绝密★启用前
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)
文科数学
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一
项是符合要求的。
(1)已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M∩N= (A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0} (D){-3,-2,-1 }
(2)||=
(A)2(B)2 (C)(D)1
(3)设x,y满足约束条件,则z=2x-3y的最小值是
(A)(B)-6 (C)(D)-
(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1
(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为
(A)(B)(C)(D)
(6)已知sin2α=,则cos2(α+)=
(A)(B)(C)(D)
(7)执行右面的程序框图,如果输入的N=4,那么输出的S= (A)1
(B)1+
(C)1++++
(D)1++++
(8)设a=log32,b=log52,c=log23,则
(A)a>c>b (B)b>c>a (C)c>b>a (D)c>a>b (9)一个四面体的顶点在点间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得
到的正视图
可为
(A)(B)(C)(D)
( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L 的方程为
(A)y=x-1或y=-x+1 (B)y=(X-1)或y=-(x-1)
(C)y=(x-1)或y=-(x-1)(D)y=(x-1)或y=-(x-1)
(11)已知函数f(x)=x3+ax2+bx+c ,下列结论中错误的是
(A)
(B)函数y=f(x)的图像是中心对称图形
(C)若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减
(D)若x0是f(x)的极值点,则f’(x0)=0
(12)若存在正数x使2x(x-a)<1成立,则a 的取值范围是
(A)(-∞,+∞)(B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞)
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13题-第21题为必考题,每个试题考生都必须作答。
第22题-第24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
(13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.
(14)已知正方形ABCD的边长为2,E为CD的中点,则=________.
(15)已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球
的表面积为________.
(16)函数的图像向右平移个单位后,与函数y=sin(2x+)
的图像重合,则=___________.
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列。
(Ⅰ)求{an}的通项公式;
(Ⅱ)求a1+a4+a7+…+a3n-2.
(18)(本小题满分12分)
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(1)证明:BC1//平面A1CD;
(2)设AA1= AC=CB=2,AB=,求三棱锥C
一A1DE的体积.
(19)(本小题满分12分)
经销商经销某种农产品,在一个销售季度内,每售出It该产品获利润500元,未售
出的产品,每It亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为X的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.
(20)(本小题满分12分)
在平面直角坐标系xOy中,己知圆P在x轴上截得线段长为2,在Y轴上截得线段长为2.
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.
(21)(本小题满分12分)
己知函数f(X) = x2e-x
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.
请从下面所给的22,23,24三题中选定一题作答.并用2 B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F 分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B, E, F,C四点共圆。
(I)证明:CA是△ABC外接圆的直径;
(II)若DB=BE=EA.求过B, E, F,C四点的圆的面积与△ABC外接圆面积的比值.
(23)(本小题满分10分)选修4-4:坐标系与参数方程
已知动点P. Q都在曲线C:(t为参数)上,对应参数分别为t=a与t=2a (0<a<2π),M为PQ的中点。
(I)求M的轨迹的今数方程:
(Ⅱ)将M到坐标原点的距离d表示为a的26数,并判断M的轨迹是否过坐标原点.
(24)(本小题满分10分)选修4-5:不等式选讲
设a,b,c均为正数,且a+b+c=1。
证明:
(Ⅰ)ab+bc+ca≤;
(Ⅱ)+≥1。