中考数学压轴题——辅助线典型用法
- 格式:docx
- 大小:20.75 KB
- 文档页数:3
凌波微步,左右逢源,斗转星移——谈谈平面几何辅助线技巧之平移对称旋转虽然平面几何日趋式微,但它却是初中数学最重要的学习内容之一,对于培养学生形象思维能力和逻辑思维能力有着重要的作用。
也是很多学生学习的“瓶颈”,尤其在全国中考压轴题和杯赛联赛中,平面几何的推理和计算已然成了令人头痛的“珍珑棋局”,在网络上和平时的教学中老师们碰到的难题中平面几何题占了非常大的比例,而流传江湖的各种各样的“网络红题”,把我们虐的死去活来。
平面几何博大精深,我们常常看到平几高手们在平几题目中画出如神来之笔的辅助线,赞叹不已。
他们是怎么思考的呢?今天我以图形变换的观点对初中平面几何辅助线的作法聊聊我的一些粗浅看法,偷窥一下大神们在几何辅助线构造中的“武林秘籍”。
辅助线的功能是“沟通”和“显现”,沟通这部分图形和那部分图形的关系,显现可用定理和判断的依据。
在添加辅助线时,不应有思维定式,要具体情况具体分析。
在初中阶段,几何图形的变换主要有:平移,对称,旋转和位似。
前三种为全等变换,是今天要讲的几种辅助线方法。
第一套“秘籍”:凌波微步——平移法。
把图形G 上的所有点都按一定的方向移动一个相同的距离d ,移动后的点构成的图形G',这样的由图形G 到G' 的变换叫做平移变换,简称平移。
A 点经过平移变换得到点A' 称为A 点在该平移变换下的象,同时,A 称为A' 的原象;对于平移变化前后的线段,角,图形也同样引入“原象”“象”的概念。
很明显,平移有以下的基本性质:1.对线段而言,象与原象平行且相等;(平行四边形)2.对角而言,象与原象的对应边平行且方向相同;3.象与原象时全等图形。
平移的主要功能:把分散的线段,角相对集中起来,从而使已知条件集中在一个基本图形中,产生进一步的更加深入的结果。
或者,经过平移产生新的图形,而使得问题得以转化。
一.平移计算角度例 1. Rt△ACD ,∠C = 90︒,CE =AB ,DE =BC ,求∠AFB 的度数.解析:例2:△ABC ,AB =AC ,AD =DE =EC =CB ,求∠BAC .解析:学大教育集团QQ 群:475713417二.平移计算线段例 1.四边形ABCD ,AB ⊥BC ,AD ⊥DC ,△ABD 的两高AN ,DM 交于点H . 设BD =a ,AH =b ,求AC .解析:例2:四边形ABCD ,AB =CD = 3 ,∠ABC = 2∠ADC ,∠ABC +∠BCD = 240︒,∠B<∠C ,求BC .解析:三.比较线段大小例1 已知AB =CD ,且AB ⊥CD 于O ,求证:BC +AD ≥ 2 AB .解析如图:第二套“秘籍”:左右逢源——对称法把图形G 沿着直线l 折过来,如果和图形G' 重合,那么我们称这两个图形关于直线l 对称,这两个图形互为轴对称图形,直线l 叫做对称轴。
【初中数学】中考数学压轴题解题技巧+题型汇总2022中考数学压轴题题型思路数学压轴题9种题型1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2.图形位置关系中考数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4.一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5.多种函数交叉综合问题中考数学所涉及的函数就一次函数,反比例函数以及二次函数。
作为福建中考,近年,反比例函数连续四年作为填空压轴出现,一次函数与二次函数作为解答题压轴题出现,特别是第三问区分度大,难度大,在中考中面对这类问题,有步骤有分,对优生而言尽量多得分。
全等三角形(4种模型2种添加辅助线方法)1.题型一:一线三等角模型2.题型二:手拉手模型3.题型三:半角模型4.题型四:旋转模型5.题型五:倍长中线法6.题型六:截长补短法题型一一线三等角模型过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:题型二手拉手模型【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;12题型三半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
解题技巧:在图1中,△AEB 由△AND 旋转所得,可得△AEM ≌△AMN ,∴BM +DN =MN∠AMB =∠AMNAB =AH△CMN 的周长等于正方形周长的一半在图2中将△ABC 旋转至△BEF ,易得△BED ≌△BCD 同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转--证全等--得到相关结论.题型四旋转模型31一、奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题2二、费马点模型费马点就是到三角形的三个顶点距离之和最小的点.最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以掌握费马点等此类最值经典题是必不可少的.题型五倍长中线法三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等4在△ABC 中AD 是BC边中线延长AD 到E ,使DE =AD ,连接BE作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE延长MD 到N ,使DN =MD ,连接CD截长补短法截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a +b =c 时,用截长补短.1.补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2.截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
专题训练一 平移问题基本模型经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等,因此可以通过平移构造平行四边形,转移线段和角.(基本模型图1) (基本模型图2)如图1,将线段CD 进行平移可得到线段EA ,连接EC ,AD. 根据平移的性质,得CD ∥EA.∴四边形CDAE 是平行四边形.∴EC ∥AD.同理,四边形CDFA 、四边形CDBG 和四边形CDHB 均为平行四边形. 如图2,平移线段AB ,即可得到▱ABCP 、▱ABDM 、▱ABND 和▱ABQC. 典型题在Rt △BAC 中,∠A=90°,D,E 分别为AB ,AC 上的点.(1)如图1,CE=AB ,BD=AE ,过点C 作CF ∥EB ,且CF=EB ,连接DF 交EB 于点G ,连接BF ,求EBDC 的值; (2)如图2,若CE=kAB ,BD=kAE ,EB DC =12,求k 的值.(典型题图1) (典型题图2) 拓展题1.如图,在四边形ABCD中,AD∥BC,∠BAC=90°-1∠CAD,AC与BD相交于点E,且∠BEC=60°,若AD=5,2BD=15,求AC的长.(1题图)2.如图,在△ABC中,点D在AB的延长线上,点E在BC上,AC=BC=AD=DE,BE=BD,求∠BAC的度数.(2题图)3.阅读下面材料:数学课上,老师出示了下列问题:(1)如图1,过点B作AB的垂线BD,延长AB到点C,使AC=BD,延长BD到点E,使ED=CB,连接AE,CD,且CD的延长线交AE于点F,求∠AFC的度数;(2)如图2,在△ABC中,AB=AC=5m,D是边BC上一点,连接AD,延长CB到点E,使BE=kAD,过点E作EF,求EF的长.(用含m,k的式子表示)⊥AD,交AD的延长线于点F.若AF=kCD,tanC= 34(3题图1)(3题图2)同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠AFC的度数等于45°”小伟:“通过平移线段AC,BD,ED,BC中的一条线段,可以构造两个全等三角形,进而可以获得等腰直角三角形,那么∠AFC的度数等于45°这一结论也就显而易见了.”……老师:“只要类比小伟平移线段构造全等三角形的思路与方法,那么(2)的问题就能迎刃而解.”请你根据上面的材料,完成上面的两个问题的解答过程.4.如图,在四边形ABCD中,AD∥BC,AD+BC=BD,AC与BD 相交于点F。
陕西2023中考数学最后一道压轴题的典型例题讲解1. 引言陕西2023年中考数学考试备受关注,其中最后一道压轴题更是备受瞩目。
本文将对这一典型例题进行全面讲解,以帮助同学们更好地理解题目背后的数学原理。
2. 题目描述题目如下:已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),求\(\alpha\)的一个确定值。
3. 排除法解题这道题的解法可以有多种,其中一种比较简单的方法是使用排除法。
通过对一元二次方程的解的性质进行分析,我们可以排除一些不符合条件的根的取值,从而得到\(\alpha\)的确定值。
一元二次方程\(ax^2+bx+c=0\)的根可以通过求根公式得到:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]由于给定的一元二次方程为\(3x^2+4x-5=0\),所以\(a=3, b=4, c=-5\)。
根据求根公式,我们可以得到两个根:\[x=\frac{-4\pm\sqrt{4^2-4*3*(-5)}}{2*3}=\frac{-4\pm\sqrt{16+60}}{6}=\frac{-4\pm\sqrt{76}}{6}\]显然,给定的一元二次方程的根不满足问题中给定的条件,所以我们可以排除掉这组根。
进过排除法,我们知道\(\alpha\)的确定值不在\(\frac{-4\pm\sqrt{76}}{6}\)中。
4. 求和乘积解题除了排除法外,我们还可以利用一元二次方程根的特性进行解题。
根据一元二次方程的根与系数的关系,我们可以得到一元二次方程的两个根的和和积分别为:\(x_1+x_2=\frac{-b}{a}, x_1x_2=\frac{c}{a}\)将给定的一元二次方程\(3x^2+4x-5=0\)的系数代入上面的公式,可以得到:\(x_1+x_2=\frac{-4}{3}, x_1x_2=-\frac{5}{3}\)根据题目要求,已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),所以另一个根可以表示为\(\frac{-4}{3}-\alpha\)根据这两根的特性,我们可以得到以下的等式:\(\alpha+\frac{-4}{3}-\alpha=\frac{-4}{3}\)\(\alpha*\frac{-4}{3}=-\frac{5}{3}\)通过解以上方程组,可以得到\(\alpha=-\frac{1}{3}\)5. 总结与回顾通过以上的讲解,我们可以得出一元二次方程的根的确定值为\(\alpha=-\frac{1}{3}\)。
今天,数姐为大家整理了初中数学辅助线的添加方法,赶快来看看~~一、添辅助线有二种情况1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形:出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
人教部编版初中数学辅助线的添加方法及压轴题解题攻略一、添辅助线有二种情况1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形:出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
中考数学压轴题解题技巧方法压轴题这类题目一般分数多,难度大,考验综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点钻研项目。
下面是为大家整理的关于中考数学压轴题解题技巧,希望对您有所帮助!中考数学压轴题经典之作解法中考数学压轴题经典解法一:学会大体上把复杂图形拆解变成一些基本图形与几何相关的压轴题一直是中考热门考查对象,此类问题所给出的图形都较为复杂,甚至需要添加一些辅助线才能顺利解决问题。
中考数学压轴题脍炙人口解法二:不要忘了十分相似这个活宝压轴题具体会考什么?没有进入考场看到习题试卷那一刻,谁都不知道,加上压轴题牵涉到的涉入知识点较多。
如果我们刻意急著靠猜题、押题等这种方式去应付压轴题的学习,很可能会让考生输的很惨。
况且面对压轴题就毫无办法了吗?不要去猜题押题,但我们可以去研究题型,发现知识点和解题方法之间辨认出的联系,如相似就是一个极其热门的考点。
中考数学压轴题算术经典解法三:解决动态问题,要学会动中找静动态问题一直是中考数学热点,也是化学分析压轴题最喜欢定量分析题型之一。
解决此类问题,一定要认真观察点阵在运动变化过程中,图形的位置、大小、方向怎么变?往哪变?更要发现什么量是没变,学会动中找静。
中考数学压轴题实操1、基本知识不丢半分在不断加强中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。
“首先要梳理知识网络,思路清晰善用。
其次要掌握数学考纲,对考试心中有谱。
掌握今年中考数学的考纲,用考纲来统领知识初稿,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。
2、运用数形结合价值观中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的几何体性质研究数量关系,寻求李群问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。
纵观近几年我市各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标间的对应关系,一方面可用代数方法研究几何图形的,另一方面又可借助几何准确,得到某些代数问题的解答。
专题08解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】 (1)【类型一等腰三角形中底边有中点时,连中线】 (1)【类型二等腰三角形中底边无中点时,作高线】 (11)【类型三巧用“角平分线+垂线合一”构造等腰三角形】 (17)【典型例题】【类型一等腰三角形中底边有中点时,连中线】例题:已知,在ABC 中,90ACB ∠=︒,AC BC =,点M 是AB 的中点,作90DME ∠=︒,使得射线MD 与射线ME 分别交射线AC ,CB 于点D ,E .(1)如图1,当点D 在线段AC 上时,线段MD 与线段ME 的数量关系是___________;(2)如图2,当点D 在线段AC 的延长线上时,用等式表示线段CD ,CE 和BC 之间的数量关系并加以证明.【答案】(1)MD ME =;(2)CE CD BC =+,理由见解析.【分析】(1)连接CM ,由等腰直角三角形的性质可得CM MB =,ACM B ∠=∠,根据90DME ∠=︒可推导CMD BME ∠=∠,进而证明CMD BME △≌△,即可得到线段MD 与线段ME 的数量关系;(2)连接CM ,利用(1)中的证明思路,再次证明CMD BME △≌△,证得CD BE =,即可利用等量代换得到CE CD BC =+.【详解】(1)解:连接CM ,∵90ACB ∠=︒,AC BC =,点M 是AB 的中点∴CM AM MB ==,且CM AB ⊥,CM 平分ACB ∠,45A B ∠=∠=︒∴45ACM BCM B ∠=∠=︒=∠,90CMB ∠=︒,又∵90DME ∠=︒∴CMB CME DME CME∠-∠=∠-∠∴CMD BME∠=∠∴CMD BME △≌△(ASA )∴MD ME =.(2)CE CD BC =+,理由如下:连接CM ,由(1)可知:CM BM =,45ACM ABC ∠=∠=︒,CMD BME∠=∠∴135DCM EBM ∠=∠=︒在CMD △和BME 中,CMD BME CM BM DCM EBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴CMD BME △≌△(ASA )∴CD BE=∵CE BC BE=+∴CE CD BC =+.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,熟练掌握等腰直角三角形的性质是解决问题的关键.【变式训练】1.在ABC 中,90A ∠=︒,AB AC =,点D 是边BC 的中点.(1)如图,若点E ,F 分别在边AB ,AC 上,DE DF ⊥,求证:BE AF =,并说明理由;(2)在(1)的条件下,AB AC a ==,求AE AF +的值.【答案】(1)证明见解析;(2)a .【分析】(1)连接AD ,证明()BDE ADF ASA ≌即可得到BE AF =;(2)由(1)可得:BE AF =,进一步得到:AE BE AE AF AB a +=+==.【详解】(1)证明:连接AD ,∵90A ∠=︒,AB AC =,∴45B C ∠==︒∠,∵点D 是边BC 的中点,∴45B BAD DAC C ∠=∠=∠=∠=︒,AD BC ⊥,AD BD =,∵DE DF ⊥,∴90EDA ADF Ð+Ð=°,∵90BDE EDA ∠+∠=︒,∴ADF BDE ∠=∠,在BDE △和ADF △中,BDE ADF BD AD B DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BDE ADF ASA ≌,∴BE AF =.(2)解:由(1)可知:()BDE ADF ASA ≌,∴BE AF =,∵AB AC a ==,∴AE AF AE BE AB a +=+==.【点睛】本题考查全等三角形的判定及性质,等腰直角三角形的性质,解题的关键是掌握全等三角形的判定及性质.2.如图1,在Rt ABC △中,90C ∠=︒,AC BC =,点P 是斜边AB 的中点,点D ,E 分别在边,AC BC 上,连接,PD PE ,若PD PE ⊥.(1)求证:PD PE =;(2)若点D ,E 分别在边,AC CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,PBE △是否能成为等腰三角形?若能,请直接写出PEB ∠的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时PEB ∠的度数为22.5︒或67.5︒或90︒或45︒【分析】(1)连接PC ,根据等腰直角三角形的性质可得45DCP B ∠=︒=∠,从而得到CP BP =,再由PD PE ⊥,可得DPC EPB ∠=∠,可证得DPC EPB △△≌,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得45ECP ABC A ACP ∠=︒=∠=∠=∠,从而得到CP AP =,再由∵,PD PE CP AB ⊥⊥,可得APD CPE ∠=∠,可证得APD CPE △≌△,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC ,∵90,ACB AC BC ∠=︒=,∴45A B ∠=∠=︒,∵P 为斜边AB 的中点,∴CP AB ⊥,∴45DCP B ∠=︒=∠,∴CP BP =,∵PD PE ⊥,∴90DPC CPE CPE EPB ∠+∠=∠+∠=︒,∴DPC EPB ∠=∠,在DPC △和EPB △中,DCP B PC PB DPC EPB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA DPC EPB △△≌,∴PD PE =;(2)解:PD PE =仍成立,理由如下:连接CP ,∵90,C AC BC ∠=︒=,∴45A ABC ∠=∠=︒,②当BE BP =,点E ③当EP EB =时,则∴180PEB B ∠=︒-∠-④当EP PB =,点∴PEB B ∠=∠=综上所述,PBE △【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3.在ABC 中,E(1)如图1,若点(2)如图2,BF 为腰(3)如图3,当点【答案】(1)见解析(2)PD PE BF +=,理由见解析(3)143【分析】(1)根据ABP S S =△APC ,即可得证;∵AB AC =,点P ∴ABP S S =△△APC即1122AB DP AC ⋅=∴PD PE =,∵AB AC =,PD ∴=ABP APC ABCS S S + ∴1122AB DP AC ⋅+∴PD PE BF +=,∵AB AC =,PD AB ⊥∴=ABC ABP APCS S S - ∴11=22AC BF AB PD ⋅⋅(1)若90EOF ∠=︒,两边分别交,AC BC 于E ,F 两点.==同理可证:AO CO BO∵AC BC =,90ACB ∠=︒,点O 为AB 的中点,∴0,90,45AO CO B AOC FOH BAC BCO ︒︒==∠=∠=∠=∠=,∴.,135COF AOH OCF OAH ︒∠=∠∠=∠=,∴(ASA)COF AOH ≌,∴3,CF AH OF OH ===,∵45,90EOF FOH ︒︒∠=∠=,∴45EOF EOH ︒∠=∠=,又∵,OF OH EO EO ==,∴(SAS)EOF EOH ≌,∴5EF EH ==,∴.2AE EH AH =-=.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】例题:如图,已知点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE .(1)求证:BD =CE ;(2)若AD =BD =DE =CE ,求∠BAE 的度数.【答案】(1)见解析;(2)90°.【分析】(1)作AF ⊥BC 于点F ,利用等腰三角形三线合一的性质得到BF =CF ,DF =EF ,相减后即可得到正确的结论.(2)根据等边三角形的判定得到△ADE 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF ⊥BC 于F .【变式训练】(1)若20∠=︒EAC ,求CBE ∠(2)求证:AE EC ⊥;(3)若BE a =,AE b =,CE =【答案】(1)20°(2)见解析(3)21122a bc +∴AFB ABC CGB ∠=∠=∠又∵AD AB CB ==,∴45BAC ACB ∠=∠=︒,∵FAB FBA FBA ∠+∠=∠∴FAB CBG CAE ∠=∠=∠∴在BAF △和CBG 中,(1)如图1,若ACD ∠与BAC ∠互余,则DCB ∠=__________()如图,过A点作AE BC⊥于E点,)②如图,作BG AC ⊥于G ,作DN 垂直于AC 的延长线于N .则90BGA DNC ∠=∠=︒.∵AB AC =,AC CD =,∴AB CD =,∵ABC 与ACD 的面积相等,∴BG DN =.∴ABG ≌CDN △.∴BAG DCN ∠=∠.180ACD DCN ∠+∠=︒,∴180ACD BAC ∠+∠=︒,综上,ACD ∠与BAC ∠相等或互补.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,同底等高的两个三角形面积相等,综合能力较强,有一定难度.熟练掌握以上知识是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC ≌△△【答案】[问题情境]ASA ,全等三角形对应边相等;[问题探究]见解析;[拓展延伸【分析】[问题情境]利用全等三角形的性质证明即可;[问题探究]延长BE 交CA 延长线于F ,证明CEF ∆≌CEB ASA ∆(),推出FE =ACD ∆≌ABF ASA ∆(),可得结论;[拓展延伸]结论:12BE DF =.过点D 作DG AC ∥,交BE 的延长线于点G ,与DG AC ∥,交BE 的延长线于点G ,与AE 相交于H ,证明方法类似.CD 平分ACB ∠,FCE BCE ∴∠=∠,在CEF ∆和CEB ∆中,90FCE BCE CE CE CEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,CEF ∴∆≌CEB ASA ∆(),DG AC ,GDB C BHD ∴∠=∠∠,12EDB C ∠=∠ ,12EDB EDC ∴∠=∠=∠BE ED ⊥ ,90BED ∴∠=︒,。
全等典型辅助线和压轴题一.截长补短1.已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.2.如图已知△ABC中,AB=AC,∠ABD=60°,且∠ADB=90°﹣∠BDC,求证:AB=BD+DC.3.如图,△ABC中,∠CAB=∠CBA=45°,CA=CB,点E为BC的中点,CN⊥AE交AB 于N,连EN,求证:AE=CN+EN.4.如图,四边形ABCD中,∠A=∠C=90゜,∠D=60゜,AB=BC,E、F,分别在AD、CD 上,且∠EBF=60゜.求证:EF=AE+CF.5.如图,四边形ABCD中,∠A=∠C=90゜,∠D=60゜,AB=BC,E、F,分别在AD、CD 上,且∠EBF=60゜.若E、F分别在AD、DC的延长线上,求证:AE=EF+CF.6.如图,△DBC中,DB=DC,A为△DBC外一点,且∠BAC=∠BDC,DM⊥AC于M,求的值.7.(2007•牡丹江)已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.8.(2013•锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.二.做垂线9.如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.10.如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E ,并且,求∠ABC+∠ADC的度数.11.如图,△ABC中,BD是AC边上的中线,BD⊥BC于点B,∠ABD=30°,求证:AB=2BC.12.如图,△ABC中,AB=AC,∠BAC=90°,D为BC上一点,过D作DE⊥AD,且DE=AD,连BE,求∠DBE的度数.13.如图,OA=OB,OA⊥OB,∠ASO=135°,求证:AS⊥BS.14.如图,四边形ABCE中,AB=BC,AB⊥BC,CE⊥AE,BD⊥AE于D,求证:BD﹣CE=AD.15.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.16.如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF 的平分线上一点,且∠ADC=45°,CD交AB于E,(1)求证:AD=CD;(2)求AE的长.17.Rt△ABC中,∠ACB=90°,AC=BC,点E为△ABC外一点,且∠CEA=45°.求证:AE⊥BE.三.中线倍长18.以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE 的位置关系是_________,线段AM与DE的数量关系是_________;(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.四.坐标几何19.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.(1)∠COA的值为_________;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.20.等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.。
中考压轴题(典型辅助线用法)
一、三角形中常见辅助线的添加
1. 与角平分线有关的
(1)可向两边作垂线,得到一对全等直角三角形。
(2)可作平行线,构造等腰三角形
(3)在角的两边截取相等的线段,构造全等三角形
2. 与线段长度相关的
(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可。
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可。
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
3. 与等腰等边三角形相关的
(1)考虑三线合一。
(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60°。
二、四边形中常见辅助线的添加(特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形)
1.和平行四边形有关的辅助线作法
(1)利用一组对边平行且相等构造平行四边形。
(2)利用两组对边平行构造平行四边形。
(3)利用对角线互相平分构造平行四边形。
2.与矩形有辅助线作法
(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。
(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少。
3.和菱形有关的辅助线的作法(连接菱形的对角线,借助菱形的判定定理或性质定理解决问题)
(1)作菱形的高。
(2)连结菱形的对角线。
4.与正方形有关辅助线的作法
正方形既是轴对称图形,又是中心对称图形,作正方形对角线是解决正方形问题的常用辅助线。
5. 与梯形有关的辅助线的作法
(1)作一腰的平行线构造平行四边形和特殊三角形。
(2)作梯形的高,构造矩形和直角三角形。
(3)作一对角线的平行线,构造直角三角形和平行四边形。
(4)延长两腰构成三角形。
(5)作两腰的平行线等。
三、圆中常见辅助线的添加
1. 遇到弦时(解决有关弦的问题时)
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:(1)利用垂径定理。
(2)利用圆心角及其所对的弧、弦和弦心距之间的关系。
(3)利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
2.遇到有直径时,常常添加(画)直径所对的圆周角
作用:利用圆周角的性质得到直角或直角三角形。
3.遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点
作用:利用圆周角的性质,可得到直径。
4.遇到弦时,常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点
作用:(1)可得等腰三角形。
(2)据圆周角的性质可得相等的圆周角。
5. 遇到有切线时:①常常添加过切点的半径(连结圆心和切点)
作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形
②常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。
6. 遇到证明某一直线是圆的切线时
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。
作用:若OA=r,则l为切线
(2)若直线过圆上的某一点,则连结这点和圆心(即作半径)
作用:只需证OA⊥l,则l为切线
(3)有遇到圆上或圆外一点作圆的切线
7. 遇到两相交切线时(切线长)
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。
作用:据切线长及其它性质,可得到:
(1)角、线段的等量关系(2)垂直关系(3)全等、相似三角形
8. 遇到三角形的内切圆时
连结内心到各三角形顶点,或过内心作三角形各边的垂线段。
作用:利用内心的性质,可得:
(1)内心到三角形三个顶点的连线是三角形的角平分线。
(2)内心到三角形三条边的距离相等。
9. 遇到三角形的外接圆时,连结外心和各顶点
作用:外心到三角形各顶点的距离相等
10. 遇到两圆外离时(解决有关两圆的外、内公切线的问题)
常常作出过切点的半径、连心线、平移公切线,或平移连心线
作用:(1)利用切线的性质;(2)利用解直角三角形的有关知识
11. 遇到两圆相交时常常作公共弦、两圆连心线、连结交点和圆心等
作用:(1)利用连心线的性质、解直角三角形有关知识
(2)利用圆内接四边形的性质
(3)利用两圆公共的圆周的性质
(4)垂径定理
12.遇到两圆相切时常常作连心线、公切线
作用:(1)利用连心线性质(2)切线性质等
13. 遇到三个圆两两外切时常常作每两个圆的连心线
作用:可利用连心线性质
14.遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时常常添加辅助圆
作用:以便利用圆的性质
15.辅助线记忆歌诀
人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解.。