九年级数学圆的基本概念和性质同步练习
- 格式:doc
- 大小:1.40 MB
- 文档页数:4
人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1 圆的有关概念(1)圆:平面上到的距离等于的所有点组成的图形.如图所示的圆记做⊙O。
(2)弦与直径:连接任意两点的叫做弦过圆心的叫做直径直径是圆内最长的。
(3)弧:圆上任意两点间的部分叫做小于半圆的弧叫做大于半圆的弧叫做。
(4)圆心角:顶点在的角叫做圆心角。
(5)圆周角:顶点在并且两边都与圆还有一个交点的角叫做圆周角。
(6)弦心距:到弦的距离叫做弦心距。
(7)等圆:能够的两个圆叫做等圆。
(8)等弧:在同圆或等圆中能的弧叫等弧。
考点2垂径定理(1)定理:垂直于弦的直径这条弦并且弦所对的两条弧。
(2)推论:①平分弦(不是直径)的直径于弦并且弦所对的两条弧②弦的垂直平分线经过并且弦所对的两条弧。
(3)延伸:根据圆的对称性如图所示在以下五条结论中:①AC AD=③CE=DE④AB⊥CD⑤AB是直径。
=②BC BD只要满足其中两个另外三个结论一定成立即推二知三。
考点3 弧弦圆心角之间的关系(1)定理:在同圆或等圆中相等的圆心角所对的相等所对的相等。
(2)推论:在同圆或等圆中如果两个圆心角两条弧两条弦中有一组量相等那么它们所对应的其余各组量都分别相等。
考点4圆周角定理及其推论。
(1)定理:一条弧所对的圆周角等于它所对的的一半.如图a=12图a图b图c( 2 )推论:①在同圆或等圆中同弧或等弧所对的圆周角相等.如图b ①A=。
①直径所对的圆周角是直角.如图c=90°。
①圆内接四边形的对角互补.如图a ①A+=180° ①ABC+=180°。
关键点:垂径定理及其运用(1)垂径定理及推论一条直线在下列5条中只要具备其中任意两条作为条件就可以推出其他三条结论.称为知二得三(知二推三)。
①平分弦所对的优弧②平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)③平分弦④垂直于弦⑤过圆心(或是直径)(2)常用的辅助线作垂直于弦的直径或只画弦心距。
24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。
圆的基本性质记忆导图 ()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧对称、旋转对称对称性:轴对称、中心角形顶点的距离相等定理:三角形外心到三、圆的内接三角形三角形的外接圆、外心圆的作法圆的确定几者之间的关系圆心角的概念距间的关系圆心角、弧、弦、弦心弦心距垂径定理的推论垂径定理垂径分弦点在圆外点在圆内点在圆上点与圆的位置关系半圆、等圆弓形特殊弦:直径普通弦:小于直径的弦弦等弧优弧劣弧或弧圆弧圆、圆心、半径圆的相关概念圆的基本性质 考点1 圆的相关概念1、圆的定义(1)线段OA 绕着它的一个端点O 旋转一周,另一个端点A 所形成的封闭曲线,叫做圆。
(2)圆是到定点的距离等于定长的点的集合。
(3)固定的端点O 叫做圆心。
(4)线段OA 的长为r 叫做半径。
2、圆弧(1)圆上任意两点间的部分叫做圆弧,简称弧。
(2)大于半圆的弧叫做优弧,一般用三个字母表示。
(3)小于半圆的弧叫做劣弧。
(4)在同圆或等圆中,能够互相重合的弧叫做等弧。
3、弦(1)连接圆上任意两点的线段叫做弦。
(2)经过圆心的弦叫做直径。
4、弓形由弦及其所对的弧组成的图形叫做弓形。
5、半圆、等圆(1)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(2)能够重合的两个圆叫做等圆,等圆的半径相等。
考点2 点与圆的位置关系平面上一点P 与⊙O (半径为r )的位置关系有以下三种情况:(1)点P在⊙O上⇔OP=r;(2)点P在⊙O内⇔OP<r;(3)点P在⊙O外⇔OP>r。
考点3垂径分弦1、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
2、推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线过圆心,且平分弦对的两条弧。
③平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦。
④平行弦夹的弧相等。
一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;(3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系·1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;'A相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;【五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD;中任意2个条件推出其他3个结论。
圆的基本性质知识点圆的定义几何定义:线段OA,绕O点旋转一周得到的图形,叫做圆。
其中,O为圆心,OA为半径。
集合定义:到定点等于定长的所有点的集合。
其中,定点为圆心,定长为半径。
圆的书写格式:圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
与圆有关的线段半径:圆上一点与圆心的连线段。
确定一个圆的要素是圆心和半径。
弦:连结圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫做直径。
弦心距:圆心到弦的垂线段的长。
弧:圆上任意两点间的部分叫做圆弧,简称弧。
劣弧:小于半圆周的圆弧叫做劣弧。
表示方法:优弧:大于半圆周的圆弧叫做优弧。
表示方法:在同圆或等圆中,能够互相重合的弧叫做等弧。
注意:同弧或等弧对应的弦相等。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
注意: 定理中的“垂直于弦的直径”可以是直径,也可以是半径,深圳可以是过圆心的直线或线段;该定理也可以理解为:若一条直线具有两条性质:①过圆心;②垂直于一条弦,则此直线具有另外三条性质:①平分此弦;②平分此弦所对的优弧;③平分此弦所对的劣弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
在下列五个条件中:①CD是直径;②CD⊥AB;③AM=BM;④AC=BC;⑤AD=BD.只要具备其中两个条件,就可推出其余三个结论.注意:(1)在圆中,与已知弦(非直径)相等的弦共有条;共端点且相等的弦共有条。
(2)在圆中,与已知弦(非直径)平行的弦共有条;平行且相等的弦共有条。
例1.如图:OA、OB为⊙O的半径,C、D分别为OA、OB的中点,求证:AD=BC.例2.如图,已知AB是⊙O的直径,弦CD⊥AB,垂足是E,如果AB=10cm,CD=8cm,求AE的长。
24.1圆内容提要1.平面上到定点的距离等于定长的点的集合叫做圆,其中定点为圆心,定长为半径.它包含两方面的意义:(1)圆上各点到定点(即圆心)的距离等于定长(即半径);(2)到定点的距离等于定长的点都在圆上.2.确定一个圆需要两个要素,即圆心与半径,其中圆心确定圆的位置,半径确定圆的大小.3.圆是中心对称图形,对称中心是圆心.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4.圆是轴对称图形,其对称轴是任意一条经过圆心的直线.(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;(2)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.5.圆周角的性质:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;(2)在同圆或等圆中,相等的圆周角所对的弧相等;(3)半圆或直径所对的圆周角是直角;(4)90 的圆周角所对的弦是直径;(5)圆内接四边形的对角互补.6.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.24.1.1圆基础训练1.以定点O为圆心,能作个圆,这些圆是圆;以定长R为半径作圆,能作个圆,这些圆是圆;以定点O为圆心,定长R为半径作圆,能且只能作个圆.2.如图,图中所画的有条直径,有条非直径的弦,以点A为一个端点的优弧有条,劣弧有条.3.如图,点A,B在O∠=︒,那么ABO∆是三角形.⊙上,60AOB4.下列命题为真命题的有()①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④长度相等的两条弧是等弧.A.2个B.3个C.4个D.5个5.如图,AB是半圆O的直径,点P从点O出发,沿OA AB BO--的路径运动一周.设OP的长为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()6.如图所示,已知矩形ABCD的对角线AC和BD相交于点O,试判断A,B,C,D四个点是否在同一个圆上.如果在,请给予证明;如果不在,请说明理由.7.如图,A,B,C为O∠=︒,求OAC∠的度数.OBC⊙上的三点,50OBA∠=︒,608.如图,AB,AC为O∠=∠.⊙的弦,连接CO,BO并延长分别交弦AB,AC于点E,F,B C 求证CE BF=.24.1.2垂直于弦的直径基础训练1.下列图形中能够得到AE BE=的图形有()个.2.如图,AB是O⊥,垂足为M,下列结论不一定成立的是()⊙的直径,弦CD ABA.CM DM=B.AC AD=C.2=AD BDD.BCD BDC∠=∠3.如图,AB是OCD=,那么AE的长AB=,8⊥,垂足为E,如果10⊙的直径,弦CD AB为()A.2 B.3 C.4 D.54.如图,AB是OAOB∠=︒,则弦AB的长是()OA=,120⊙的弦,半径2A.22B.23C.5D.355.如图,O⊙的直径为10,弦8AB=,P是弦AB上一个动点,那么OP长的取值范围是.6.下列命题正确的有()①弦的垂直平分线必过圆心;②平分弦的直径垂直于弦;③圆中两条非直径的相交弦不能互相平分.A.0个B.1个C.2个D.3个7.如图,AB是O=.⊙的弦,C,D为直线AB上两点,OC OD=,求证AC BD8.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部距离为20cm,则修理工应准备内直径是多少的管道?24.1.3弧、弦、圆心角基础训练1.下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等,其中是真命题的是()A.①②B.②③C.①③D.①②③2.如图,在O∠=︒,则BOC∠等于()A⊙中,点C是AB的中点,若40A.40︒B.50︒C.70︒D.80︒3.如图,在O∠=∠,则AB与CD的大小关系是()AOB COD⊙中,圆心角2A .2AB CD = B .2AB CD >C .2AB CD < D .不能确定4.如图,在O ⊙中,AB AC =,70B ∠=︒,则A ∠的度数为 . 5.在O ⊙中,弦4AB =,弦心距为23,则圆心角AOB ∠为度.6.如图,AB 是O ⊙的直径,BC CD DE ==,35COD ∠=︒,则AOE ∠的度数为.7.已知A ,B 是O ⊙上的点,120AOB ∠=︒,C 是AB 的中点,求证:四边形OACB 是菱形.8.AC ,BD 为O ⊙的弦,且AC BD =,问AB 与CD 是否相等,为什么?9.如图,已知AB是O⊥,求⊥,DN AB⊙的直径,M,N分别是OA,OB的中点,CM AB证AC BD=.24.1.4圆周角基础训练1.如图,在O∠的度数是.∠=︒,则圆周角ACB⊙中,圆心角48AOB2.如图,O⊙的内接四边形ABCD,115∠=︒,则BOD∠=.A3.如图,A,B是O⊙上不与点A,B重合的任一点,则ACB∠AOB⊙上两点,且70∠=︒,C是O的度数是.4.如图,O⊥,垂足为N,则ON=()⊙的半径为13,弦AB的长度是24,ON ABA.5 B.7 C.9 D.115.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动,下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()6.如图,O∠等于()∠=︒,则DCFDOE⊙的直径CD过弦EF的中点G,40A.80︒B.50︒C.40︒D.20︒7.如图,AB是O=,请问BD与CD的⊙的直径,BD是O⊙的弦,延长BD到C,使AC AB大小有什么关系?试给予证明.8.如图,ABC⊙,交BC于点D,交CA的延长线于点E,∆中,AB AC=,以AB为直径作O连接AD ,DE .(1)求证:D 是BC 的中点;(2)若3DE =,2BD AD -=,求O ⊙的半径.能力提高1.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A ,B 的读数分别为86︒,30︒,则ACB ∠的大小为( ) A .15︒B .28︒C .29︒D .34︒2.如图,O ⊙的弦AB 垂直平分半径OC ,若6AB =,则O ⊙的半径为( ) A .2B .22C .22D .623.如图,AB 是O ⊙的直径,15ACD ∠=︒,则BAD ∠的度数为( ) A .75︒B .72︒C .70︒D .65︒4.若O ⊙所在平面内有一点P ,这点P 到O ⊙上的点的最大距离为a ,最小距离为()b a b >,则此圆的半径为( ) A .2a b+ B .2a b- C .2a b +或2a b- D .a b +或a b -5.如图,水平放置的一个油管的截面上有油部分油面高CD为8cm,其中有油部分油面宽AB 为24cm,则截面半径为cm.6.如图O⊙的半径为1cm,弦AB,CD的长度分别为2cm,1cm,则弦AD,BC所夹的锐角APB∠=度.7.如图,CD是O⊙∠=︒,AE交OEOD⊙的直径,点E在圆上,点A在线段DC的延长线上,72于B,且AB OC=,求A∠的度数.8.如图,已知AB AC ADBAC∠的度数是多少?∠=︒,求CAD==,2CBD BDC∠=∠,449.已知,在OCD=,求AB与CD间的距离.AB=,8∥,半径为5,6⊙中,弦AB CD拓展探究1.如图,ABC⊙的内接三角形,点C是优弧BA上一点(点C与A,B不重合),设∆是O∠=,CβOABα∠=.(1)当35α=︒时,求β的度数;(2)猜想α与β之间的数量关系,并证明.2.如图,已知AB是O⊥,E是AC上一点,AE,DC的延长线相交于点⊙的直径,弦CD AB∠=∠.F,求证AED CEF3.如图,AD为ABC∠的平分线交AD于点E,∆外接圆的直径,AD BC⊥,垂足为点F,ABC连接BD,CD.(1)求证BD CD =;(2)请判断B ,E ,C 三点是否在以D 为圆心,以DB 的长为半径的圆上?并说明理由.24.1 参考答案:24.1.1 圆基础训练1.无数 同心 无数 等 1 2.1 2 4 4 3.等边 4.A 5.C6.提示:OA OB OC OD ===,点A ,B ,C ,D 到点O 的距离相等. 7.20︒ 8.略24.1.2 垂直于弦的直径基础训练1.B 2.C 3.A 4.B 5.35OP ≤≤ 6.C 7.略 8.100cm 24.1.3 弧、弦、圆心角基础训练1.A 2.B 3.A 4.40︒ 5.60 7.略 8.AB CD = 9.证明略 24.1.4 圆周角基础训练1.24︒ 2.130︒ 3.35︒或145︒ 4.A 5.D 6.D 7.BD CD =,证明略8.(1)证明略 (2)10r =能力提高1.B 2.A 3.A 4.C 5.13 6.75 7.24A ∠=︒ 8.88︒ 9.1或7 拓展探究1.(1)55︒;(2)90αβ+=︒,证明略.2.提示:连接BE,证明略.3.(1)证明略;(2)B,E,C三点在以点D为圆心,以DB为半径的圆上(提示:证DB DE DC==).。
九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。
3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90° ,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
九年级数学圆专题训练摘要:1.圆的基本概念和性质2.圆的计算公式和定理3.圆与直线的关系及应用4.圆与圆的关系及应用5.圆的典型题型和解题方法6.提高练习和策略正文:一、圆的基本概念和性质1.圆的定义:平面上一动点以一定点为中心,一定长为半径,所画的封闭图形称为圆。
这个定点称为圆心,定长称为半径。
2.圆的性质:(1)圆心到圆上任意一点的距离等于半径;(2)圆上所有点到圆心的距离相等,称为半径;(3)任意一条直径都将圆分为两个等面积的扇形;(4)圆内接四边形的对角线相等。
二、圆的计算公式和定理1.圆的周长公式:C = 2πr,其中r为半径,π约等于3.14;2.圆的面积公式:S = πr,其中r为半径,π约等于3.14;3.圆弧长公式:L = θr,其中θ为圆心角的弧度制表示,r为半径;4.圆周角定理:圆周角所对的弧相等,圆周角所对的圆心角相等;5.圆周角定理推论:同弧或等弧所对的圆周角相等,等弧或同圆周角所对的圆心角相等。
三、圆与直线的关系及应用1.圆与直线的位置关系:相交、相切、相离;2.直线与圆的切线:从圆外一点到圆上引出的线段叫做切线,切线与半径垂直;3.切线长定理:从圆外一点到圆上引出的两条切线长度相等;4.圆的切线与圆心角的关系:圆心角所对的切线长度相等。
四、圆与圆的关系及应用1.两圆的位置关系:内含、内切、相交、外切、相离;2.圆与圆的公式:圆心距、半径之和、半径之差与圆心距的关系;3.两圆公切线:两个相交或相切的圆有两条公切线,分别为内公切线和外公切线。
五、圆的典型题型和解题方法1.圆的方程:圆的标准方程、一般方程;2.圆的参数方程:极坐标、直角坐标;3.圆的恒等式:圆的切线长公式、圆心角公式、弧长公式、面积公式;4.圆与几何图形结合的问题:圆与三角形、四边形、多边形等。
六、提高练习和策略1.加强基础知识的掌握,熟练运用圆的公式和定理;2.培养空间想象能力,熟练画出圆与直线、圆与圆的关系;3.归纳总结解题方法,提高解题效率;4.多做典型题目,拓宽解题思路;5.学会分析题目,确定解题方向。
新课标人教版九年级数学上册——《圆的有关性质》讲义与课堂同步练习一、知识梳理圆的概念如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.固定的端点 O 叫做圆心;线段 OA 叫做半径;以点 O 为圆心的圆,记作⊙O,读作“圆O”.圆心相同,半径不同半径相同,圆心不同确定一个圆的两个要素:一是圆心,一是半径动态:在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.静态:圆心为 O、半径为 r 的圆可以看成是所有到定点 O 的距离等于定长 r 的点的集合.弦:连接圆上任意两点的线段叫做弦,如图中的 AC.经过圆心的弦叫做直径,如图中的 AB.弧:圆上任意两点间的部分叫做圆弧,简称弧.以 A、B 为端点的弧记作,读作“圆弧 AB”或“弧 AB”圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.劣弧与优弧:小于半圆的弧叫做劣弧.大于半圆的弧(用三个字母表示,)叫做优弧.等弧:在同圆或等圆中,能重合的弧叫等弧.练习1.判断下列说法的正误:(1)弦是直径(2)半圆是弧;(3)过圆心的线段是直径(4)半圆是最长的弧;(5)圆心相同,半径相等的两个圆是同心圆(6)半径相等的两个半圆是等弧.二:垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. 练习:1下列哪些图形可以用垂径定理?你能说明理由吗?2如图,已知在两同心圆⊙O 中,大圆弦 AB 交小圆于 C,D么关系?变式2如图,连接 OA ,OB ,设 AO=BO ,求证:AC=BD .三:圆心角 圆是中心对称图形。
它的对称中心是圆心,它具有旋转不变性.性质:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合.圆心角:把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.我们把顶点在圆心的角叫做圆心角.如∠NON ′是圆 O 的一个圆心角.性质:把圆心角等分成 360 份,则每一份的圆心角是 1°,同时整个圆也被分成了 360 份. 则每一份这样的弧叫做 1°的弧.这样1°的圆心角对着 1°的弧,1°的弧对着 1°的圆心角.n °的圆心角对着 n °的弧,n °的弧对着 n °的圆心角. 性质:弧的度数和它所对圆心角的度数相等.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角______ , 所对的弦______; 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角______,所对的弧______. 同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等二、同步题型分析B(一)圆的定义解析:准确理解圆的定义,圆是到定点的距离等于定长的点的集合。
1. 要确定一个圆,需要知道_________和___________.
2. 已知⊙O 的直径为4cm ,则⊙O 的面积为_________,周长为_________。
3. 如果的周长为10π,那么它的半径为_________
4. 到定点O的距离等于2cm 的点的集合是以_________为圆心,_________为半径的圆.
5. 在同圆中,如果B A =2D C
,那么弦AB 、CD 的关系为AB____2CD.
6. 正方形ABCD 的边长为1,以A 为圆心,1为半径做⊙A ,则点B 在⊙A ________,C 点
在⊙A ________,D 点在⊙A ________.
7. 圆是轴对称图形,它有____条对称轴,是_________直线;圆还是中心对称图形,对
称中心是_____
8. 弧分为_________,_________,_________
9. 一个圆的最长弦长为10cm ,则此圆的半径是_________
10. A、B是半径为2的⊙O 上不同两点,则AB 的取值范围是_________
11. 判断:
(1)直径是弦.( )(2)弦是直径.( ) (3)半圆是弧,但弧不一定是半圆.( )
(4)半径相等的两个半圆是等弧.( ) (5)长度相等的两条弧是等弧.( )
(6)周长相等的圆是等圆.( ) (7)面积相等的圆是等圆.( )。
12. 如图:AB 、AC 是⊙O 的两条弦,且AB=AC 。
求证:∠1=∠2。
13. 如图:OA 、OB 为⊙O 的半径,C 、D 分别为OA 、OB 的中点,求证:AD=BC
14.如图:在矩形ABCD中,对角线AC和BD交于点O,试说明点A、
B、C、D在同一个圆上,并画出这个圆。
1.(1)过圆心(2)垂直于弦(3)平分弦(4)平分优弧(5)平分劣弧,知二得三,注意(1)(3)推(2)(4)(5)时,平分弦得直径中的弦是_________________
2.在同圆中,平分弦所夹的弧_________
3.在同圆或等圆中,相等的弧所对的弦_________,相等的弦所对的优弧和劣弧分别________。
4.已知⊙O的直径AB=10cm,弦CD⊥AB于M,且OM=3cm,则CD=_______。
2cm的圆中,垂直平分半径的弦长为_______。
5.半径是3
6.AB是⊙O的直径,弦CD⊥AB,垂足是E,如果AB=10,CD=8,那么AE=______。
7.已知P为⊙O内一点,且OP=2cm,如果⊙O的半径是3cm,那么过点P的最长的弦长为______;最短的弦长为_______。
8.已知AB是⊙O的弦,弦CD过圆心且平分弦AB于M,若OM=DM,则∠AOB=________。
9.在半径为2cm的圆中,垂直平分半径的弦长为______
10.如图,半径为1cm的圆中,弦MN垂直平分弦AB,则MN=_______cm。
11.某公园的一石拱桥石圆弧形(劣弧),其跨度石24cm,拱的半径
石13cm,则拱高为___________
12.已知弓形的弦长为6cm,高为2cm,则含这个弓形的圆的直径长
为_____
13.在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,则AB和CD的距离是_________
15.如图,AB是⊙O的直径,弦CD与AB相交于点E,若__________,则CE
=DE(只需要填写一个你认为适当的条件)
16.⊙O中的半径为5cm,AB为直径,CD为弦,CD⊥AB,垂足为E,若CD=
6cm,则AE的长为___________cm。
17.如图:有一个圆弧形门拱的拱高AB为1m,跨度CD为4m,则这个
门拱的半径为_____________。
18.⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长
的取值范围是______________
19.一条直线经过圆心,且评分弦所对的劣弧,那么这条直线()
A.只平分弦 B.只平分弦所对的优弧
C.只垂直于弦
D.垂直于弦且平分弦所对的优弧
20.在⊙O中,OA为半径,CD垂直平分OA,且OA=4cm,则弦CD的长为_________。
21.半径等于12的圆中,垂直平分半径的弦长为___________
22.过⊙O内一点M的最长弦10cm,最短弦为8cm,则OM为__________.
23.弓形的弦长为6cm,弓形的高为2cm,则这弓形所在的的圆的半径长为_________
24.若圆中某弦长8cm,圆心到弦的距离为3cm,则此圆的半径为________
25.在⊙O中,若直径为25cm,圆心到某弦的距离为10cm,则此弦的长为___
2cm,则此弦中点到弦多对劣弧中点的距离是26.若圆的半径为2cm,圆中一条弦长为3
_________.
27.若AB为⊙O的直径,弦CD⊥AB于E,AE=16cm,BE=4cm,则CD=_______cm,AC=______cm。
28.圆的两条平行弦与圆心的距离分别为3何4,则此二平行弦之间的距离为__________
29.在⊙O中,弦AB=24,弦CD=10,圆心到AB的距离为5,则圆心到CD的距离为
___________.
30. 已知⊙O 的半径为3,OA=1,则过A 点的最短的弦长为___________
31. 如图,⊙O 中,弦AB=8,C 为B A
中点,CD ⊥AB 于D ,若CD=2,求⊙O 的半径。
32. 如图:在⊙O 中,OA=OB ,OC,OD 交AB 于E,F,AE=FB,求证:OE=OF.
33. ⊙O 中,弦AB=3,半径为1,C 为劣弧B A 的中点,试判定四边形OACB 的形状,并说明
理由.。