柔性衬底薄膜太阳
- 格式:ppt
- 大小:3.95 MB
- 文档页数:33
一、绪论1、太阳能电池的进展历程第一阶段,晶体硅太阳能电池第二阶段,薄膜太阳能电池第三阶段,染料敏化太阳能电池,有机太阳能电池CIGS太阳能电池2、太阳能电池的类型3、薄膜太阳能电池的优点低成本、低效能、柔软、质量轻,电池的转换效率为10%~15%,使用廉价的材料和简单、快速的生产工艺实现了低成本生产柔软的太阳能电池,而很少有破损。
二、半导体物理1、晶体内部原子排列的具体形式称为晶格。
周期性结构:如简立方、面心立方、体心立方、密排六方晶体等。
2、电子共有化运动原子中的电子在原子核的势场和其它电子的作用下,分列在不同的能级上,形成所谓电子壳层。
原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,因而,电子将可以在整个晶体中运动。
这种运动称为电子的共有化运动。
特点:(1)外层电子轨道重叠大,共有化运动显著(2)电子只能在能量相同的轨道之间转移,引起相对应的共有化3、固体按导电性能的高低可以分为导体,半导体,绝缘体。
导体:价带是导带或等效导带,导电是电子绝缘体:只有满带和空带,且禁带宽度较大,Eg 约3~6 eV半导体的能带结构,满带与空带之间也是禁带,但是禁带很窄(E g 约0.1~2 eV )。
P型半导体导电是空穴,N型半导体导电是电子。
硅Eg=1.14eV 锗Eg=0.67eV 砷化镓Eg=1.43eV4、实际晶体与理想晶体的区别(1)原子并非在格点上固定不动(2)杂质的存在a. 工艺流程中引入;b. 认为掺杂;c. 温度的影响,等等。
(3)缺陷:点缺陷(空位,间隙原子、反结构缺陷)线缺陷(位错:刃形位错和螺形位错)(4)面缺陷(层错,晶粒间界)5、V族元素P在硅、锗中电离时能够释放电子而产生导电电子并形成正电中心,施主电离产生导电电子,N型半导体。
III族元素B在硅、锗中电离时能够接受电子而产生导电空穴并形成负电中心,受主电离释放导电空穴,P型半导体。
CIGS薄膜太阳能电池结构分析综述了目前国际上研究得最多的几种薄膜太阳能电池材料的研究现状和各自的最新进展,包括硅基类(非晶硅、多晶硅、微晶硅)、无机化合物类(碲化镉、铜铟硒、砷化镓)、有机类、染料敏化(二氧化钛、氧化锌)等,并从材料、工艺和转换效率等方面比较和讨论了它们各自性能的优劣,最后展望了这些薄膜太阳能电池材料未来的研究方向及应用前景。
标签:薄膜太阳能电池引言近年来,环境污染和能源衰竭等问题与全球经济发展之间的矛盾越来越突出,加上人类对可再生能源的不断需求,这样就促使人们致力于开发新的能源。
太阳能作为一种可再生能源有着其它能源不可比拟的优势,因此,合理利用好太阳能将是人类解决能源问题的长期发展战略,太阳能受到人们广泛的重视也是顺理成章的事情。
典型的太阳能电池本质上是一个半导体二极管(p-n结),它利用光伏效应原理把太阳辐射能转换为电能。
当太阳光照射到半导体二极管p-n结上并被吸收时,其能量大于半导体材料禁带宽度Eg的光子能把价带中的电子激发到导带上去,同时价带中留下带正电的空穴,即形成了电子-空穴对,通常称其为光生载流子。
这些光生载流子在p-n结内建电场作用下迅速分离,电子被扫到电池的n型一侧,空穴被扫到电池的p型一侧,从而在二极管的两侧分别形成了正负电荷积累,并产生了“光生电压”,这就是所谓的“光伏效应”(Photovoltaiceffect)。
若在p-n结两侧引出电极并接上负载,则负载中就有“光生电流”通过,即得到可利用的电能,典型的太阳能电池就是根据这个基本原理工作的。
一、CIGS薄膜太阳能电池具有曲面造型的光伏建筑物和移动式的光伏电站等要求太阳能电池具有柔性和可折叠性,这便促使了柔性薄膜太阳能电池的发展。
所谓柔性薄膜太阳能电池是以金属箔片或高分子聚合物作衬底的薄膜太阳能电池。
一般说来,所有薄膜太阳能电池都可以做成柔性的。
柔性CIGS薄膜太陽能电池的制作工艺和刚性玻璃衬底CIGS薄膜太阳能电池的制作工艺基本相同,不同之处主要体现在衬底材料的选择和CIGS制备两方面。
柔性CZTSSe太阳电池的制备及性能研究YAN Qiong;LI Hong-nan;LIN Xiao-yuan【摘要】采用溶液法及后硒化处理的方式在柔性钼衬底上制备铜锌锡硫硒薄膜,并通过XRD、EDS、Raman和SEM分析薄膜的结晶性、物相和形貌.研究金属成分含量对CZTSSe薄膜形貌的影响,最终在柔性衬底上制备出成分均匀可控、无二元或三元杂相、结晶致密连续的CZTSSe薄膜,并以此为基础制备结构为Mo/CZTSSe/CdS/i-ZnO/ITO/Ag的柔性太阳电池,得到的电池最高效率为3.83%.【期刊名称】《福建江夏学院学报》【年(卷),期】2019(009)003【总页数】9页(P110-118)【关键词】柔性薄膜太阳电池;铜锌锡硫硒;背接触;载流子输运【作者】YAN Qiong;LI Hong-nan;LIN Xiao-yuan【作者单位】;;【正文语种】中文【中图分类】TM914.4一、研究背景太阳能的开发与利用有助于应对能源短缺和环境污染这两大挑战,实现可持续发展,因此各国都在大力扶持光伏产业。
不同太阳能电池技术的光电转化效率发展历程如图1所示。
[1]其中,铜锌锡硫硒(CZTSSe)薄膜太阳电池由于其组成元素地壳储量丰富、绿色环保、轻质、可柔性等优点而得到广泛关注。
相比于传统的刚性电池,柔性太阳电池具有材质柔软、质量轻、功率质量比高、生产过程能耗小、易于实现卷对卷大面积连续生产等优点,可望扩展太阳电池的应用领域。
采用能够耐受CZTS基薄膜整个制备过程并保持高转换效率的柔性背电极材料来制备柔性器件是一项有意义的工作。
近年来,CZTS基太阳电池在刚性衬底上的最高转换效率已达12.6%,而在柔性衬底上的最高效率仅为7.04%,因此需要进一步研究基于柔性衬底的CZTS基薄膜的成膜工艺,探究电池内载流子的输运机理,为提高电池效率提供实验数据和理论支撑。
本文围绕柔性CZTSSe太阳电池开展研究工作,采用溶液法及后硒化处理的方式在柔性钼衬底上制备CZTSSe薄膜,以此为基础制备柔性CZTSSe太阳电池并研究其光电性能。
谁是王者——薄膜太阳能电池VS晶硅太阳能电池在全球⾃然环境不断恶化,化⽯燃料⽇趋减少的情况下,可再⽣能源正变得越来越重要。
普遍认为,太阳能——是最丰富和取之不尽的能源,是⼀种很有前途的能源危机的解决⽅案。
太阳能电池被⽤来吸收太阳能并产⽣电⼒并且避免产⽣环境污染。
⽬前,晶体硅(传统或晶圆为基础的硅)crystalline silicon (conventional or wafer-based Si)太阳能电池占主导地位的太阳能市场的市场份额⼏乎90%。
薄膜为基础的太阳能电池只占约10%的市场份额,但预计将迅速增长。
1、特点:第⼀代太阳能电池,单晶硅(c-Si)或太阳能电池,传统的太阳能电池,是由晶体硅做成的。
晶体硅太阳能电池包括基于单晶硅太阳能电池(单晶硅)和多晶硅(多晶硅)半导体材料。
对于太阳能电池,硅具有许多优点,包括⽆限量,⽆毒性,长期稳定,成熟的⽣产,⾼效率。
晶硅分为单晶硅和多晶硅,两者的实验室转换效率能达到20%以上,量产的话也在18%左右,单晶硅可能到20%;优势是转换效率⾼,单⽚组件容量⼤,同等规模占地⼩。
缺点是⽣产⼯艺较复杂,不能弯曲、重量⼤,弱光性差,⾼温下发电量下降等等。
薄膜转换效率量产6-8%;CIGS铜铟镓硒,实验室20%,量产应该有13%以上,GaAs砷化镓,实验室的⾼效率能达50%,量产能达到20-30%,还有碲化镉电池,基本⽆量产。
所谓薄膜技术就是在真空⾼温的环境下,将可吸收光的元素沉积/溅射在衬底上。
如果衬底是柔性的,那么就可做成柔性太阳能组件。
如果衬底是玻璃的,在制作过程中有⼀道⼯序是激光划刻,可以加密激光化刻的密度,从⽽做成透光组件。
优点⽣产⼯艺简单,弱光性好,组件可以做成透光的。
缺点是能量产的⾮晶硅转换效率差,单⽚组件容量⼩,同等规模占地⼤。
2、市场占有情况我们得从从⽬前的情况来看,尤其是经过了2012-2013的光伏产业低迷期,晶硅电池占据着全球市场90%的份额,薄膜仅仅10%的占有率。
CIGS薄膜太阳能电池的研究及制备摘要:CuIn1-xGaxSe2(CIGS)薄膜太阳能电池以其效率高、稳定性强、耐辐射、耗材少等众多优点成为近些年太阳能电池领域的研究热点。
这种电池的性能主要由吸收层 CIGS薄膜的质量决定,目前其主要制备方法有:共蒸发法、金属预置层后硒化法、电沉积法和喷雾高温分解法等,然而由于 CIGS 薄膜结构复杂,结晶成膜要求条件较高,以共蒸发法和金属预制层后硒化法为主的制备方法还存在着各种各样的问题,阻碍了其产业化的进程。
本文利用磁控溅射方法制备了 CIGS 薄膜太阳能电池各层薄膜,研究了溅射的工艺参数以及退火温度对薄膜结构和各种性能的影响。
关键词:CIGS薄膜太阳能电池,磁控溅射,合金靶,固态硒源,硒化1 引言能源和环境是二十一世纪面临的两个重大问题,据估纠¨,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。
随着全球经济的发展,尤其是中国、印度等新兴国家经济的快速增长,整个世界正在以前所未有的速度消耗自然资源,这也是世界原油、煤炭价格飙升的一种基本因素。
2004年,世界一次能源消费构成中煤炭占27.2%、石油占36.8%、天然气23.7%、水电占6.2%、核电占6.1%;同期中国一次能源消费成中煤炭占69.0%、石油占22.3%、天然气占2.5%、水电占5.4%和核电占O.82%。
随着一次性能源走向枯竭;未来人类将无可选择地依赖太阳能、风能、核能等清洁能源;尤其是取之不尽的太阳能。
正因为如此,即便在成本高企的现状下世界各国政府依然未雨绸缪,在政策上给予大力的支持,推动光伏产业的高速发展。
因此,太阳能光伏发电成为了世界上各种能源中发展最快的能源之一,世界光伏产业在上世纪80年代至90年代中期,年平均年增长率为15%左右。
90年代后期,世界市场出现了供不应求的局面,发展更加迅速。
1997年世界太阳电池光伏组件生产达122MW(太阳能电池的峰值功率,通常可用Wp表示),比1996年增长了38%,是4年前的2倍,是7年前的3倍,超过集成电路工业。