动态热机械分析仪DMA原理及方法讲解
- 格式:pdf
- 大小:14.98 MB
- 文档页数:72
动态热机械分析仪动态热机械分析仪(DMA)是一种用于测量材料热力学和机械性能的仪器。
它结合了热分析和力学分析的原理,可以对材料的热膨胀、玻璃态转变、塑性变形等性质进行研究分析。
本文将从仪器原理、应用领域以及未来发展进行详细介绍。
首先,动态热机械分析仪的原理是通过施加一定频率和振幅的力学载荷,在一定温度范围内对材料进行热力学和动态机械分析。
其主要包括四个组成部分:1.热环境:通过热流控制装置,可以控制样品与环境之间的温度差。
这样可以在一定温度范围内精确测量材料的热膨胀系数和玻璃态转变等热力学性质。
2.力学装置:通过加载系统对样品施加力学载荷。
可以控制载荷的频率、振幅和形状,以模拟材料在不同载荷条件下的力学响应。
3.测量装置:通过传感器和检测设备,可以测量材料的热力学和机械性能。
比如测量材料的热膨胀、表面形貌、动态模量等性质。
其测量原理可以通过电阻应变计、差示扫描量热计、动态机械分析等技术实现。
4.数据处理和分析软件:通过将测量得到的数据进行处理和分析,可以得到材料的力学响应和热力学性质的参数。
如杨氏模量、损耗因子、玻璃态转变温度等。
1.聚合物材料研究:由于聚合物在温度变化下会发生膨胀和收缩,动态热机械分析仪可以测量聚合物的热膨胀性能,从而了解其材料稳定性和使用寿命。
2.不锈钢和合金腐蚀分析:动态热机械分析仪可以通过测量材料的热膨胀性能和动态模量等参数,评估不锈钢和合金在高温和腐蚀环境下的稳定性。
3.复合材料研究:动态热机械分析仪可以用于评估各种复合材料的热膨胀性能和力学强度,优化材料配方和工艺,提高材料的性能和使用寿命。
4.高分子材料研究:动态热机械分析仪可以测量高分子材料的玻璃化温度和疲劳性能,为材料设计和应用提供依据。
最后,未来发展趋势方面,动态热机械分析仪将进一步发展:1.提高测量精度和分辨率,以应对新材料和新应用的需求。
2.开发多功能和多学科结合的测试仪器,将热分析、力学分析和光学分析等多个技术相结合,提供更全面的材料性能评估和分析。
__________________________________________________________________________________动态机械分析仪 --- DMA Dynamic Mechanical Analysis1.什么是动态机械分析仪动态机械分析(DMA )是用来测量材料在一周期应力下,材料发生形变时的模量 (刚性)和阻尼(能量损耗)特性。
DMA 可以定性、定量地表征材料的粘弹性能。
2.DMA 是如何工作地?动态力学测量时,对试样施加一正弦交变地应力,同时测量其应变地变化。
对于线性粘弹性的行为而言,当达到平衡时,应力和应变二者都按正弦形式变化,但应变曲线与应力曲线存在一相位角。
应变相对滞后于应力。
应变:ε=ε0s i n ωt 应力:σ=σ0 s i n (ωt +δ)复合模量: E * =σ0/ε0= E ’+ i E ” (其中E ’为储存模量, E ” 为能量的损耗,称损耗模量)由于不同粘弹性材料,当施加一周期正弦应力时,应力与应变之间的相位角总是不同,从而可以测定材料产生形变时的模量(储存能量)和阻尼(损耗模量)。
对于理想的胡克弹体,应力与应变是同相位的,δ= 0°,每一周期中能量没有损耗。
对于理想的粘性液体而言,应变滞后于应力90°,即在每一个周期中外力对体系所做的功全部以热的形式损耗掉了。
而对于粘弹性材料来说,应力与应变之间的相位差介于0°与90°之间。
由于有相位差的存在,我们可以得到不同材料的一些基本参数,如储能模量、损耗模量、t a nδ、复合模量、粘弹性、应力、应变等等。
3.D M A可以告诉我们什么?D M A可以用来分析各种材料,如塑料、热固性材料、复合材料、高弹性体、涂层材料、金属、陶瓷等,尤其适用于高分子材料。
一般材料都有粘弹性而高聚物是最为典型的粘弹性材料。
使用D M A可以用来评估温度、频率对材料机械性能的影响。
动态热机械分析仪 DMA DMA242C动态热机械分析仪(DMA TMA DMTA)仪器描述仪器说明仪器标签动态热机械分析仪(DMA)为使样品处于程序控制的温度下,并施加随时间变化的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。
广泛应用于热塑性与热固性塑料、橡胶、涂料、金属与合金、无机材料、复合材料等领域。
测量材料的如下特性:储能模量(刚性);损耗模量(阻尼);粘弹性;蠕变与应力松弛;玻璃化转变;软化温度;二级相变;固化过程。
主要特点:1.傅立叶分析法,出色的信噪比。
2.完善的仪器校正。
3.样品支架(测量模式): 三点弯曲, 单/双悬臂, 压缩, 针入, 线性剪切和拉伸。
4.根据用户需要可提供特殊样品支架,如测量粘性液体或特硬刚性样品。
5.可以和介电法树脂固化监测仪 DEA 联用,进行同步 DMA-DEA 分析,对热固性树脂的固化行为进行全面的表征。
技术参数:形变模式:- 三点弯曲- 单/双悬臂弯曲- 剪切- 压缩/针入- 拉伸- 其他特殊模式(单悬臂+自由推杆模式等)测量模式:- 标准模式- TMA 模式- 蠕变/松弛模式(选件)- 应力/应变扫描模式(选件)温度范围:-170℃ ... 600℃升降温速率:0 ... 20 K/min降温时间: 10 min (20℃ ... -150℃)频率范围:0.01Hz ... 100 Hz施加力范围:静态力最大 8 N,动态力最大 ± 8 N应变振幅范围:最大 ± 240 μm储能模量(E')范围: 10-3 MPa ... 106 MPa阻尼(tanδ)范围: 0.00006 (10)气氛:惰性、氧化、静态、动态单路气体流量计(可选)循环水浴(可选)浸入式测试容器(可选)© 2005-2009 必和国际贸易(香港)有限公司版权所有,并保留所有权利。
上海市长乐路989号2006室,邮编:200031,电话:021-********,136********,, info@file:///D|/webtopdf/动态热机械分析仪 DMA DMA242C动态热机械分析仪(DMA TMA DMTA).htm[2010-1-8 22:56:55]。
第2章气凝胶热学力学特性及表面修饰机理2.2.2.1 DMA测试原理动态热机械分析仪(DMA)被广泛用于材料的粘弹性能研究,可获得材料的动态储能模量,损耗模量和损耗角正切(tan δ)等指标。
DMA8000主要是用来测量样品在一定条件温度、时间、频率、应力或应变、气氛和湿度等综合条件下的动态力学性能。
DMA8000用于研究材料在交变应力(或应变)作用下的应变(或应力)的响应、蠕变、应力松弛和热机械性能等测试。
图2.4为DMA8000实物图。
图2.4 DMA8000实物图DMA使一定几何形状的样品产生一个正弦形变。
这样,样品能够经受一个可控的应力或应变。
如果应力一定,那么样品将产生一定程度的形变。
形变的大小与样品的刚度有关。
里面的电动机产生正弦波,并通过驱动轴传送到样品上。
驱动轴的柔度及用来固定驱动轴的稳定轴承显著地影响测试效果。
由DMA8000的驱动系统示意图(图2.5)可知,这种设计既不需要弹簧也不需要气动轴承装置来支撑驱动轴,使仪器有更低的柔度。
同济大学硕士学位论文气凝胶保温隔热材料的制备及力学热学性能研究图2.5 DMA8000轻质驱动系统DMA测量样品的刚度和阻尼,即模量和tan delta。
因为仪器引入了一个正弦力,模量可以表示成同相部分(即储能模量)和异相部分(即损耗模量),如图2.6所示。
储能模量(E’或G’)可以衡量样品的弹性行为。
耗能模量与储能模量的比值就是tan delta(即损耗角正切)。
它可以测量材料的能量损耗,它是材料摆脱能量的能力的量度,被称为相位角的正切。
它告诉我们材料吸收能量的能力。
它随着材料的状态(即温度)和频率的变化而变化。
图2.6 正弦应力与应变的关系、相位滞后和形变2.2.2.2 DMA夹具的选择及测试模式DMA8000配置了六种常用的夹具用于多种形变模式测试(图2.7),囊括了测试材料所需的所有类型。
通常,根据待测样品的特性、尺寸以及用途等来选择适合的夹具。