一维搜索--牛顿法
- 格式:pdf
- 大小:88.04 KB
- 文档页数:1
一维牛顿法也称为一维牛顿-拉夫逊方法,是一种迭代的优化算法,用于求解一维非线性函数的极值点。
这种方法通过利用函数的二阶导数信息来逼近极值点,并在每次迭代中更新搜索方向,以快速收敛到最优解。
一维牛顿法的具体步骤如下:
初始化:选择初始点x0,并设定迭代终止条件,如迭代次数或函数值的收敛阈值。
计算一阶和二阶导数:计算函数f(x)在当前点xk处的一阶导数f'(xk)和二阶导数f''(xk)。
更新搜索方向和步长:根据二阶导数的信息,计算搜索方向dk和步长αk。
更新当前点:计算新的点xk+1 = xk + αk * dk。
判断终止条件:检查是否满足终止条件,如果满足则停止迭代,否则返回步骤2。
例如,对于函数f ( x ) = x 3 −2 sin ( x ) f(x) = x^3 - 2\sin(x)f(x)=x3−2sin(x),在A AA点处对函数f ( x ) f(x)f(x)展开,得到近似的二次函数φ( x ) \varphi(x)φ(x),φ( x ) \varphi(x)φ(x)的最小值在B BB点处取得,高斯牛顿法的下一步迭代点即为与B BB点横坐标相等的C CC点。
如此,只需数次,迭代能够达到很高的精度,可见牛顿法收敛速度快。
最优化问题的算法迭代格式最优化问题的算法迭代格式最优化问题是指在一定的条件下,寻找使某个目标函数取得极值(最大值或最小值)的变量取值。
解决最优化问题的方法有很多种,其中较为常见的是迭代法。
本文将介绍几种常用的最优化问题迭代算法及其格式。
一、梯度下降法梯度下降法是一种基于负梯度方向进行搜索的迭代算法,它通过不断地沿着目标函数的负梯度方向进行搜索,逐步接近极值点。
该方法具有收敛速度快、易于实现等优点,在许多应用领域中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和学习率 $\alpha$,梯度下降算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 更新当前点 $x_k$ 为 $x_{k+1}=x_k-\alpha\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则返回第 1 步。
2. 算法特点- 沿着负梯度方向进行搜索,能够快速收敛;- 学习率的选择对算法效果有重要影响;- 可能会陷入局部极小值。
二、共轭梯度法共轭梯度法是一种基于线性方程组求解的迭代算法,它通过不断地搜索与当前搜索方向共轭的新搜索方向,并在该方向上进行一维搜索,逐步接近极值点。
该方法具有收敛速度快、内存占用少等优点,在大规模问题中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和初始搜索方向 $d_0$,共轭梯度算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则进行下一步;- 计算当前搜索方向 $d_k$;- 在当前搜索方向上进行一维搜索,得到最优步长 $\alpha_k$;- 更新当前点为 $x_{k+1}=x_k+\alpha_k d_k$;- 计算新的搜索方向 $d_{k+1}$;- 返回第 2 步。
2. 算法特点- 搜索方向与前面所有搜索方向都正交,能够快速收敛;- 需要存储和计算大量中间变量,内存占用较大;- 可以用于非线性问题的求解。
如前面所提到的,最速下降法在最初几步迭代中函数值下降很快外,总的说来下降的并不快,且愈接近极值点下降的愈慢。
因此,应寻找使目标函数下降更快的方法。
牛顿法就是一种收敛很快的方法,其基本思路是利用二次曲线来逐点近似原目标函数,以二次曲线的极小值点来近似原目标函数的极小值点并逐渐逼近改点。
一维目标函数()f x 在()k x 点逼近用的二次曲线(即泰勒二次多项式)为()()()()()()21()()()()()()2k k k k k k x f x f x x x f x x x ϕ'''=+-+- 此二次函数的极小点可由()()0k xϕ'=求得。
对于n 维问题,n 为目标函数()f X 在()k X 点逼近用的二次曲线为:()()()()()2()()1()()().[][].().[]2k k k k k T k k X f x f X X X X X f X X X ϕ⎡⎤=+∇-+-∇-⎣⎦令式中的Hessian 2()()()()k k f XH X ∇=,则上式可改写为:()()()()()()()1()()().[][].().[]2()k k k k k T k k X f x f X X X X X H X X X f X ϕ⎡⎤=+∇-+--⎣⎦≈当()0X ϕ∇=时可求得二次曲线()X ϕ的极值点,且当且仅当改点处的Hessian 矩阵为正定时有极小值点。
由上式得:()()()()()()[]k k k X f X H X X X ϕ∇=∇+-令()0X ϕ∇=,则()()()()()[]0k k k f X H X X X ∇+-=若()()k H X为可逆矩阵,将上式等号两边左乘1()()k H X -⎡⎤⎣⎦,则得1()()()()()[]0k k k n H X f X I X X -⎡⎤∇+-=⎣⎦整理后得1()()()()()k k k X X H X f X -⎡⎤=-∇⎣⎦当目标函数()f X 是二次函数时,牛顿法变得极为简单、有效,这时()()k H X 是一个常数矩阵,式()()()()()()()1()()().[][].().[]2()k k k k k T k k X f x f X X X X X H X X X f X ϕ⎡⎤=+∇-+--⎣⎦≈变成精确表达式,而利用式1()()()()()k k k X XH X f X -⎡⎤=-∇⎣⎦作一次迭代计算所得的X 就是最优点*X 。
牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。
结合着matlab 可以对其进行应用,求解方程。
牛顿迭代法(Newton Newton’’s s method method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。
牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。
牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。
收敛。
牛顿法的几何解释:牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。
如下图:轴的焦点的横坐标。
如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点轴的交点 的横坐标1k x +作为*x 的新的近似值。
鉴于这种几何背景,牛顿法亦称为切线法。
牛顿法亦称为切线法。
2 牛顿迭代公式:(1)最速下降法:x-d gk k×Gg sks×GGd 101x x x -(1)令k k G v I k G -=+,其中:,其中:0k v =,如果k G 正定;0,k v >否则。
否则。
(2)计算_k G 的Cholesky 分解,_T k k k k G L D L =。
(3)解_k k G d g =-得k d 。
(4)令1k k k x x d +=+牛顿法的优点是收敛快,缺点一是每步迭代要计算()()'k k f x f x 及,计算量较大且有时()'k fx 计算较困难,二是初始近似值0x 只在根*x附近才能保证收敛,如0x 给的不合适可能不收敛。
凸优化之⽆约束优化(⼀维搜索⽅法:⼆分法、⽜顿法、割线法)1、⼆分法(⼀阶导)⼆分法是利⽤⽬标函数的⼀阶导数来连续压缩区间的⽅法,因此这⾥除了要求 f 在 [a0,b0] 为单峰函数外,还要去 f(x) 连续可微。
(1)确定初始区间的中点 x(0)=(a0+b0)/2 。
然后计算 f(x) 在 x(0) 处的⼀阶导数 f'(x(0)),如果 f'(x(0)) >0 , 说明极⼩点位于 x(0)的左侧,也就是所,极⼩点所在的区间压缩为[a0,x(0)];反之,如果 f'(x(0)) <0,说明极⼩点位于x(0)的右侧,极⼩点所在的区间压缩为[x(0),b0];如果f'(x(0)) = 0,说明就是函数 f(x) 的极⼩点。
(2)根据新的区间构造x(1),以此来推,直到f'(x(k)) = 0,停⽌。
可见经过N步迭代之后,整个区间的总压缩⽐为(1/2)N,这⽐黄⾦分割法和斐波那契数列法的总压缩⽐要⼩。
1 #ifndef _BINARYSECTION_H_2#define _BINARYSECTION_H_34 typedef float (* PtrOneVarFunc)(float x);5void BinarySectionMethod(float a, float b, PtrOneVarFunc fi, float epsilon);67#endif1 #include<iostream>2 #include<cmath>3 #include "BinarySection.h"45using namespace std;67void BinarySectionMethod(float a, float b, PtrOneVarFunc tangent, float epsilon)8 {9float a0,b0,middle;10int k;11 k = 1;12 a0 = a;13 b0 = b;14 middle = ( a0 + b0 )/2;1516while( abs(tangent(middle)) - epsilon > 0 )17 {18 #ifdef _DEBUG19 cout<<k++<<"th iteration:x="<<middle<<",f'("<<middle<<")="<<tangent(middle)<<endl;20#endif2122if( tangent(middle) > 0)23 {24 b0 = middle;25 }26else27 {28 a0 = middle;29 }30 middle =( a0+b0)/2;31 }3233 cout<<k<<"th iteration:x="<<middle<<",f'("<<middle<<")="<<tangent(middle)<<endl;34 }1 #include<iostream>2 #include "BinarySection.h"345float TangentFunctionofOneVariable(float x)6 {7return14*x-5;//7*x*x-5*x+2;8 }910int main()11 {12 BinarySectionMethod(-50, 50, TangentFunctionofOneVariable, 0.001);13return0;14 }1th iteration:x=0,f'(0)=-52th iteration:x=25,f'(25)=3453th iteration:x=12.5,f'(12.5)=1704th iteration:x=6.25,f'(6.25)=82.55th iteration:x=3.125,f'(3.125)=38.756th iteration:x=1.5625,f'(1.5625)=16.8757th iteration:x=0.78125,f'(0.78125)=5.93758th iteration:x=0.390625,f'(0.390625)=0.468759th iteration:x=0.195312,f'(0.195312)=-2.2656210th iteration:x=0.292969,f'(0.292969)=-0.89843811th iteration:x=0.341797,f'(0.341797)=-0.21484412th iteration:x=0.366211,f'(0.366211)=0.12695313th iteration:x=0.354004,f'(0.354004)=-0.043945314th iteration:x=0.360107,f'(0.360107)=0.041503915th iteration:x=0.357056,f'(0.357056)=-0.001220716th iteration:x=0.358582,f'(0.358582)=0.020141617th iteration:x=0.357819,f'(0.357819)=0.0094604518th iteration:x=0.357437,f'(0.357437)=0.0041198719th iteration:x=0.357246,f'(0.357246)=0.0014495820th iteration:x=0.357151,f'(0.357151)=0.0001144412、⽜顿法(⼆阶导)前提:f 在 [a0,b0] 为单峰函数,且[a0,b0] 在极⼩点附近,不能离的太远否则可能⽆法收敛。
一维搜索方法应用比较一、黄金分割法(1)黄金分割法的起源黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。
这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。
虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。
经考证。
欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
我国数学家华罗庚曾致力于推广优选法中的"0.618法",把黄金分割应用于生活实际及科学应用中。
黄金分割〔Golden Section〕是一种数学上的比例关系。
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
应用时一般取0.618 ,就像圆周率在应用时取3.14一样。
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
一维搜索:1精确一维搜索精确一维搜索可以分为三类:区间收缩法、函数逼近法(插值法)、以及求根法。
区间收缩法:用某种分割技术缩小最优解所在的区间(称为搜索区间)。
包括:黄金分割法、成功失败法、斐波那契法、对分搜索法以及三点等间隔搜索法等。
优化算法通常具有局部性质,通常的迭代需要在单峰区间进行操作以保证算法收敛。
确定初始区间的方法:进退法①已知搜索起点和初始步长;②然后从起点开始以初始步长向前试探,如果函数值变大,则改变步长方向;③如果函数值下降,则维持原来的试探方向,并将步长加倍。
1.1黄金分割法:黄金分割法是一种区间收缩方法(或分割方法),其基本思想是通过取试探点和进行函数值比较,使包含极小点的搜索区间不断缩短以逼近极小值点。
具有对称性以及保持缩减比原则。
优点:不要求函数可微,除过第一次外,每次迭代只需计算一个函数值,计算量小,程序简单;缺点:收敛速度慢;函数逼近法(插值法):用比较简单函数的极小值点近似代替原函数的极小值点。
从几何上看是用比较简单的曲线近似代替原的曲线,用简单曲线的极小值点代替原曲线的极小点。
1.2牛顿法:将目标函数二阶泰勒展开,略去高阶项后近似的替代目标函数,然后用二次函数的极小点作为目标函数的近似极小点。
牛顿法的优点是收敛速度快,缺点是需要计算二阶导数,要求初始点选的好,否则可能不收敛。
1.2抛物线法:抛物线法的基本思想就是用二次函数抛物线来近似的代替目标函数,并以它的极小点作为目标函数的近似极小点。
在一定条件下,抛物线法是超线性收敛的。
1.3三次插值法:三次插值法是用两点处的函数值和导数值来构造差值多项式,以该曲线的极小点来逼近目标函数的极小点。
一般来说,三次插值法比抛物线法的收敛速度要快。
精确一维搜索的方法选择:1如目标函数能求二阶导数:用Newton法,收敛快。
2如目标函数能求一阶导数:1如果导数容易求出,考虑用三次插值法,收敛较快;2对分法、收敛速度慢,但可靠;3只需计算函数值的方法:1二次插值法, 收敛快,但对函数单峰依赖较强;2黄金分割法收敛速度较慢,但实用性强,可靠;4减少总体计算时间:非精确一维搜索方法更加有效。