解: f '( x) 4 x3 12 x 2 12 x 16, f ''( x) 12 x 2 24 x 12,
f '( x0 ) f '(6) 89 x1 x0 6 6 4.75 f ''( x0 ) f ''(6) 69
f '( x1 ) f '(4.75) 84.94 102 , 继续迭代; f '( x1 ) x2 x1 f ''( x1 ) f '(4.75) 84.94 4.75 =4.75 =4.163 f ''(4.75) 144.75 f '( x2 ) f '(4.163) 14.666 102 , 继续迭代;
3.若 x2 x ,则迭代结束,取 x* x ,否则在点
x1 , x2 , x3 , x 中,选取使f (x) 最小的点作为新的x2,并使新的
x 1 , x3各是新的x2近旁的左右两点,继续进行迭代,直到满 足终止准则。
例
用二次插值法求函数f(x)=3x3-4x+2的极小点, 给定 x0=0, h=1, ε=0.2。
应继续迭代。
(2) 在新区间,相邻三点及其函数值: x1=0, x2=0.555, x3=1;
根据公式计算差值多项式的极小点 f1=2, f2=0.292, f3=1.
1 c1 x a1 / 2a2 ( x1 x3 ), f1 f 2 2 c2 c1 f1 f 3 x1 x2 c1 , c2 x1 x3 x2 x3
Newton法----算例
f '( x2 ) x3 x2 f ''( x2 )