常用的一维搜索方法
- 格式:pdf
- 大小:248.50 KB
- 文档页数:28
无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。
这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。
(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。
间接法:又称解析法,是应用数学极值理论的解析方法。
首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。
)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。
根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。
一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。
一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。
由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。
在多变量函数的最优化中,迭代格式X k+1=X k+a k d k其关键就是构造搜索方向d k和步长因子a k设Φ(a)=f(x k+ad k)这样从凡出发,沿搜索方向d k,确定步长因子a k,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。
其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。
一维搜索通常分为精确的和不精确的两类。
如果求得a k使目标函数沿方向d k达到极小,即使得f (x k+a k d k)=min f (x k+ ad k) ( a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,a k叫最优步长因子;如果选取a k使目标函数f得到可接受的下降量,即使得下降量f (x k)一f (x k+a k d k)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。
凸优化之⽆约束优化(⼀维搜索⽅法:⼆分法、⽜顿法、割线法)1、⼆分法(⼀阶导)⼆分法是利⽤⽬标函数的⼀阶导数来连续压缩区间的⽅法,因此这⾥除了要求 f 在 [a0,b0] 为单峰函数外,还要去 f(x) 连续可微。
(1)确定初始区间的中点 x(0)=(a0+b0)/2 。
然后计算 f(x) 在 x(0) 处的⼀阶导数 f'(x(0)),如果 f'(x(0)) >0 , 说明极⼩点位于 x(0)的左侧,也就是所,极⼩点所在的区间压缩为[a0,x(0)];反之,如果 f'(x(0)) <0,说明极⼩点位于x(0)的右侧,极⼩点所在的区间压缩为[x(0),b0];如果f'(x(0)) = 0,说明就是函数 f(x) 的极⼩点。
(2)根据新的区间构造x(1),以此来推,直到f'(x(k)) = 0,停⽌。
可见经过N步迭代之后,整个区间的总压缩⽐为(1/2)N,这⽐黄⾦分割法和斐波那契数列法的总压缩⽐要⼩。
1 #ifndef _BINARYSECTION_H_2#define _BINARYSECTION_H_34 typedef float (* PtrOneVarFunc)(float x);5void BinarySectionMethod(float a, float b, PtrOneVarFunc fi, float epsilon);67#endif1 #include<iostream>2 #include<cmath>3 #include "BinarySection.h"45using namespace std;67void BinarySectionMethod(float a, float b, PtrOneVarFunc tangent, float epsilon)8 {9float a0,b0,middle;10int k;11 k = 1;12 a0 = a;13 b0 = b;14 middle = ( a0 + b0 )/2;1516while( abs(tangent(middle)) - epsilon > 0 )17 {18 #ifdef _DEBUG19 cout<<k++<<"th iteration:x="<<middle<<",f'("<<middle<<")="<<tangent(middle)<<endl;20#endif2122if( tangent(middle) > 0)23 {24 b0 = middle;25 }26else27 {28 a0 = middle;29 }30 middle =( a0+b0)/2;31 }3233 cout<<k<<"th iteration:x="<<middle<<",f'("<<middle<<")="<<tangent(middle)<<endl;34 }1 #include<iostream>2 #include "BinarySection.h"345float TangentFunctionofOneVariable(float x)6 {7return14*x-5;//7*x*x-5*x+2;8 }910int main()11 {12 BinarySectionMethod(-50, 50, TangentFunctionofOneVariable, 0.001);13return0;14 }1th iteration:x=0,f'(0)=-52th iteration:x=25,f'(25)=3453th iteration:x=12.5,f'(12.5)=1704th iteration:x=6.25,f'(6.25)=82.55th iteration:x=3.125,f'(3.125)=38.756th iteration:x=1.5625,f'(1.5625)=16.8757th iteration:x=0.78125,f'(0.78125)=5.93758th iteration:x=0.390625,f'(0.390625)=0.468759th iteration:x=0.195312,f'(0.195312)=-2.2656210th iteration:x=0.292969,f'(0.292969)=-0.89843811th iteration:x=0.341797,f'(0.341797)=-0.21484412th iteration:x=0.366211,f'(0.366211)=0.12695313th iteration:x=0.354004,f'(0.354004)=-0.043945314th iteration:x=0.360107,f'(0.360107)=0.041503915th iteration:x=0.357056,f'(0.357056)=-0.001220716th iteration:x=0.358582,f'(0.358582)=0.020141617th iteration:x=0.357819,f'(0.357819)=0.0094604518th iteration:x=0.357437,f'(0.357437)=0.0041198719th iteration:x=0.357246,f'(0.357246)=0.0014495820th iteration:x=0.357151,f'(0.357151)=0.0001144412、⽜顿法(⼆阶导)前提:f 在 [a0,b0] 为单峰函数,且[a0,b0] 在极⼩点附近,不能离的太远否则可能⽆法收敛。
常用一维搜索算法常用一维算法一维算法是解决一维问题的常用方法。
一维算法主要通过在一维数据集中查找目标元素来解决问题。
以下是一些常用的一维算法:1. 线性(Linear Search):线性算法是一种最简单的算法,也是最基本的一维算法。
它从头到尾依次检查数据集中的每个元素,直到找到目标元素或遍历完整个数据集。
线性算法的时间复杂度为O(n)。
2. 二分(Binary Search):二分算法是一种高效的算法,但它要求数据集必须是有序的。
算法通过将数据集分成两半,并与目标元素进行比较,从而确定目标元素在哪个半部分中。
然后,它将重复这个过程,直到找到目标元素或数据集被划分为一个元素。
二分算法的时间复杂度为O(log n)。
3. 插值(Interpolation Search):插值算法是改进的二分算法,它根据目标元素与数据集中元素的相对位置来确定的起始位置。
它使用目标元素与数据集首尾元素之间的比例来估计目标元素的位置。
插值算法在数据集分布均匀的情况下具有较好的性能。
4. 斐波那契(Fibonacci Search):斐波那契算法基于斐波那契数列来确定的起始位置。
它通过比较目标元素与斐波那契数列中的元素来确定的范围,并将数据集划分成两部分。
然后,它在适当的部分中重复这个过程,直到找到目标元素。
斐波那契算法的时间复杂度为O(log n)。
5. 插入(Interpolation Search):插入算法是一种改进的线性算法,它使用了数据集中元素的顺序信息来提高效率。
与线性算法一样,它从头到尾依次检查数据集中的每个元素,但是当元素不满足条件时,它会根据元素的顺序信息来确定的方向,从而减少的次数。
6. 哈希(Hash Search):哈希算法使用哈希函数将数据集中的元素映射到哈希表中的索引。
然后,它通过查找哈希表中的索引来确定目标元素的位置。
哈希算法通常具有很高的效率,但是它需要额外的内存空间来存储哈希表。
上述算法是一维问题的常用解决方法。
§4.3 一维搜索方法一维搜索问题:目标函数为单变量的非线性规划问题,即)(min max00t t t t ϕ≤≤≥ (4.3.1)对t 的取值为0≥t 的(4.3.1)称为一维搜索问题,即 )(min 0t t ϕ≥ ;对t 的取值为max 0t t ≤≤的(4.3.1)称为有效一维搜索问题,即 )(minmax0t t t ϕ≤≤。
1、0.618法(近似黄金分割法)单谷函数:称函数)(t ϕ是区间],[b a 上的单谷函数,若存在 ],[*b a t ∈,使得)(t ϕ在],[*t a 上严格递减,且在],[*b t 上严格递增。
区间],[b a 称为)(t ϕ的单谷区间。
求解一维搜索问题的方法:先设法给出一个搜索区间],[b a ,然后通过迭代不断缩小搜索区间,当区间的长度充分小是,可取这个区间中的任一点作为一个近似极小点。
考虑问题)(min t bt a ϕ≤≤ (4.3.2)其中],[b a 是)(t ϕ的单谷区间, 下面将通过迭代不断缩小搜索区间, 获得)(t ϕ的唯一极小点 *t 的近似解。
在],[b a 内任取两点 21,t t ,设 21t t <,由于)(t ϕ是区间],[b a 上的单谷函数,所以有<1> 若)()(21t t ϕϕ≤,则 ],[2*t a t ∈;<2> 若)()(21t t ϕϕ≥,则 ],[1*b t t ∈。
证<1>:若],[2*t a t ∉,则 2*t t >,所以*21t t t a <<<,因为)(t ϕ在],[*t a 上严格递减,所以)()(21t t ϕϕ>,矛盾。
同理可证 <2>。
通过比较)(1t ϕ和)(2t ϕ的大小,可将搜索区间缩小为],[2t a 或],[1b t 。
不妨设为],[2t a ,则在],[2t a 只需另找一个点 2t ',比较 1t 和2t '的目标函数值,又可以进一步缩小搜索区间。
最优化理论与算法一维搜索一维是最优化问题求解中常用的一种算法。
在一维中,我们需要在给定的区间内寻找函数的最小值或最大值。
一维算法的基本思想是通过不断的迭代,在区间内不断缩小最优解的范围,最终找到最优解。
常用的一维算法包括黄金分割法、斐波那契法、插值法等。
黄金分割法是一种较为简单且常用的一维算法。
该算法基于黄金分割点的性质,通过不断缩小区间来逼近最优解。
黄金分割法的具体步骤如下:1.初始化区间的上下界,确定迭代终止条件;2.计算黄金分割点的位置;3.根据黄金分割点分割区间;4.更新区间的上下界;5.判断是否满足迭代终止条件,如果满足,则输出最优解;如果不满足,则返回第2步。
斐波那契法是另一种常用的一维算法。
该算法通过斐波那契数列的性质,不断缩小区间来逼近最优解。
斐波那契法的具体步骤如下:1.初始化斐波那契数列,确定迭代终止条件;2.计算斐波那契点的位置;3.根据斐波那契点分割区间;4.更新区间的上下界;5.判断是否满足迭代终止条件,如果满足,则输出最优解;如果不满足,则返回第2步。
插值法是一种基于函数插值的一维算法。
该算法通过插值函数来拟合原函数,并通过求解插值函数的最小值或最大值来近似求解原函数的最小值或最大值。
插值法的具体步骤如下:1.初始化区间的上下界,确定迭代终止条件;2.根据插值函数拟合原函数,得到插值函数的表达式;3.求解插值函数的最小值或最大值;4.更新区间的上下界;5.判断是否满足迭代终止条件,如果满足,则输出最优解;如果不满足,则返回第2步。
除了上述算法,还存在其他一维算法,如割线法、牛顿法等。
这些算法各有特点,适用于不同类型的最优化问题。
一维算法的优势在于其计算简单、耗时少的特点。
然而,一维算法也存在一些缺点,例如容易陷入局部最优解、收敛速度较慢等。
因此,对于一些复杂的最优化问题,可能需要使用更高维度的算法进行求解。
总之,一维是最优化问题求解中常用的一种算法。
通过在给定的区间内不断迭代,可以逼近最优解。
一维搜索方法:(方法比较)“成功—失败”法、二分法、0.618法(黄金分割法)、牛顿法、二次插值法、D.S.C法、Powell法、D.S.C—Powell组合法。
1、“成功—失败”法:主要思想:从一点出发,按一定的步长搜索新点,若成功,加大步长继续搜索,否则,缩短步长小步后退。
此方法可以求最优解所在区间,称为“搜索区间”。
2、二分法:主要思想:区间[a,b]的中间值x0,判断f(x)的导数在三个点处的值,舍去一部分区间再求f(x)的极小值。
3、0.618法:等比例收缩原则,每次留下来的区间长度是上次留下来的区间长度的w倍。
以及对称原则、去坏留好原则。
W=0.6184、牛顿法:基本思想:在极小值点附近用目标函数的二阶泰勒多项式近似代替目标函数,从而求得目标函数的极小值点的近似值。
5、二次插值法:牛顿法是在x k附近的目标函数用泰勒多项式近似代替,而此法是将f(x)用二次插值多项式p(x)近似代替。
把p(x)的极小值点作为f(x)极小值点的代替,从来求得函数的极小值。
6、D.S.C法:主要思想:利用成功—失败法寻找靠近极小值点的三点,进行二次插值。
优点是:收敛速度快,且不要求函数可微。
7、Powell法:基本思想:在搜索方向开始得到三点x0,x1,x2后,作二次插值,求得最小值x,在四点中去坏留好,在余下的三点中再作二次插值……8、D.S.C—Powell组合法:几种方法比较:D.S.C—Powell组合法是非常好的一种方法,它比任何一个单个方法都好D.S.C—Powell组合法与0.618法比较:D.S.C—Powell法中函数值的计算要比黄金分割法少得多,一般来讲它优于黄金分割法。
但:D.S.C—Powell法不一定能收敛到最优解。
最速下降法与修正牛顿法:对于正定二次函数,牛顿法一步可以求得最优解,对于非二次函数,牛顿法并不能保证有限次求得其最优解,但由于目标函数在极小值的附近近似于二次函数,故当初始点靠近极小值时,牛顿法收敛的速度比较快。