(1)圆柱面的形成 圆柱面由直线AA1绕与其平行的轴线回转而 成。
(2)投影 当圆柱的轴线垂直于H面时,圆柱的顶面、底面是水平 面,所以水平投影反映圆的实形,其正面投影和侧面投影积聚为直 线,直线的长度等于圆的直径;由于圆柱的轴线垂直于水平面,圆柱 面的所有素线都是铅垂线,故其水平投影积聚为圆,与上下底面圆 的投影重合;在圆柱的正面投影中,前后两半圆柱面的投影重合为 一矩形,矩形的左右两边分别是圆柱面最左、最右素线的投影,这
4.2.2.2 圆锥
圆锥(cone)由圆锥面和底面所围成,如图4-11(a)所示。
(1)圆锥面的形成 圆锥面由直线SA绕与它相交的轴线回转而成, 其上所有素线均交于锥顶S点,且面上任一点与顶点的连线均为属 于圆锥表面的直线。
(2)投影 当圆锥的轴线垂直于H面时,底面为水平面,水平投影反 映实形,其正面投影、侧面投影均积聚成直线;圆锥面在水平面上 的投影为圆内区域,与底面的水平投影重影,另两个投影为等腰三 角形,三角形两腰为锥面的转向轮廓线的投影;最左和最右素线
通常把棱柱、棱锥、圆柱、圆锥、圆球、圆环 等简单立体称为基本几何体,简称基本体(elementary soild)。
4.2.1 平面立体及其表面上的点和线
平面立体的表面都是平面,平面由直线围成,所以绘制平面立 体的投影可归结为绘制各种直线、平面及它们之间相对位 置的投影,再判别可见性,将可见轮廓线的投影画成粗实线,不 可见轮廓线的投影画成细虚线,当粗实线和细虚线重合时画 粗实线,当轮廓线与细点画线重合时画轮廓线。
[例4-2] 已知图4-7所示棱锥外表面上K点的正面投影k'(可见),试 作K点的其他投影。
【作图】
方法一:如图4-7(a)所示。
① 过锥顶S点和K点作一辅助线SD,即在视图上作s'k'延长交b'c'于 点d'。