若为Pn的子空间,求出其维数与一组基.
解:W1 、W3是Pn的子空间, W2不是Pn的子空间.
事实上,W1 是n元齐次线性方程组
x1 x2 xn 0
①
的解空间. 所以,维W1 =n-1,①的一个基础解系
§6.5 线性子空间
1 (1, 1,0, ,0), 2 (1,0, 1,0, ,0),
② (*)的一个基础解系就是解空间W的一组基.
§6.5 线性子空间
例5 判断下列子集合哪些是Pn的子空间: W1 {( x1, x2 , , xn ) x1 x2 xn 0, xi P} W2 {( x1, x2 , , xn ) x1 x2 xn 1, xi P}
W3 {( x1, x2, , xn1,0) xi P, i 1,2, , n 1}
为V的一组基.即在 V中必定可找到 n-m 个向量
m1,m2 , ,n ,使 1,2 , ,n为 V 的一组基.
证明:对n-m作数学归纳法. 当 n-m=0时,即 n=m,
1,2 , ,m 就是V的一组基. 定理成立.
假设当n-m=k时结论成立.
§6.5 线性子空间
下面我们考虑 n-m=k+1 的情形.
§6.5 线性子空间
同理可得, L(1, 2 , , s ) L(1,2, ,r ) 故, L(1,2 , ,r ) L(1, 2 , , s )
2)设向量组 1,2 , ,r 的秩为 t,不妨设 1,2 , ,t (t r) 为它的一个极大无关组.
因为 1,2 , ,r 与 1,2 , ,t 等价, 所以,
1
3 1
,
1
3
(1 , 2
, 3 ,4
)
3 0 3
,