第四章_线性空间_S1_线性空间的概念[1][1]
- 格式:ppt
- 大小:326.00 KB
- 文档页数:7
1-1线性空间的性质与定义一、线性空间的定义线性空间是线性代数最基本的概念之一,线性空间是线性代数最基本的概念之一,也是一个抽象的概念,它是向量空间概念的推广.一个抽象的概念,它是向量空间概念的推广.线性空间是为了解决实际问题而引入的,它是线性空间是为了解决实际问题而引入的,某一类事物从量的方面的一个抽象,某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,看作向量空间,进而通过研究向量空间来解决实际问题.问题.定义1是一个非空集合,为实数域.定义1设V是一个非空集合,R 为实数域.如果对于任意两个元素α,β∈V,总有唯一的一个元与之对应,的和,素γ∈V与之对应,称为α与β的和,记作γ=α+β若对于任一数λ∈R与任一元素α∈V总有唯,与之对应,的积,一的一个元素δ∈V与之对应,称为λ与α的积,记作δ=λα如果上述的两种运算满足以下八条运算规律,如果上述的两种运算满足以下八条运算规律,那上的向量空间(或线性空间).么V就称为数域R上的向量空间(或线性空间).设α,β,γ∈V;λ,μ∈R(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中存在零元素0,对任何α∈V,都有α+0=α;(4)对任何α∈V,都有α的负元素β∈V,使α+β=0;(5)1α=α;(6)λ(μα)=(λμ)α;(7)(λ+μ)α=λα+μα;(8)λ(α+β)=λα+λβ.说明1.凡满足以上八条规律的加法及乘数运算,.凡满足以上八条规律的加法及乘数运算,称为线性运算线性运算.称为线性运算.2.向量空间中的向量不一定是有序数组.向量空间中的向量不一定是有序数组.3.判别线性空间的方法:一个集合,对于定判别线性空间的方法:一个集合,义的加法和数乘运算不封闭,义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间.性质的任一条,则此集合就不能构成线性空间.线性空间的判定方法(1)一个集合,如果定义的加法和乘数运一个集合,算是通常的实数间的加乘运算,算是通常的实数间的加乘运算,则只需检验对运算的封闭性.算的封闭性.例1实数域上的全体m某n矩阵,对矩阵的加法矩阵,和数乘运算构成实数域上的线性空间,和数乘运算构成实数域上的线性空间,记作Rm某n.∵Am某n+Bm某n=Cm某n,λAm某n=Dm某n,∴Rm某n是一个线性空间.例2次数不超过n的多项式的全体,记作P[某]n,即P[某]n={p=an某n++a1某+a0an,,a1,a0∈R},对于通常的多项式加法。
第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。
集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R)和复数域(C)。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。
如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。
则有O x x =-+)(。
(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。
注意以下几点:1)线性空间是基于一定数域来的。
同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。
2)两种运算、八条性质。
数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。
3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。
线性空间的原理线性空间是数学中非常重要的概念,它是一种允许进行向量加法和标量乘法的集合。
线性空间广泛应用于数学、物理、工程等领域,是研究向量和线性运算的理论基础。
本文将围绕线性空间的定义、性质和应用展开详细的阐述。
线性空间的定义:线性空间,也称为向量空间,是一种满足特定条件的集合。
对于一个非空集合V,若其中定义了两种运算:向量的加法和标量的乘法,且满足以下八条性质,那么V就是一个线性空间。
1.加法封闭性:对于V中的任意两个向量u和v,它们的和u+v也属于V。
2.加法交换律:对于V中的任意两个向量u和v,满足u+v=v+u。
3.加法结合律:对于V中的任意三个向量u、v和w,满足(u+v)+w = u+(v+w)。
4.零向量存在性:存在一个元素0∈V,使得对于V中的任意向量u,满足u+0=u。
5.加法逆元存在性:对于V中的任意向量u,存在一个元素-u∈V,使得u+(-u)=0。
6.标量乘法封闭性:对于V中的任意标量α和任意向量u,它们的乘积αu属于V。
7.分配律1:对于V中的任意标量α和β以及任意向量u,满足(α+β)u=αu+βu。
8.分配律2:对于V中的任意标量α和β以及任意向量u,满足α(u+v)=αu+αv。
线性空间的性质:线性空间具有一系列重要的性质,这些性质是对其定义中所列条件的进一步推演和说明。
1.线性空间的零向量唯一:对于一个线性空间V,其零向量是唯一的,即不存在不同的零向量。
2.零向量的加法逆元唯一:对于一个线性空间V以及其中的一个向量u,其加法逆元-u是唯一的,即不存在不同的加法逆元。
3.标量乘法的单位元:对于一个线性空间V,乘以标量1的结果是原向量本身,即1u=u。
4.标量乘法的分配律:对于一个线性空间V以及其中的两个标量α和β,乘法分配律表示为(α+β)u=αu+βu和α(u+v)=αu+αv。
5.标量乘法的结合律:对于一个线性空间V以及其中的两个标量α和β,乘法结合律表示为(αβ)u=α(βu)。
线性空间知识点总结本文将从定义、性质、例子、拓扑结构等多个方面对线性空间进行总结,以帮助读者更全面地理解这一概念。
一、线性空间的定义线性空间的定义较为抽象,它可以用来表示向量、矩阵、多项式等各种类型的数学对象。
线性空间是一个非空集合V,配上两个操作:加法和数乘。
加法指的是将两个向量或数学对象相加得到一个新的向量或数学对象,数乘指的是将一个标量与一个向量或数学对象相乘得到一个新的向量或数学对象。
具体来说,给定一个域F,一个线性空间V满足以下条件:1. 对于V中的任意两个元素x、y,它们的和x+y也属于V。
2. 对于V中的任意元素x和任意标量c,它们的数乘cx也属于V。
3. 加法满足结合律和交换律。
4. 加法单位元(零向量)存在。
5. 数乘满足分配律。
6. 数乘满足标量乘1等于自身。
换句话说,线性空间V是一个满足上述条件的非空集合,它配备了加法和数乘这两种运算,并且这两种运算满足一定的性质。
二、线性空间的性质线性空间有许多重要的性质,这些性质不仅体现了线性空间的内在结构,也为线性空间的进一步研究提供了重要的基础。
下面介绍线性空间的一些主要性质:1. 线性空间中的元素有唯一加法逆元。
对于线性空间V中的任意元素x,存在一个唯一的元素-y,使得x+y=0,其中0表示线性空间V中的零向量。
2. 线性空间中的元素满足交换律和结合律。
即对于线性空间V中的任意元素x、y、z,有x+y=y+x,(x+y)+z=x+(y+z)。
3. 线性空间中的元素满足分配律。
即对于线性空间V中的任意元素x、y、z和任意标量c,有c(x+y)=cx+cy,(c+d)x=cx+dx。
4. 线性空间中的元素满足数乘单位元的性质。
即对于线性空间V中的任意元素x,有1∙x=x。
5. 线性空间中的元素满足数乘交换律。
即对于线性空间V中的任意元素x和任意标量c、d,有c(dx)=(cd)x。
6. 线性空间中的元素满足数乘结合律。
即对于线性空间V中的任意元素x和任意标量c、d,有(c+d)x=cx+dx。
线性空间和线性变换§1.1 线性空间的概念与性质§1.2 线性空间的基与维数§1.3 线性变换主要讨论线性空间及线性变换的一些基本概念与基本定理,在此基础上使大家能利用这些基本概念与定理解决相关问题。
§1.1 线性空间的概念与性质一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念。
线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。
定义1.设V 是一个非空集合,K是一个数域(有理数域、实数域或复数域)。
在集合V的元素之间定义了一种代数运算,叫做加法:给出了一种法则,对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作:γ=α+β。
在数域K与集合V的元素之间还定义了一种运算,叫做数量乘法:对于任一数λ∈K与任一元素α,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα。
如果上述定义的两种运算满足以下八条运算规律,那么V 就称为数域K 上的线性空间(或向量空间)。
(1) (2) ()()(3) (4) (5) 1(6) ()()(7) ()λμλμλμλμλμ∈∈+=+++=++∃∈∀∈+=∀∈∃∈+===+=+αβγV Rαββααβγαβγ0V αV α0ααV βV αβ0ααααααα设、、,、,对,都有,,都有加法:(1)-(4) 数量乘积:(5)(6) 数乘与加法:(7)(8)。
说明:1.凡满足以上八条规律的加法及数乘运算,称为线性运算。
2.线性空间的元素(向量空间中的向量)不一定是有序数组。
3.判别线性空间的方法:一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。
线性空间的判定方法:(1)一个集合,如果定义的加法和乘数运算是通常的实数间的加乘运算,则只需检验对运算的封闭性。
首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。
线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。
赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。
总之,空间有很多种。
你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。
这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。
我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。
仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,上面的这些性质中,最最关键的是第4条。
第1、2条只能说是空间的基础,不算是空间特有的性质,凡是讨论数学问题,都得有一个集合,大多数还得在这个集合上定义一些结构(关系),并不是说有了这些就算是空间。
而第3条太特殊,其他的空间不需要具备,更不是关键的性质。
只有第4条是空间的本质,也就是说,容纳运动是空间的本质特征。
认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。
事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。
你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。