联立方程模型的概念和构造
- 格式:ppt
- 大小:381.00 KB
- 文档页数:47
计量经济学之联立方程模型引言联立方程模型(Simultaneous Equation Model,简称SEM)是计量经济学中的一个重要分析工具,用于研究多个经济变量之间的相互关系。
通过建立一组方程,可以理解变量之间的联动效应,并进行预测和政策分析。
本文将介绍联立方程模型的基本概念、建模步骤和常见的估计方法等内容。
基本概念联立方程模型的定义联立方程模型是指由多个方程组成的一种数学模型,用于描述多个经济变量之间的关系。
每个方程都包含一个因变量和若干个解释变量,以及一个误差项。
联立方程模型的核心思想是通过解方程组,得到各个变量的估计值,进而分析它们之间的关系。
基本假设在建立联立方程模型时,需要对变量之间的关系进行假设。
常见的基本假设有:1.线性关系假设:方程中的变量之间的关系是线性的。
2.独立性假设:各个方程中的误差项是独立的,即它们之间不存在相关性。
3.零条件均值假设:解释变量的条件均值为零,即解释变量的期望与误差项无关。
4.同方差假设:各个方程中的误差项方差相等。
建模步骤建立联立方程模型的步骤如下:步骤一:确定变量根据研究主题和数据可获得的变量,确定需要建立模型的变量集合。
步骤二:构建方程根据经济理论和实际问题,构建联立方程模型的方程形式。
每个方程包含一个因变量和若干个解释变量。
步骤三:参数估计通过收集数据,对联立方程模型进行参数估计。
常用的估计方法有最小二乘估计(Ordinary Least Squares,简称OLS)和广义矩估计(Generalized Method of Moments,简称GMM)等。
步骤四:模型诊断对估计得到的模型进行诊断,检验模型的拟合优度、参数显著性和误差项的假设等。
常见的诊断方法有虚拟变量检验、异方差性检验和序列相关性检验等。
步骤五:模型解释与政策分析根据估计得到的模型结果,解释各个变量之间的关系,并进行政策分析。
可以利用模型进行预测和模拟,评估不同政策对经济变量的影响。
第十一章 联立方程模型单一方程模型:描述某一经济变量与影响该变量变化的诸因素之间的数量关系,即描述经济变量之间的单向因果关系。
联立方程模型:就是由两个或两个以上的相互联系的单一方程组成的方程组。
第一节 联立方程模型的基本概念一、联立方程模型及其设定从经济意义上看,联立方程模型主要反映了模型对象的经济行为以及经济行为的外部环境、市场均衡条件。
例子1,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩Q =b +b P+b R+μs 202Q =b +b P+b Y+μd 1011121Q =Q s d1222………(1.1.1)式中,Q d 表需求量,Qs 表供给量,P 表价格,Y 表消费者收入,R 表气候条件。
(11.1)式是反映某农产品的市场局部均衡模型。
例子2,小型国民经济宏观模型⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩C =b +b Y +b C +μt t 101112t-11tR =b +b Y +b (Y -Y )+b (M -M )t t t 303132t-133t-1+b (R -R )+μ34t-1t-23Y =C +I +G t t t I =b +b (Y -Y )+b Y +b R +μt t 2021t-122t-1t 23t-t t12…………………………………………………………………(11.2)例子3,在一个由国民收入Y 、消费C 、投资I 、政府支出G 等变量构成的简单的宏观经济系统中,对这些变量之间的关系用经济数学模型来进行描述。
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩I =b +b Y +b Y +u t t 012t C =a +a Y +u t t 011tY =C +I +G t t t t-12t …… (11.3) 式(11.3)中,内生变量包括:国民收入Y 、消费C 、投资I ;外生变量包括:前期国民收入Y t-1和政府支出G 。
消费函数和投资函数为随机方程式,而收入函数为非随机方程式。
二、联立方程模型的变量和方程式1.变量(1)内生变量:是受模型系统中其他变量的影响,也可能影响其他变量。
联立方程模型是一种数学方法,通过联立多个方程来描述和解决复杂的问题。
这种模型在经济学、物理学、工程学等领域中得到了广泛的应用,能够帮助研究人员理解和预测各种变量之间的关系。
本文将介绍联立方程模型的基本概念和应用,以及如何构建和求解联立方程模型。
一、联立方程模型的基本概念联立方程模型是一种描述多个变量之间关系的数学模型。
我们可以用一组方程组来表示这些变量之间的相互影响。
一般来说,联立方程模型可以写成如下形式:1. 假设我们有n个变量和m个方程,我们可以用矩阵和向量的形式来表示联立方程模型:其中,Y是一个n维向量,代表因变量;X是一个n×k维矩阵,代表自变量;β是一个k维向量,代表自变量的系数;ε是一个n维向量,代表误差项。
2. 联立方程模型的基本假设包括:(1)线性关系假设:假设因变量和自变量之间的关系是线性的;(2)随机抽样:样本必须是随机抽样的,以保证估计结果的一致性;(3)独立同分布假设:误差项之间是相互独立的,并且服从相同的分布;(4)方差齐性假设:误差项的方差是相同的。
二、构建联立方程模型构建联立方程模型的基本步骤包括:1. 确定研究的目标和问题:首先需要明确研究的目的,确定需要研究的变量和它们之间的关系。
2. 收集数据:根据研究目标,需要收集相关的数据样本。
3. 设定模型:选择合适的自变量和因变量,并设计出联立方程模型的形式。
4. 估计参数:通过最小二乘法或其他方法,估计模型的参数。
5. 检验模型:对模型的拟合度和估计结果进行检验,检验模型是否符合现实情况。
6. 修正模型:根据检验结果对模型进行修正,直至得到较为合理的模型。
三、求解联立方程模型求解联立方程模型的常用方法有:1. 最小二乘法:通过最小化因变量的观测值和模型估计值之间的差异来估计参数。
2. 极大似然估计:通过最大化样本数据出现的概率来估计参数。
3. 广义最小二乘法:当误差项不满足方差齐性和独立同分布假设时,可以使用广义最小二乘法进行参数估计。
联立方程模型
(1) 什么是联立方程模型
联立方程模型是指以方程组的方式来描述经济现象的一种经济模型。
一般来说,联立方程模型其实就是一个方程组,这个方程组中包含了多个方程,每个方程内部都有若干变量。
在联立方程模型中,每个变量被视为不同方程中的自变量或者因变量。
这种模型用线性公式和非线性公式来描述经济现象或统计变量间的关系,用以识别并推测经济变量对行为和经济状况发生变化的程度等。
(2) 联立方程模型的用途
(1)研究不可观测的经济问题:联立方程模型可以用来研究一些不可观测到的经济问题,比如投资机会成本,经济均衡和无形资产等经济问题;
(2)描述经济数据的特点:联立方程模型也可以用来描述经济数据的特点,比如消费者的收入水平与消费额的关系,全球投资机会成本的变化,股票市场价格和利润水平的变化等;
(3)研究并预测经济变量:联立方程模型也可以用来研究和预测经济变量的变化,比如全球投资和消费水平的变化,全球利率变化等;
(4)预测市场异动:联立方程模型还可以用来预测股票市场或其他金融市场的异动,以提前发现投资机会或避免不利的投资。
(3) 联立方程模型的特点
(1)多元关系:联立方程模型涉及多元关系,能够从多个变量之间的线性和非线性关系中,发现变量对行为和经济状况发生变化的程度;
(2)解析能力:联立方程模型具有很强的解析能力,可以发现经济现象的隐藏机制;
(3)可预测性:联立方程模型具有很强的可预测性,可以进行经济预测,进而制定更好的未来经济政策;
(4)抽象性:联立方程模型抽象性强,其结果可以以精确的数学表达式反映出来,且结果易于理解;
(5)自变量独立性:联立方程模型中,不同方程之间的自变量是相互独立的,可以直接用来比较不同变量之间的关系。
第八章联立方程模型第八章联立方程模型第1节、联立方程模型的概念1、什么是联立方程模型联立方程模型是相对于前面所学的单一方程模型提出的。
单一方程模型中只含有一个被解释变量和若干个解释变量,这类方程最大的特征是,它只能描述经济变量之间的单向因果关系,即解释变量是因,被解释变量是果,例如Y=β0+β1X+u表示收入对服装支出的影响,收入是因,服装支出是果,而且这种因果关系是不可逆转的,不能用这个方程又解释服装支出对收入的影响。
但是,经济现象是错综复杂的,许多经济变量之间存在着交错的双向或多向因果关系,是相互依存,互为因果的。
例如,收入影响消费,消费反过来也影响收入;价格影响着商品的需求和供给,反过来,商品的需求和供给关系又影响着商品的价格。
因此,要想描述清楚一个经济系统中各个变量之间的关系,就需要用一组方程才能描述清楚。
联立方程模型:同时用若干个模型去表示一个经济系统中经济变量相互联立依存性的模型。
例如:由国内生产总值(Y)、居民消费总额(C)、投资总额(I)、和政府开支(G)等变量构成的简单的宏观经济系统:如果我们把政府开支(G)有系统外部实现给定,那么,就国内生产总值、居民消费总额、投资总额之间是互相影响并互为因果的。
可以建立如下模型:Yt=Ct+It+GtCt=a0+a1Yt+u1tIt=β0+β1Ytβ2Yt-1+μ2t其中第一个方程表示国内生产总值由居民消费总额、投资总额和政府开支共同决定,在假定进出口平衡的情况下,是一个衡等方程;第二个方程表示居民消费总额由国内生产总值决定;第三个方程表示投资总额由国内生产总值和前一年的国内生产总值共同决定。
这就是一个简单的描述宏观经济的联立方程模型。
2、联立方程模型的特点1、模型中不止一个应变量,有M个方程可以有M个应变量;2、应变量和解释变量之间不仅是单向的因果关系,可能是互为因果;3、解释变量有可能是随机的不可控变量,比如上例中,居民消费总额和投资总额是随机变量,而国内生产总值由他们决定,因此国内生产总值不是确定性的变量,它作为居民消费的解释变量,就是随机的变量。
第十二章 联立方程模型§12.1 联立方程模型的概念 一. 变量之间的双向关系:1. 单向因果关系:在单方程模型中,一个因变量总是表示成其他几个变量(自变量)的函数,即 12(,,,)k y f x x x =⋅⋅⋅⋅⋅⋅,称为单向因果关系。
2. 双向因果关系:变量之间相互依赖相互交错的因果关系,称为双向因果关系。
双向关系不能由单一方程来描述,而要由若干个相互有联系的方程构成方程组模型,称为联立方程模型。
如果方程组(模型)中的方程都是线性的,称为线性联立方程模型。
例如,在讨论消费与收入的关系时,静止地看,显然是收入决定消费,但从社会再生产的动态过程看问题,消费水平和消费结构的变化会导致生产规模和行业结构的调整变化,进而影响到国民收入。
因此,消费又决定收入。
由于经济问题中,各种构成因素之间错综复杂,单一方程很难真实反映复杂经济系统的特征,甚至使模型存在严重缺陷(多重共线),所以应采用联立方程模型。
例 供求模型01210122D t t t tS t t t t D S t t tQ P Y u Q P W u Q Q Q αααβββ=+++=+++=={D t Q 、S t Q 、t P 、t Y 、t W 分别表示需求量、供给量、价格、消费者收入、气候。
这是某种农产品的供求平衡模型,描述了该农产品的交易系统。
二. 变量分类:由于不同的经济变量在一个经济系统中的地位作用特征有所不同,可分为(一)内生变量:由模型本身决定的变量。
若把模型视为系统,内生变量即为由系统内部决定的变量。
如,D t Q 、S t Q 、t P 。
它们不仅影响着系统,决定着系统的状态,同时也受到系统内的其它(非主要)因素的影响,因此都呈现为随机变量。
若用t Y 表示内生变量,则()0t t E Yu ≠。
(二)外生变量:模型外部决定的变量。
如,t Y 、t W 。
若把模型视为系统,外生变量的影响可视为环境对系统影响,但不受系统的影响。
第八章联立方程模型第1节、联立方程模型的概念1、什么是联立方程模型联立方程模型是相对于前面所学的单一方程模型提出的。
单一方程模型中只含有一个被解释变量和若干个解释变量,这类方程最大的特征是,它只能描述经济变量之间的单向因果关系,即解释变量是因,被解释变量是果,例如Y=β0+β1X+u表示收入对服装支出的影响,收入是因,服装支出是果,而且这种因果关系是不可逆转的,不能用这个方程又解释服装支出对收入的影响。
但是,经济现象是错综复杂的,许多经济变量之间存在着交错的双向或多向因果关系,是相互依存,互为因果的。
例如,收入影响消费,消费反过来也影响收入;价格影响着商品的需求和供给,反过来,商品的需求和供给关系又影响着商品的价格。
因此,要想描述清楚一个经济系统中各个变量之间的关系,就需要用一组方程才能描述清楚。
联立方程模型:同时用若干个模型去表示一个经济系统中经济变量相互联立依存性的模型。
例如:由国内生产总值(Y)、居民消费总额(C)、投资总额(I)、和政府开支(G)等变量构成的简单的宏观经济系统:如果我们把政府开支(G)有系统外部实现给定,那么,就国内生产总值、居民消费总额、投资总额之间是互相影响并互为因果的。
可以建立如下模型:Yt=Ct+It+GtCt=a0+a1Yt+u1tIt=β0+β1Ytβ2Yt-1+μ2t其中第一个方程表示国内生产总值由居民消费总额、投资总额和政府开支共同决定,在假定进出口平衡的情况下,是一个衡等方程;第二个方程表示居民消费总额由国内生产总值决定;第三个方程表示投资总额由国内生产总值和前一年的国内生产总值共同决定。
这就是一个简单的描述宏观经济的联立方程模型。
2、联立方程模型的特点1、模型中不止一个应变量,有M个方程可以有M个应变量;2、应变量和解释变量之间不仅是单向的因果关系,可能是互为因果;3、解释变量有可能是随机的不可控变量,比如上例中,居民消费总额和投资总额是随机变量,而国内生产总值由他们决定,因此国内生产总值不是确定性的变量,它作为居民消费的解释变量,就是随机的变量。