第四章quasi_newton..
- 格式:ppt
- 大小:481.50 KB
- 文档页数:38
拟牛顿法算法步骤拟牛顿法(Quasi-Newton method)是一种求解无约束优化问题的数值优化算法。
与牛顿法类似,拟牛顿法在每一步都尝试找到目标函数的一阶或二阶导数的最小值。
然而,与牛顿法需要计算目标函数的二阶导数不同,拟牛顿法通过估计目标函数的Hessian矩阵来近似二阶导数。
以下是拟牛顿法算法的步骤:1. 初始化:选择初始点x_0和近似的Hessian矩阵H_0(通常选择单位矩阵I)。
设定迭代终止条件,包括最大迭代次数和目标函数值收敛阈值。
2.迭代计算:对于每一次迭代k,计算当前点的梯度g_k=∇f(x_k)。
3.判断终止条件:检查终止条件,包括梯度范数的大小和目标函数值的收敛性。
如果满足终止条件,则算法结束,返回当前点x_k作为近似的最优解。
否则,继续下一步。
4. 方向计算:计算当前点的方向d_k。
拟牛顿法的一个核心思想是通过近似Hessian矩阵来更新方向。
常用的方向选择是d_k = -H_k*g_k。
5.步长计算:选择合适的步长α_k。
步长的选择可以使用线或精确线来求解,确定使得目标函数值减小的最佳步长。
6.更新:对于下一次迭代k+1,更新当前点x_k+1=x_k+α_k*d_k。
7. 修正:根据拟牛顿法的思想,通过计算当前点和上一次迭代点的参数更新量来修正近似的Hessian矩阵H_k。
常用的修正方法是BFGS (Broyden-Fletcher-Goldfarb-Shanno)或DFP(Davidon-Fletcher-Powell)。
8.返回第2步:回到第2步继续迭代计算,直到满足终止条件。
拟牛顿法的优点是避免了计算目标函数的二阶导数,节省了计算量,并且避免了计算不可行或无效的Hessian矩阵的情况。
另外,拟牛顿法还能够处理非线性和非凸优化问题。
需要注意的是,拟牛顿法也有一些局限性。
首先,由于需要存储和更新近似的Hessian矩阵,算法的内存消耗较大。
其次,近似Hessian矩阵的计算可能受到噪声或不可靠的梯度信息的影响,导致方向的不准确性。
m a t l a b入门经典教程--第四章数值计算-CAL-FENGHAI.-(YICAI)-Company One1第四章数值计算4.1引言本章将花较大的篇幅讨论若干常见数值计算问题:线性分析、一元和多元函数分析、微积分、数据分析、以及常微分方程(初值和边值问题)求解等。
但与一般数值计算教科书不同,本章的讨论重点是:如何利用现有的世界顶级数值计算资源MATLAB。
至于数学描述,本章将遵循“最低限度自封闭”的原则处理,以最简明的方式阐述理论数学、数值数学和MATLAB计算指令之间的内在联系及区别。
对于那些熟悉其他高级语言(如FORTRAN,Pascal,C++)的读者来说,通过本章,MATLAB卓越的数组处理能力、浩瀚而灵活的M函数指令、丰富而友善的图形显示指令将使他们体验到解题视野的豁然开朗,感受到摆脱烦琐编程后的眉眼舒展。
对于那些经过大学基本数学教程的读者来说,通过本章,MATLAB精良完善的计算指令,自然易读的程序将使他们感悟“教程”数学的基础地位和局限性,看到从“理想化”简单算例通向科学研究和工程设计实际问题的一条途径。
对于那些熟悉MATLAB基本指令的读者来说,通过本章,围绕基本数值问题展开的内容将使他们体会到各别指令的运用场合和内在关系,获得综合运用不同指令解决具体问题的思路和借鉴。
由于MATLAB的基本运算单元是数组,所以本章内容将从矩阵分析、线性代数的数值计算开始。
然后再介绍函数零点、极值的求取,数值微积分,数理统计和分析,拟合和插值,Fourier分析,和一般常微分方程初值、边值问题。
本章的最后讨论稀疏矩阵的处理,因为这只有在大型问题中,才须特别处理。
从总体上讲,本章各节之间没有依从关系,即读者没有必要从头到尾系统阅读本章内容。
读者完全可以根据需要阅读有关节次。
除特别说明外,每节中的例题指令是独立完整的,因此读者可以很容易地在自己机器上实践。
MATLAB从版升级到版后,本章内容的变化如下:MATLAB从版起,其矩阵和特征值计算指令不再以LINPACK和EISPACK库为基础,而建筑在计算速度更快、运行更可靠的LAPACK和ARPACK程序库的新基础上。
拟牛顿法算法步骤拟牛顿法(Quasi-Newton Method)是一种用于无约束优化问题的迭代算法。
它的主要思想是利用得到的函数值和梯度信息近似估计目标函数的Hessian矩阵,并利用这个估计值来进行迭代优化。
拟牛顿法的算法步骤如下:1.初始化参数:选择初始点$x_0$作为迭代起点,设定迭代停止准则和迭代次数上限。
2. 计算目标函数的梯度:计算当前点$x_k$处的梯度向量$g_k=\nabla f(x_k)$。
3. 计算方向:使用估计的Hessian矩阵$B_k$和负梯度$g_k$来计算方向$d_k=-B_k g_k$。
4. 一维:通过线方法(如Armijo准则、Wolfe准则等)选择一个合适的步长$\alpha_k$,使得函数在方向上有明显的下降。
5. 更新参数:根据步长$\alpha_k$更新参数$x_{k+1}=x_k+\alpha_k d_k$。
6. 计算目标函数的梯度差:计算新点$x_{k+1}$处的梯度向量$g_{k+1}=\nabla f(x_{k+1})$。
7. 更新Hessian矩阵估计:根据梯度差$g_{k+1}-g_k$和参数差$\Delta x_k=x_{k+1}-x_k$,利用拟牛顿公式来更新Hessian矩阵估计$B_{k+1}=B_k+\Delta B_k$。
8.更新迭代次数:将迭代次数$k$加一:$k=k+1$。
9.判断终止:如果满足终止准则(如梯度范数小于给定阈值、目标函数值的变化小于给定阈值等),则停止迭代;否则,返回步骤310.输出结果:输出找到的近似最优解$x^*$作为优化问题的解。
拟牛顿法有许多不同的变体,最经典和最常用的是DFP算法(Davidon-Fletcher-Powell Algorithm)和BFGS算法(Broyden-Fletcher-Goldfarb-Shanno Algorithm)。
这两种算法都是基于拟牛顿公式来更新Hessian矩阵估计的,但具体的公式和更新规则略有不同,因此会产生不同的数值性能。
数学优化中的牛顿法和拟牛顿法在数学中,优化是一个非常重要的研究领域,其目的是找到使某个函数达到最大或最小值的变量集合。
在实际应用中,很多问题都可以转化为优化问题,如机器学习、经济学、物理学等。
在优化领域中,牛顿法和拟牛顿法是两种常见的方法。
本文将介绍这两种优化方法的基本原理、优缺点以及应用场景。
一、牛顿法牛顿法(Newton's method)是由数学家牛顿发明的非线性优化方法,其思想是利用函数的泰勒级数展开进行逼近。
具体来说,牛顿法先求出目标函数的一阶和二阶导数,然后使用二阶导数来逼近目标函数本身,进而得到近似最优解。
牛顿法的数学公式如下:$$\boldsymbol{x}_{k+1}= \boldsymbol{x}_{k} -{\boldsymbol{\nabla}^2 f(\boldsymbol{x}_k)^{-1}}\boldsymbol{\nabla} f(\boldsymbol{x}_k)$$其中,$\boldsymbol{x}_k$ 表示第 $k$ 次迭代的解,$\boldsymbol{\nabla} f(\boldsymbol{x}_k)$ 和$\boldsymbol{\nabla}^2 f(\boldsymbol{x}_k)$ 分别表示目标函数在$\boldsymbol{x}_k$ 处的一阶和二阶导数。
牛顿法的优点是收敛速度非常快,通常只需要很少的迭代次数即可达到最优解。
另外,牛顿法适用于连续可微、二阶可导的函数,因此适用范围广。
然而,牛顿法也存在一些缺点,例如无法处理不可导或一阶可导但二阶不可导的函数。
此外,牛顿法需要计算目标函数的二阶导数,因此在大规模问题上计算成本很高。
二、拟牛顿法拟牛顿法(quasi-Newton method)是一类基于牛顿法的优化算法,它通过逼近目标函数的海森矩阵来求解。
拟牛顿法没有计算海森矩阵的显式表达式,而是通过估计海森矩阵的变化来逼近。
最简单和最流行的拟牛顿法是BFGS算法和L-BFGS算法。
机器学习算法系列最速下降法牛顿法拟牛顿法最速下降法、牛顿法和拟牛顿法都是常用的机器学习优化算法。
它们在求解函数最小化问题中起到关键作用。
1. 最速下降法(Gradient Descent):最速下降法是一种基于函数梯度的迭代优化算法。
其核心思想是沿着负梯度方向以步长α更新参数,直到达到收敛条件。
最速下降法的步骤如下:1)选择初始参数值;2)计算目标函数的梯度;3)沿着负梯度方向更新参数;4)重复步骤2和步骤3,直到达到停止条件。
最速下降法的优点是简单易实现,但它可能会面临局部最小值的问题,收敛速度较慢。
2. 牛顿法(Newton's Method):牛顿法是一种二阶优化算法,利用目标函数的一阶和二阶导数信息来更新参数。
它通过二阶导数矩阵(即Hessian矩阵)来指导方向和步长的选择。
牛顿法的步骤如下:1)选择初始参数值;2)计算目标函数的一阶和二阶导数;3)解线性方程(Hessian矩阵和梯度的乘积);4)更新参数;5)重复步骤2-步骤4,直到达到停止条件。
牛顿法的优点是收敛速度快,但它需要计算二阶导数矩阵,计算量较大,且可能收敛到非全局最小值。
3. 拟牛顿法(Quasi-Newton Methods):拟牛顿法是一种基于牛顿法思想的近似优化算法。
与牛顿法不同,拟牛顿法通过正定矩阵来近似二阶导数矩阵,从而避免了计算复杂的二阶导数矩阵。
拟牛顿法最经典的算法是BFGS算法(Broyden-Fletcher-Goldfarb-Shanno),它通过近似更新逆Hessian矩阵的方式来求解优化问题。
拟牛顿法的步骤如下:1)选择初始参数值和初始逆Hessian矩阵的估计;2)计算目标函数的梯度;3)更新参数;4)更新逆Hessian矩阵的估计;5)重复步骤2-步骤4,直到达到停止条件。
拟牛顿法的优点是避免了计算二阶导数矩阵,计算复杂度相对较低,且具有较好的收敛性质。
总结来说,最速下降法适用于简单的优化问题,牛顿法适用于二次型问题,而拟牛顿法在保持收敛速度的同时减少了计算复杂度。
非线性规划算法介绍在优化问题中,线性规划被广泛应用,但是有时候我们需要解决一些非线性问题。
非线性规划问题是指目标函数或约束条件至少有一个是非线性的优化问题,求解非线性规划问题是在一些工程和科学领域中很重要的任务。
这篇文章将会介绍非线性规划算法的一些概念和原理。
1. 概述非线性规划(Non-linear programming,简称NLP)是指存在非线性的目标函数和约束的最优化问题。
相对于线性规划问题,非线性规划问题的求解要困难得多,因此需要更复杂的算法来解决。
然而,在实际应用中非线性规划问题比比皆是,如金融风险管理、科学研究、交通规划等,因此非线性规划算法的研究意义非常重大。
2. 常见算法(a) 梯度下降法梯度下降法(Gradient descent algorithm)是求解最小化目标函数的一种方式。
在非线性规划问题中,该方法利用目标函数的梯度方向来确定下降的方向,迭代调整参数,直到梯度为零或达到可接受的误差范围。
梯度下降法有多种变形,包括共轭梯度法、牛顿法等。
(b) 拟牛顿法拟牛顿法(Quasi-Newton methods)是用来求解非线性约束优化问题的经典算法之一。
拟牛顿法利用牛顿法的思想,但不需要求解目标函数的二阶导数,转而用近似的Hessian矩阵来取代二阶导数,并用更新步长向量的方式近似求解目标函数的最小值。
(c) 启发式算法启发式算法(Heuristic algorithms)是一种不确定性的、基于经验的求解方法,因此不保证能找到全局最优解。
虽然有缺点,但启发式算法具有较强的鲁棒性和适应性,可用于非线性规划问题的求解。
常见的启发式算法包括模拟退火、遗传算法、蚁群算法、粒子群算法等。
3. 应用案例非线性规划算法在实际应用中发挥着不可或缺的作用。
这里介绍两个基于非线性规划算法的应用案例。
(a) 水利工程在水利工程中,常常需要寻找最优的方案来解决水库调度、灌溉、排洪等问题。
非线性规划算法能够通过寻找水资源的最优利用方法,保证水利工程的经济和社会效益。
•主页•专栏作家•量化基础理论•软件使用经验•量化软件•资源导航•资料下载•量化论坛搜索搜索用户登录用户名:*密码:*登录•创建新帐号•重设密码首页拟牛顿法及相关讨论星期三, 2009-06-17 00:24 —satchel1979使用导数的最优化算法中,拟牛顿法是目前为止最为行之有效的一种算法,具有收敛速度快、算法稳定性强、编写程序容易等优点。
在现今的大型计算程序中有着广泛的应用。
本文试图介绍拟牛顿法的基础理论和若干进展。
牛顿法(Newton Method)牛顿法的基本思想是在极小点附近通过对目标函数做二阶Taylor展开,进而找到的极小点的估计值[1]。
一维情况下,也即令函数为则其导数满足因此(1)将作为极小点的一个进一步的估计值。
重复上述过程,可以产生一系列的极小点估值集合。
一定条件下,这个极小点序列收敛于的极值点。
将上述讨论扩展到维空间,类似的,对于维函数有其中和分别是目标函数的的一阶和二阶导数,表现为维向量和矩阵,而后者又称为目标函数在处的Hesse矩阵。
设可逆,则可得与方程(1)类似的迭代公式:(2)这就是原始牛顿法的迭代公式。
原始牛顿法虽然具有二次终止性(即用于二次凸函数时,经有限次迭代必达极小点),但是要求初始点需要尽量靠近极小点,否则有可能不收敛。
因此人们又提出了阻尼牛顿法[1]。
这种方法在算法形式上等同于所有流行的优化方法,即确定搜索方向,再沿此方向进行一维搜索,找出该方向上的极小点,然后在该点处重新确定搜索方向,重复上述过程,直至函数梯度小于预设判据。
具体步骤列为算法1。
算法1:(1) 给定初始点,设定收敛判据,.(2) 计算和.(3) 若< ,则停止迭代,否则确定搜索方向.(4) 从出发,沿做一维搜索,令.(5) 设,转步骤(2).在一定程度上,阻尼牛顿法具有更强的稳定性。
拟牛顿法(Quasi-Newton Method)如同上一节指出,牛顿法虽然收敛速度快,但是计算过程中需要计算目标函数的二阶偏导数,难度较大。
Key words:Multriate; Cosine modulated filter banks; Prototype filter; Analysis filter banks;Synthesis filter banks; Near perfect-reconstruction.独创性声明本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表或撰写过的研究成果,也不包含为获得西北师范大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
签名:日期:关于论文使用授权的说明本人完全了解西北师范大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
(保密的论文在解密后应遵守此规定)签名:导师签名:日期:第一章 绪论1.1多速率滤波器组的作用在对有些数字信号的处理中,常常需要改变数字信号的采样速率。
例如,对窄带带通信号,若原采样速率过高,可通过降采样来减少数据冗余,降低计算量;而对过采样A/D 变换等应用,通过对信号的升采样可获得更好的性能。
还有些数字系统中存在不同采样速率的数字信号,因此需要将一种速率的信号转换为另一种速率的等效信号。
数字信号的采样率变换可以用两种方法来实现。
第一种方法是先由数字信号x(n)重构出模拟信号()a x t ,再用所需的速率对其再采样得到'()x n 。
但该方法不可取,因为实际实现时,非理想的重构滤波器、D/A 变换和A/D 变换等都会引入误差。
第二种方法是完全在数字域实现采样率的变换。
它显然可克服第一种方法的缺点,是本文主要介绍的内容,这种方法主要使用多采样率滤波器组,或者多速率滤波器组[1]。
---文档均为word文档,下载后可直接编辑使用亦可打印---摘要数值优化是机器学习的重要部分,不断研究和改进已有的优化算法,使其更快更高效,是机器学习领域的一个重要研究方向。
作为数值优化算法中具有代表性的两个二阶算法,LM和BFGS算法各有优缺点,对它们的性能进行分析和比较给二阶数值算法的改进及更广泛的应用提供重要参考。
本论文从LM和BFGS算法的数学基础开始阐述,通过对比两个算法求解多个函数极小值的问题,我们发现LM算法和BFGS算法的差异并不大。
大多数情况下LM算法能够达到更小的误差,但是迭代次数比BFGS算法稍多。
对于等高线为椭圆的函数,LM算法的收敛速度通常比BFGS算法快,但是后期运算的迭代次数比BFGS 算法多;而其他情况下LM算法和BFGS算法的收敛速度差别不大。
由于LM算法在大部分情况下的极值求解效率稍高,我们实现了基于LM算法在前向神经网络中的学习,并用于解决模式分类问题。
实验结果表明基于LM算法的前向神经网络在垃圾邮件分类应用中能取得90%以上的分类正确率。
关键词:数值优化,LM算法,BFGS算法,前向神经网络AbstractNumerical optimization is an important part of machine learning. The analysis study of existing optimization algorithms to make them faster and more efficient is an important research direction in the field of machine learning. As two popular second-order algorithms, the LM and BFGS algorithms have their own advantages and disadvantages. The analysis and comparison of their performance have great significance for the improvement of the second-order numerical algorithms and their wider application in engineering areas.This thesis starts from introducing the mathematical foundation of LM and BFGS algorithms. By comparing the performance of the two algorithms for finding the minima of different functions, we find that the LM and BFGS algorithms have similar performance for numerical optimization problems. In most cases of our experiments, the LM algorithm can achieve smaller error, but the number of iterations is slightly higher than that of the BFGS algorithm. For the functions with elliptical contours, the convergence speed of the LM algorithm is usually faster than that of the BFGS algorithm, but the iterations of later computation are much more than those of the BFGS algorithm. while in other cases,their convergence speed is almost the same. Because of the higher efficiency of the LM algorithm in most cases, the LM algorithm is employed to train feedforward neural networks which are applied to deal with some pattern classification problem. The experimental results show that the feedforward neural network trained by the LM algorithm can reach more than 90% classification accuracy in the applications of classify spam and none spam email.Keywords:Numerical optimization,LM algorithm,BFGS algorithm,Feedforward neural networks第一章绪论1.1研究背景优化算法是用来求解问题的最优解或近似最优解的[15]。