华师大九年级下期末专题《第26章二次函数》单元检测试卷含解析(数学)
- 格式:docx
- 大小:255.34 KB
- 文档页数:19
第二十六章二次函数章末测试一.选择题(共8小题,每题3分)1.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<02.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣43.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1C.3D.54.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.3是方程ax2+bx+c=0的一个根C. a+b+c=0 D.当x<1时,y随x的增大而减小5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0 C.当﹣1<x<3时,y>0 D.﹣6.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.7.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+18.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a ﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④二.填空题(共8小题,每题3分)9.在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是_________.10.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是_________.11.把抛物线y=x2+4x+5改写成y=(x+h)2+k的形式为_________,其顶点坐标为_________12.二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是_________(写出你认为正确的所有结论序号).13.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为_________.14.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有_________.三.解答题(共10小题)15(6分).已知是x的二次函数,求出它的解析式.16.(6分)如果函数y=(m﹣3)+mx+1是二次函数,求m的值.17.(6分)已知二次函数y=.(1)用配方法求出该函数图象的顶点坐标和对称轴;(2)在平面直角坐标系中画出该函数的大致图象.18.(8分)已知(1)把它配方成y=a(x﹣h)2+k形式,写出它的开口方向、顶点M的坐标;(2)作出函数图象;(填表描出五个关键点)(3)结合图象回答:当x取何值,y>0,y=0,y<0.19.(8分)已知二次函数y=x2+bx+c中函数y与自变量x之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1_________y2(填“>”或“<”).x …0 1 2 3 …y … 1 ﹣2 ﹣3 ﹣2 …20.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.20(8分).如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.21.(8分)在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.22.(8分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.23.(10分)如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.24.(10分)如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).第二十六章二次函数章末测试参考答案与试题解析一.选择题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0考点:二次函数图象与系数的关系.专题:压轴题.分析:求出a>0,b>0,把x=1代入求出a=2﹣b,b=2﹣a,把x=﹣1代入得出y=a﹣b+c=2a﹣4,求出2a﹣4的范围即可.解答:解:∵二次函数的图象开口向上,∴a>0,∵对称轴在y轴的左边,∴﹣<0,∴b>0,∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0,∴a=2﹣b,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0,∴a<2,∵a>0,∴0<a<2,∴0<2a<4,∴﹣4<2a﹣4<0,即﹣4<P<0,故选A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).2.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.3.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1C.3D.5考点:二次函数的最值.分析:先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.解答:解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.点评:本题考查了二次函数最值的求法,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.3是方程ax2+bx+c=0的一个根C. a+b+c=0 D.当x<1时,y随x的增大而减小考点:二次函数图象与系数的关系;二次函数的性质.专题:压轴题.分析:根据抛物线的开口方向可得a<0,根据抛物线对称轴可得方程ax2+bx+c=0的根为x=﹣1,x=3;根据图象可得x=1时,y>0;根据抛物线可直接得到x<1时,y随x的增大而增大.解答:解:A、因为抛物线开口向下,因此a<0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C、把x=1代入二次函数y=ax2+bx+c(a≠0)中得:y=a+b+c,由图象可得,y>0,故此选项错误;D、当x<1时,y随x的增大而增大,故此选项错误;故选:B.点评:此题主要考查了二次函数图象与系数的关系,关键是从抛物线中的得到正确信息.①二次项系数a决定抛物线的开口方向和大小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0 C.当﹣1<x<3时,y>0 D.﹣考点:二次函数图象与系数的关系.专题:压轴题;存在型.分析:根据二次函数的图象与系数的关系对各选项进行逐一分析即可.解答:解:A、∵抛物线的开口向上,∴a>0,故本选项错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故本选项错误;C、由函数图象可知,当﹣1<x<3时,y<0,故本选项错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故本选项正确.故选D.点评:本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.6.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:压轴题.分析:根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.解答:解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.点评:本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m<0是解题的突破口.7.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1考点:二次函数图象与几何变换.专题:压轴题.分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.8.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a ﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④考点:二次函数图象与系数的关系.专题:压轴题.分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大即可判断④.解答:解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选C.点评:本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.二.填空题(共8小题)9.在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是y=﹣(x+1)2+4.考点:二次函数图象与几何变换.分析:先求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出抛物线解析式即可.解答:解:∵抛物线y=﹣x2+1的顶点坐标为(0,1),∴向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(﹣1,4),∴所得抛物线的解析式为y=﹣(x+1)2+4.故答案为y=﹣(x+1)2+4.点评:本题主要考查的了二次函数图象与几何变换,利用顶点坐标的平移确定函数图象的平移可以使求解更简便,平移规律“左加右减,上加下减”.10.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是a≠﹣1.考点:二次函数的定义.分析:根据二次函数的定义条件列出不等式求解即可.解答:解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.点评:本题考查二次函数的定义.11.把抛物线y=x2+4x+5改写成y=(x+h)2+k的形式为顶点式,其顶点坐标为(﹣h,k).考点:二次函数的三种形式.专题:数形结合.分析:从抛物线的一般式到顶点式,则顶点为相应为括号内常数项的相反数为横坐标,最后的常数项即为坐标的纵坐标.解答:解:由题意知顶点式体现顶点坐标,所以填:顶点式,由题意知:坐标为(﹣h,k)故答案为顶点式,(﹣h,k).点评:本题考查了二次函数的顶点式,从抛物线的一般式开始,则顶点式即为括号内横坐标的相反数,纵坐标即为函数的常数项.12.二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是①③④(写出你认为正确的所有结论序号).考点:二次函数图象与系数的关系.专题:压轴题.分析:分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c的符号,再利用特殊值法分析得出各选项.解答:解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x=﹣>1,﹣b<2a,∴2a+b>0,故选项①正确;∵﹣b<2a,∴b>﹣2a>0>a,令抛物线解析式为y=﹣x2+bx﹣,此时a=c,欲使抛物线与x轴交点的横坐标分别为和2,则=﹣,解得:b=,∴抛物线y=﹣x2+x﹣,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),故②选项错误;∵﹣1<m<n<1,﹣2<m+n<2,∴抛物线对称轴为:x=﹣>1,>2,m+n,故选项③正确;当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0,∴3|a|+|c|=﹣3a﹣c<2b=2|b|,故④选项正确.故答案为:①③④.点评:此题主要考查了二次函数图象与系数的关系,利用特殊值法求出m+n的取值范围是解题关键.13.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12.考点:二次函数图象与几何变换.专题:压轴题.分析:根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.解答:解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,∴PP′=2×2=4,∴AD=DO=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.点评:此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.14.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有①③④.考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故答案为:①③④.点评:此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三.解答题(共11小题)15.已知是x的二次函数,求出它的解析式.考点:二次函数的定义.分析:根据二次函数的定义列出不等式求解即可.解答:解:根据二次函数的定义可得:m2﹣2m﹣1=2,且m2﹣m≠0,解得,m=3或m=﹣1;当m=3时,y=6x2+9;当m=﹣1时,y=2x2﹣4x+1;综上所述,该二次函数的解析式为:y=6x2+9或y=2x2﹣4x+1.点评:本题考查二次函数的定义.一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.16.如果函数y=(m﹣3)+mx+1是二次函数,求m的值.考点:二次函数的定义.专题:计算题.分析:根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,即可答题.解答:解:根据二次函数的定义:m2﹣3m+2=2,且m﹣3≠0,解得:m=0.点评:本题考查了二次函数的定义,属于基础题,比较简单,关键是对二次函数定义的掌握.17.已知二次函数y=.(1)用配方法求出该函数图象的顶点坐标和对称轴;(2)在平面直角坐标系中画出该函数的大致图象.考点:二次函数的图象;二次函数的三种形式.分析:(1)利用配方法求出二次函数的对称轴和顶点坐标即可;(2)把握抛物线与x轴,y轴的交点,顶点坐标,开口方向等画出图象即可.解答:解:(1)y==﹣(x2﹣6x)﹣=﹣(x2﹣6x+9﹣9)﹣=﹣(x﹣3)2+2,故顶点坐标为(3,2)和对称轴为直线x=3;(2)当y=0,则0=﹣(x﹣3)2+2,解得:x=1或x=5,则图象与x轴的交点坐标为:(1,0),(5,0),当x=0,则y=﹣,则图象与y轴的交点坐标为:(0,﹣),如图所示:.点评:此题主要考查了配方法求二次函数的对称轴和顶点坐标,此题是二次函数的基本性质也是考查重点,同学们应熟练掌握.18.已知(1)把它配方成y=a(x﹣h)2+k形式,写出它的开口方向、顶点M的坐标;(2)作出函数图象;(填表描出五个关键点)(3)结合图象回答:当x取何值,y>0,y=0,y<0.考点:二次函数的三种形式;二次函数的图象.分析:(1)根据配方法求出二次函数的对称轴、顶点坐标即可;(2)由坐标轴上点的坐标特点求出函数图象与坐标轴的交点以及(1)中抛物线的顶点坐标及与坐标轴的交点坐标描出各点,画出函数图象;(3)根据(2)中函数图象直接得出结论.解答:解:(1)∵y=﹣x2+2x+6=﹣(x2﹣4x)+6=﹣(x﹣2)2+8,∴对称轴是直线x=2,抛物线的顶点坐标M为(2,8);(2)令x=0,则y=6;令y=0,则x2+2x﹣3=0,∴抛物线与坐标轴的交点是(0,6),(﹣2,0),(6,0);函数图象如图所示;(3)由函数图象可知,当﹣2<x<6时,y>0;当x=﹣2或6时,y=0,当﹣2>x或x>6时,y<0.点评:本题考查了二次函数的性质、二次函数的图象及二次函数与不等式,在解答此题时要注意利用数形结合求不等式的解集.19.已知二次函数y=x2+bx+c中函数y与自变量x之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1>y2(填“>”或“<”).x …0 1 2 3 …y … 1 ﹣2 ﹣3 ﹣2 …考点:二次函数图象上点的坐标特征.分析:由二次函数图象的对称性知,图表可以体现出二次函数y=ax2+bx+c的对称轴和开口方向,然后由二次函数的单调性解答.解答:解:根据图表知,当x=1和x=3时,所对应的y值都是﹣2,∴抛物线的对称轴是直线x=2,又∵当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小,∴该二次函数的图象的开口方向是向上;∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故答案是:y1>y2.点评:本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键.15.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF的面积.解答:解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.∴S△DEF=EF•DM=8.点评:此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.20.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.分析:(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.解答:解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).点评:本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.21.在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.考点:相似三角形的判定与性质;一元二次方程的应用;二次函数的最值;全等三角形的判定与性质;勾股定理;矩形的性质.专题:代数几何综合题;压轴题.分析:(1)根据全等三角形的对应边相等知AP=AD=3;然后在Rt△ABP中利用勾股定理可以求得BP的长度;(2)根据相似三角形Rt△ABP∽Rt△PCE的对应边成比例列出关于x、y的方程,通过二次函数的最值的求法来求y的最大值;(3)如图,连接BD.利用(2)中的函数关系式设BP=x,则CE=,然后根据相似三角形△CPE∽△CBD的对应边成比例列出关于x的一元二次方程,通过解该方程即可求得此时BP的长度.解答:解:(1)∵△APE≌△ADE(已知),AD=3(已知),∴AP=AD=3(全等三角形的对应边相等);在Rt△ABP中,BP===(勾股定理);(2)∵AP⊥PE(已知),∴∠APB+∠CPE=∠CPE+∠PEC=90°,∴∠APB=∠PEC,又∵∠B=∠C=90°,∴Rt△ABP∽Rt△PCE,∴即(相似三角形的对应边成比例),∴=∴当x=时,y有最大值,最大值是;(3)如图,连接BD.设BP=x,∵PE∥BD,∴△CPE∽△CBD,∴(相似三角形的对应边成比例),即化简得,3x2﹣13x+12=0解得,x1=,x2=3(不合题意,舍去),∴当BP=时,PE∥BD.点评:本题综合考查了矩形的性质、勾股定理、二次函数的最值等知识点.本题中求二次函数的最值时,采用了配方法.22.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在C A上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.考点:相似三角形的判定与性质;二次函数的最值;勾股定理.专题:压轴题;动点型.分析:(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;(2)分别从当点Q在边BC上运动时,过点Q作QH⊥AB于H与当点Q在边CA上运动时,过点Q作QH′⊥AB 于H′去分析,首先过点Q作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(3)由PQ⊥AB,可得△APQ∽△ACB,由相似三角形的对应边成比例,求得△PBQ各边的长,根据相似三角形的判定,即可得以点B、P、Q为定点的三角形与△ABC不相似;(4)由x=5秒,求得AQ与AP的长,可得PQ是△ABC的中位线,即可得PQ是AC的垂直平分线,可得当M 与P重合时△BCM得周长最小,则可求得最小周长的值.解答:解:(1)设AC=4ycm,BC=3ycm,在Rt△ABC中,AC2+BC2=AB2,即:(4y)2+(3y)2=102,解得:y=2,∴AC=8cm,BC=6cm;(2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=xcm,∴BP=(10﹣x)cm,BQ=2xcm,∵△QHB∽△ACB,∴,∴QH=xcm,y=BP•QH=(10﹣x)•x=﹣x2+8x(0<x≤3),②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=xcm,∴BP=(10﹣x)cm,AQ=(14﹣2x)cm,∵△AQH′∽△ABC,∴,即:=,解得:QH′=(14﹣2x)cm,∴y=PB•QH′=(10﹣x)•(14﹣2x)=x2﹣x+42(3<x<7);∴y与x的函数关系式为:y=;(3)∵AP=xcm,AQ=(14﹣2x)cm,∵PQ⊥AB,∴△APQ∽△ACB,∴=,即:=,解得:x=,PQ=,∴PB=10﹣x=cm,∴==≠,∴当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4cm,AP=x=5cm,∵AC=8cm,AB=10cm,∴PQ是△ABC的中位线,∴PQ∥BC,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5cm,∵AP=CP,∴AP+BP=AB,∴AM+BM=AB,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16cm.∴△BCM的周长最小值为16cm.点评:本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.23.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得16﹣4b+c=﹣3,根据对称轴是x=﹣3,求出b=6,即可得出答案,(2)根据CD∥x轴,得出点C与点D关于x=﹣3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解答:解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:16﹣4b+c=﹣3,c﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣=﹣3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称,∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7,∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BCD中CD边上的高为12﹣5=7,∴△BCD的面积=×8×7=28.点评:此题考查了待定系数法求二次函数的解析式、二次函数的性质,用到的知识点是二次函数的图象和性质,此题难度适中,注意掌握数形结合思想与方程思想的应用.2.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).。
二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
华师大版九年级数学下册第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将二次函数y=x2−4x−1化为y=(x−ℎ)2+k的形式,结果为( )A. y=(x+2)2+5B. y=(x+2)2−5C. y=(x−2)2+5D. y=(x−2)2−52.把抛物线y=x2向右平移1个单位,再向上平移3个单位,得到抛物线的解析式为()A. y=(x−1)2+3B. y=(x+1)2−3C. y=(x−1)2−3D. y=(x+1)2+33.函数y=(x+1)2-2的最小值是()A. 1B. -1C. 2D. -24.如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是()A. -1<P<0B. -2<P<0C. -4<P<-2D. -4<P<05.抛物线y=-(x+2)2-3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A. 9B. 12C. -14D. 107.在下列函数关系式中,y是x的二次函数的是()A. x y=6B. xy=−6C. y+x2=6D. y=−6x8.下列关系中,是二次函数关系的是()A. 当距离S一定时,汽车行驶的时间t与速度v之间的关系。
B. 在弹性限度时,弹簧的长度y与所挂物体的质量x之间的关系。
C. 圆的面积S与圆的半径r之间的关系。
D. 正方形的周长C与边长a之间的关系。
9.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>1;④b<1.2其中正确的结论是()A. ①②B. ②③C. ②④D. ③④10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.二次函数y=x2+4x+5中,当x=________时,y有最小值.12.若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.13.已知抛物线y=2x2−bx+3的对称轴是直线x=1,则b的值为________.14.将函数y=−x2所在的坐标系先向左平移2个单位再向下平移3个单位,则函数在新坐标系中的函数关系式是________.15.把抛物线y=x2向右平移3个单位,再向下平移1个单位,则得到抛物线________.16.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.17.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣148x2+ 4648x+2,则大力同学投掷标枪的成绩是________m.18.已知点A(−3,m)和点B(1,m)是抛物线y=2x2+bx+3图象上的两点,则b=________.19.二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是________ .20.二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(−1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)若点A(−3,y1)、点B(−12,y2)、点C(72,y3)在该函数图像上,则y1<y3<y2;(4)若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,则x1<−1<5<x2.其中正确结论的序号是________.三、解答题(共8题;共60分)21.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.24.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关系x2+3x+2.问:小球能达到的最大高度是多少?为y=-1225.(1)已知y=(m2+m)x m2−2m−1+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.26.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?27.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?x2+bx+c经过A、B两点,与x轴的28.如图,直线y=x−4与x轴、y轴分别交于A、B两点,抛物线y=13另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数的三种形式【解析】【分析】y=x2−4x−1=(x−2)2−5.故选D.2.【答案】D【考点】二次函数图象的几何变换【解析】【解答】抛物线y=x2先向右平移1个单位所得抛物线的解析式为y=(x−1)2,抛物线y=(x−1)2再向上平移3个单位所得抛物线的解析式为y=(x−1)2+3,故答案为:D.【分析】根据函数图象平移的法则即可得到结果.3.【答案】D【考点】二次函数的最值【解析】【分析】此函数的最小值,在x=-1时,y=-2,此时取最小值。
2023年九年级数学下册第二十六章《二次函数》复习检测卷一、单项选择。
1.在平面直角坐标系中,将二次函数y=(x-1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的表达式为()A.y=(x-2)2-1B.y=(x-2)2+3C.y=x 2+1D.y=x 2-12.关于二次函数y=-3x 2+6x+1,下列说法错误的是()A.图象与y 轴的交点坐标为(0,1)B.图象的对称轴在y 轴的右侧C.当x>0时,y 的值随x 值的增大而减小D.y 的最大值为43.如图,抛物线L 1:y=ax 2+bx+c(a≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为()A.1B.2C.3D.44.如图,抛物线y=ax 2+bx+c 与x 轴相交于点A(-2,0),B(6,0),与y 轴相交于点C,小红同学得出了以下结论:①b 2-4ac>0;②4a+b=0;③当y>0时,-2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.15.抛物线y=ax 2+bx+c 上部分点的横坐标x,纵坐标y 的对应值如下表:下列结论不正确的是()x -2-101y466A.抛物线的开口向下B.抛物线的对称轴为直线x=12C.抛物线与x 轴的一个交点坐标为(2,0)D.函数y=ax 2+bx+c 的最大值为2546.若函数y=mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,那么m 的值为()A.0B.0或2C.2或-2D.0,2或-27.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为()A.1或-2B.-2或2C.2D.18.二次函数y=ax 2+bx+c 的部分图象如图所示,则下列选项错误的是()A.若(-2,y 1),(5,y 2)是图象上的两点,则y 1>y 2B.3a+c=0C.方程ax 2+bx+c=-2有两个不相等的实数根D.当x≥0时,y 随x 的增大而减小9.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b 2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()A.1个B.2个C.3个D.4个10.如图,函数y=ax 2-2x+1和y=ax-a(a 是常数,且a≠0)在同一平面直角坐标系的图象可能是()11.已知二次函数y=x 2-2ax+a 2-2a-4(a 为常数)的图象与x 轴有交点,且当x>3时,y 随x 的增大而增大,则a 的取值范围是()A.a≥-2B.a<3C.-2≤a<3D.-2≤a≤312.若二次函数y=x 2-6x+c 的图象经过A(-1,y 1),B(2,y 2),C(3+2,y 3)三点,则关于y 1,y 2,y 3大小关系正确的是()A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 2>y 1>y 3D.y 3>y 1>y 213.已知a>1,点A(a-1,y 1),B(a,y 2),C(a+1,y 3)都在二次函数y=12-x 2的图象上,则()A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 2>y 1>y 3D.y 3>y 1>y 214.已知y=ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1,则a 的取值范围是()A.a>0B.a<0C.a≥0D.a≤015.如图,二次函数y=ax 2+bx(a≠0)的图象过点(2,0),下列结论错误的是()A.b>0B.a+b>0C.x=2是关于x 的方程ax 2+bx=0(a≠0)的一个根D.点(x 1,y 1),(x 2,y 2)在二次函数的图象上,当x 1>x 2>2时,y 2<y 1<0二、填空题。
九年级下册数学单元测试卷-第26章二次函数-华师大版(含答案)一、单选题(共15题,共计45分)1、已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0B.c<0C.b 2-4ac<0D.a+b+c>02、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个3、二次函数y=x2的图像向右平移2个单位,得到新的函数图像的表达式是()A.y=x 2﹣2B.y=(x﹣2)2C.y=x 2+2D.y=(x+2)24、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A.2B.4C.8D.165、若将抛物线y= 先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A. B. C. D.6、宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为元时,宾馆当天的利润为10890元.则有()A. B.C. D.7、已知二次函数y=mx2-3x++2m-m2的图象过原点,则m的值为 ( )A.0或2B.0C.2D.18、已知抛物线(a,b,c为常数,)经过点,其对称轴在y轴右侧.有下列结论:①;②方程的一个根为1,另一个根为;③.其中,正确结论的个数为()A.0B.1C.2D.39、下列二次函数中,其顶点坐标是(3,-2)的是()A. B. C. D.10、已知二次函数的图象如图所示,现有下列结论:①;②;③;④.则其中结论正确的是()A.①③B.③④C.②③D.①④11、二次函数y=-x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≤0时,x < 0或x > 4;③函数解析式为y=-x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有( )A.①②③④B.①②③C.②③④D.①③④12、下列关于抛物线y=-x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(-1,2)C.在对称轴的右侧,y 随x的增大而增大D.在对称轴的左侧,y随x的增大而增大13、已知函数是二次函数,则m的值为()A.-2B.±2C.D.14、已知二次函数,当时,该函数取最大值8.设该函数图象与x 轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.15、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论,其中不正确的结论是()A.abc=0B.a+b+c>0C.3a=bD.4ac﹣b 2<0二、填空题(共10题,共计30分)16、写出一个图象的顶点在原点,开口向下的二次函数的表达式________.17、若抛物线y=﹣﹣kx+k+ 与x轴只有一个交点,则k的值________.18、请写出一个开口向上,且其图象经过原点的抛物线的解析式为________.19、把抛物线y=x2﹣2x向下平移2个单位长度,再向右平移1个单位长度,则平移后的抛物线相应的函数表达式为________.20、设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式________.21、若函数y=x2﹣6x+m的图象与x轴只有一个公共点,则m=________.22、在平面直角坐标系中,抛物线y=x2+bx+5的对称轴为直线x=1.若关于x的一元二次方程(t为实数)在-1<x<4的范围内有实数根,则t的取值范围为________.23、抛物线y=x2+8x﹣4与直线x=﹣4的交点坐标是________.24、如图,在平面直角坐标系中,点C是y轴正半轴上的一个动点,抛物线y=ax2-6ax+5a(a是常数,且a>0)过点C,与x轴交于点A、B,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧,连接BD,则BD的最小值是________.25、二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0 ;② 4a +c<2b ;③m(am+b)+b>a(m≠-1);④方程ax2+bx+c-3=0的两根为x1, x2(x1<x2),则x2<1,x1>-3 ,其中正确结论的是________.三、解答题(共5题,共计25分)26、已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值27、小李按市场价格30元/kg收购了一批海鲜1000kg存放在冷库里,据预测,海鲜的市场价格将每天每kg上涨1元.冷冻存放这批海鲜每天需要支出各种费用合计310元,而且这些海鲜在冷库中最多存放160天,同时平均每天有3kg的海鲜变质.(1)设x天后每kg该海鲜的市场价格为y元,试写出y与x之间的函数关系式;(2)若存放x天后,将这批海鲜一次性出售.设这批海鲜的销售总额为P元,试写出P与x之间的函数关系式;(3)小李将这批海鲜存放多少天后出售可获得最大利润,最大利润是多少元?(利润W=销售总额﹣收购成本﹣各种费用)28、以直线x=1为对称轴的抛物线y=-x2+bx+c与x轴交于A、B两点,其中点A的坐标为(3,0).(1)求点B的坐标;(2)设点M(x1, y1)、N(x2, y2)在抛物线线上,且x1<x2<1,试比较y1、y2的大小.29、如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(Ⅰ)直接写出点B坐标;判断△OBP的形状;(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;(i)若抛物线向下平移m个单位长度,当S△PCD= S△POC时,求平移后的抛物线的顶点坐标;(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.30、如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B,C重合),过点P作PQ⊥EP,交CD于点Q,求在点P运动的过程中,BP多长时,CQ有最大值,并求出最大值.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、B5、B6、C7、C8、C9、C10、B11、D12、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。
第26章二次函数单元检测卷姓名:__________ 班级:_________题号一二三总分评分1.在下列关于x的函数中,一定是二次函数的是()A. y=x2B. y=ax2+bx+cC. y=8xD. y=x2(1+x)2.二次函数y=x2+2x﹣7的函数值是8,那么对应的x的值是()A. 3B. 5C. ﹣3和5D. 3和﹣53.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A. x=1B. x=﹣1C. x=﹣3D. x=34.已知二次函数y=x2+bx+3如图所示,那么函数y=x2+(b﹣1)x+3的图象可能是()A. B. C. D.5.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.6.二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A. x<﹣1B. x>3C. ﹣1<x<3D. x<﹣1或x>37.如图,函数y=﹣2x2的图象是()A. ①B. ②C. ③D. ④8.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A. (,)B. (2,2)C. (,2)D. (2,)9.如图,抛物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A. ①②B. ②③C. ③④D. ①④10.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A. B.C. D.11.函数y=ax2+bx+a+b(a≠0)的图象可能是()A. B. C. D.二、填空题(共10题;共3分)12.方程2x﹣x2=的正实数根有________ 个13.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1________y2.(填“>”,“<”或“=”)14.若函数y=(m+2)是关于x的二次函数,则满足条件的m的值为________.15.当m________ 时,y=(m﹣2)是二次函数.16.若直线y=m(m为常数)与函数y=的图象有三个不同的交点,则常数m的取值范围________17.若y与x的函数是二次函数,则________ .18.若函数y=(m﹣2)x|m|是二次函数,则m=________.19.如图为函数:y=x2﹣1,y=x2+6x+8,y=x2﹣6x+8,y=x2﹣12x+35在同一平面直角坐标系中的图象,其中最有可能是y=x2﹣6x+8的图象的序号是________.20.若函数是二次函数,则m的值为________.21.二次函数y=3x﹣5x2+1的二次项系数、一次项系数、常数项分别为________.三、解答题(共3题;共37分)22.用一根长为800cm的木条做一个长方形窗框,若宽为x cm,写出它的面积y与x之间的函数关系式,并判断y是x的二次函数吗?23.一个二次函数y=(k﹣1)+2x﹣1.(1)求k值.(2)求当x=0.5时y的值?24.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线经过A(﹣1,0),C(0,﹣5)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P 的坐标;(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作⊙Q,使得⊙Q与直线BC相切,在运动的过程中是否存在一个最大⊙Q?若存在,请直接写出最大⊙Q的半径;若不存在,请说明理由.参考答案一、选择题A D A C A C C C D D C二、填空题12.013.>14.115.﹣216.0<m<417.m=﹣118.-219.第三个20.-321.﹣5、3、1三、解答题22.解:设宽为xcm,由题意得,矩形的周长为800cm,∴矩形的长为cm,∴y=x×=﹣x2+400x(0<x<400).y是x的二次函数.23.解:(1)由题意得:k2﹣3k+4=2,且k﹣1≠0,解得:k=2;(2)把k=2代入y=(k﹣1)+2x﹣1得:y=x2+2x﹣1,当x=0.5时,y=.24.(1)解:∵对称轴为x=2,且抛物线经过A(﹣1,0),∴B(5,0).把B(5,0),C(0,﹣5)分别代入y=mx+n得,解得:,∴直线BC的解析式为y=x﹣5.设y=a(x﹣5)(x+1),把点C的坐标代入得:﹣5a=﹣5,解得:a=1,∴抛物线的解析式为:y=x2﹣4x﹣5(2)解:①过点C作CP1⊥BC,交抛物线于点P1,如图,则直线CP1的解析式为y=﹣x﹣5,由,解得:(舍去),,∴P1(3,﹣8);②过点B作BP2⊥BC,交抛物线于P2,如图,则BP2的解析式为y=﹣x+5,由,解得:(舍去),,∴P2(﹣2,7)(3)解:由题意可知,Q点距离BC最远时,半径最大.平移直线BC,使其与抛物线只有一个公共点Q(即相切),设平移后的直线解析式为y=x+t,由,消去y整理得x2﹣5x﹣5﹣t=0,△=25+4(5+t)=0,解得t=﹣,∴平移后与抛物线相切时的直线解析式为y=x﹣,且Q(,﹣),连接QC、QB,作QE⊥BC于E,如图,设直线y=x﹣与y轴的交点为H,连接HB,则,∵CH=﹣5﹣(﹣)= ,∴= ,∴,∵,BC= ,∴QE= ,即最大半径为。
第26章二次函数数学九年级下册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图像上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个2、下面的函数是二次函数的是()A. B. C. D.3、抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个B.2个C.3个D.4个4、若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.-2B.1C.2D.-15、将抛物线y=2x2向右平移一个单位后得到的新抛物线的解析式为()A.y=2(x+1)2B.y=2(x-1)2C.y=2x 2+1D.y=2x 2-16、关于二次函数y=﹣(x﹣3)2﹣2的图象与性质,下列结论错误的是()A.抛物线开口方向向下B.当x=3时,函数有最大值﹣2C.当x>3时,y随x的增大而减小D.抛物线可由y= x 2经过平移得到7、对于二次函数y=−3(x+1)2-2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是-2B.对称轴是直线x=1,最大值是-2 C.对称轴是直线x=−1,最小值是-2 D.对称轴是直线x=−1,最大值是-28、把抛物线y=﹣2(x﹣2)2+3先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x﹣1)2+2B.y=﹣2(x+1)2+2C.y=﹣2(x﹣3)2+5 D.y=2(x﹣3)2+59、下列各式中,y是x的二次函数的是()A.y=mx 2+1(m≠0)B.y=ax 2+bx+cC.y=(x﹣2)2﹣x2 D.y=3x﹣110、对于抛物线y=(x﹣1)2+2的描述正确的是()A.开口向下B.顶点坐标为(﹣1,2)C.有最大值为2D.对称轴为x=111、二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x 2+3B.y=x 2﹣3C.y=(x+3)2D.y=(x﹣3)212、对称轴为y轴的二次函数是()A. B. C. D.13、在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,014、已知函数与轴交点是,则的值是( )A.2014B.2013C.2012D.201115、关于二次函数,下列说法正确的是()A.图象的对称轴在y轴左侧B.图象的顶点在x轴下方C.当时,随的增大而增大 D. 有最小值是1二、填空题(共10题,共计30分)16、已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,则a﹣c=________.17、将二次函数y=﹣2( x﹣1)2﹣2的图象向左平移1个单位,在向上平移1个单位,则所得新二次函数图象顶点为________.18、函数y=2x2﹣4x﹣1写成y=a(x﹣h)2+k(a≠0)的形式是________.19、如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.因为上游水库泄洪,水面宽度变为6m,则水面上涨的高度为________m.20、抛物线y=﹣2(x+1)2+3的顶点坐标是________.21、函数,当k________时,它的图象是开口向下的抛物线.22、二次函数y=ax2中,当x=1时,y=2,则a=________。
华师大版九年级数学下册第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将二次函数y=x2−4x−1化为y= x−ℎ2+k的形式,结果为( )A. y=x+22+5B. y=x+22−5C. y=x−22+5D. y=x−22−52.把抛物线y=x2向右平移1个单位,再向上平移3个单位,得到抛物线的解析式为()A. y=(x−1)2+3B. y=(x+1)2−3C. y=(x−1)2−3D. y=(x+1)2+33.函数y=(x+1)2-2的最小值是()A. 1B. -1C. 2D. -24.如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是()A. -1<P<0B. -2<P<0C. -4<P<-2D. -4<P<05.抛物线y=-(x+2)2-3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A. 9B. 12C. -14D. 107.在下列函数关系式中,y是x的二次函数的是()A. x y=6B. xy=−6C. y+x2=6D. y=−6x8.下列关系中,是二次函数关系的是()A. 当距离S一定时,汽车行驶的时间t与速度v之间的关系。
B. 在弹性限度时,弹簧的长度y与所挂物体的质量x之间的关系。
C. 圆的面积S与圆的半径r之间的关系。
D. 正方形的周长C与边长a之间的关系。
9.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>1;④b<1.2其中正确的结论是()A. ①②B. ②③C. ②④D. ③④10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.二次函数y=x2+4x+5中,当x=________时,y有最小值.12.若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.13.已知抛物线y=2x2−bx+3的对称轴是直线x=1,则b的值为________.14.将函数y=−x2所在的坐标系先向左平移2个单位再向下平移3个单位,则函数在新坐标系中的函数关系式是________.15.把抛物线y=x2向右平移3个单位,再向下平移1个单位,则得到抛物线________.16.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.x2+ 17.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣14846x+2,则大力同学投掷标枪的成绩是________m.4818.已知点A(−3,m)和点B(1,m)是抛物线y=2x2+bx+3图象上的两点,则b=________.19.二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是________ .20.二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(−1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)若点A(−3,y1)、点B(−12,y2)、点C(72,y3)在该函数图像上,则y1<y3<y2;(4)若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,则x1<−1<5<x2.其中正确结论的序号是________.三、解答题(共8题;共60分)21.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.24.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关x2+3x+2.问:小球能达到的最大高度是多少?系为y=-1225.(1)已知y=(m2+m)x m2−2m−1+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.26.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?27.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?x2+bx+c经过A、28.如图,直线y=x−4与x轴、y轴分别交于A、B两点,抛物线y=13B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数的三种形式【解析】【分析】y=x2−4x−1=x−22−5.故选D.2.【答案】D【考点】二次函数图象的几何变换【解析】【解答】抛物线y=x2先向右平移1个单位所得抛物线的解析式为y=(x−1)2,抛物线y=(x−1)2再向上平移3个单位所得抛物线的解析式为y=(x−1)2+3,故答案为:D.【分析】根据函数图象平移的法则即可得到结果.3.【答案】D【考点】二次函数的最值【解析】【分析】此函数的最小值,在x=-1时,y=-2,此时取最小值。
华师大版九年级数学下册期末专题:第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( )A. y =-2(x +1)2-1B. y =-2(x +1)2+3C. y =-2(x -1)2+1 D. y =-2(x -1)2+32.已知关于x 的函数y=(m ﹣1)x m +(3m+2)x+1是二次函数,则此解析式的一次项系数是( )A. ﹣1B. 8C. ﹣2D. 13.把抛物线y=-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )A. y=-2(x+1)2+2B. y=-2(x+1)2-2C. y=-2(x-1)2+2D. y=-2(x-1)2-2 4.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m ,此时水面到桥拱的距离是4m ,则抛物线的函数关系式为( )A. y= 254x 2B. y=﹣254x 2 C. y=﹣425x 2 D. y= 425x 25.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c <0;④2a+b<0;⑤4ac﹣b 2<4a ;⑥a+b>0中,其中正确的个数为( )A. 2B. 3C. 4D. 56.已知二次函数x =x 2+x +x ,当x 取任意实数时,都有x >0,则x 的取值范围是( ).A.x ≥14B.x >14C.x ≤14D.x <147.下列关系式中,属于二次函数的是(x 是自变量)( )x2A. y=13B. y=√x2−1C. y=1D. y=ax2+bx+cx28.已知二次函数x=xx2+xx+x(x≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A. xxx>0B. 2x−x=0 C. x>x+x D. x2−4xx<09.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-m的图象上的三点,则y1, y2, y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3 <y1<y2D.y1<y3<y2;④b>1.其中正确的结论10.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a<12是()A. ①②B. ②③ C. ②④D. ③④二、填空题(共10题;共30分)11.把抛物线x=(x−1)2+2沿x轴向左平移4个单位,再沿y轴向上平移3个单位后,所得新抛物线相应的函数表达式是________.12.若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 ________.13.如果抛物线y=2x2与抛物线y=ax2关于x轴对称,那么a的值是________.14.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1, 0)、(x2, 0),且x1<x2,图象上有一点M(x0, y0)在x轴下方,在下列四个算式中判定正确的是________ ①a(x0﹣x1)(x0﹣x2)<0;②a>0;③b2﹣4ac≥0;④x1<x0<x2.15.抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是________ .16.如图,边长为1的正方形ABCO,以A为顶点,且经过点C的抛物线与对角线交于点D,点D的坐标为________.17.如图,二次函数y=x2﹣6x+5的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为________ .18.将抛物线x=2(x−1)2+4,绕着它的顶点旋转180∘,旋转后的抛物线表达式是________.19.将抛物x=−(x−1)2向左平移1个单位后,得到的抛物线的解析式是________.20.如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是________.①EF= √2 OE;②S四边形OEBF:S正方形ABCD=1:4;③在旋转过程中,当△BEF与△COF的面积之和最大时,AE= 3;④OG•BD=AE2+CF2.4三、解答题(共8题;共60分)21.已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.22.如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.23.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为24.如图,已知抛物线y=-14B(8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.25.已知二次函数图象顶点为C(1,0),直线y=x+m与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.(1)求此二次函数的解析式;(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.26.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C 为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.27.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),,直线l的解析式为y=x.函数图象最低点M的纵坐标为﹣83(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.28.如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O 出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直轴于点P,连结AC交NP于Q,连结MQ.(1)点(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数图象的几何变换【解析】【解答】根据左加右减,上加下减的归则.将抛物线y=-2x2+1向右平移1个单位得y=-2(x-1)2+3,再向上平移2个单位得y=-2(x-1)2+3.故答案为:D.【分析】根据平移规律“左加右减,上加下减“”即可求解。
第26章二次函数单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列函数是二次函数的是( )A. B. C. D.2. 已知正方形,设,则正方形的面积与之间的函数关系式为()A. B. C. D.3. 与的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状4. 对抛物线:而言,下列结论正确的是()A.与轴有两个交点B.开口向上C.与轴的交点坐标是D.顶点坐标是5. 抛物线的顶点坐标一定位于( )A.轴的负半轴上B.第二象限C.第三象限D.第二象限或第三象限6. 二次函数的顶点坐标是A. B. C. D.7. 对于二次函数,下列说法错误的是A.对称轴为直线B.其图象一定经过点C.当时,随的增大而增大D.当时,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线.8. 已知二次函数,当时,随的增大而增大,当时,随的增大而减小,当时,的值为( )A. B. C. D.9. 在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为,那么关于的函数是()A. B.C. D.10. 如图所示的抛物线=的对称轴为直线=,则下列结论中错误的是()A. B. C.= D.=二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若抛物线经过原点,则________.12. 抛物线=开口向上,对称轴是直线=,,,在该抛物线上,则,,大小的关系是________.13. 将二次函数的图象绕着它与轴的交点旋转所得到新抛物线表达式为________.14. 将抛物线向下平移,若平移后的抛物线经过点,则平移后的抛物线的解析式为________.15. 抛物线的对称轴是直线,那么抛物线的解析式是________.16. 已知抛物线的顶点坐标为,且过点,则该抛物线的表达式为________.17. 已知,点,,都在函数的图象上,则,,的大小关系是________.18. 把二次函数化成的形式是________.19. 有一种产品的质量要求从低到高分为,,,共四种不同的档次.若工时不变,车间每天可生产最低档次(即第一档次)的产品件,生产每件产品的利润为元;如果每提高一个档次,每件产品利润可增加元,但每天少生产件产品.现在车间计划只生产一种档次的产品.要使利润最大,车间应生产第________种档次的产品.20. 已知二次函数的图象如图所示,则这个二次函数的表达式是________.三、解答题(本题共计6 小题,共计60分,)21. 已知二次函数和函数.(1)你能用图象法求出方程的解吗?试试看;(2)请通过解方程的方法验证(1)问的解.22. 抛物线与轴交于,,与轴交于,且(1)求,的坐标;(2)到,,距离相等,在抛物线上求点,使,,,为顶点的四边形为平行四边形.23. 如图,二次函数的图象与轴相交于、两点,与轴相交于点.、是二次函数图象上的一对对称点,一次函数的图象过点、.(1)求二次函数的表达式;(2)根据图象写出使一次函数值大于二次函数值的的取值范围.24. 某商场购进一批换季衣服,进价为每件元.市场调研发现,以单价元出售,平均月销售量为件.在此基础上,若单价每降低元,则平均月销售量增加件.(1)商场想要这种衣服平均月销售量至少件,那么单价至多为多少元?(2)当单价定为多少元时,商场卖这批衣服的月销售利润达到最大?最大月销售利润为多少元?25. 某商场要经营一种新上市的文具,进价为元/件,试营销阶段发现;当销售单价元/件时,每天的销售量是件,销售单价每上涨元,每天的销售量就减少件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26. 如图,在平面直角坐标系中,抛物线与轴的交点为点和点,与轴的交点为,对称轴是,对称轴与轴交于点.(1)求抛物线的函数表达式;(2)点为对称轴上一个动点,当的值最小时,求点的坐标;(3)在第一象限内的抛物线上是否存在点,使得?若存在,直接写出点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:,是二次函数;,,是一次函数;,,不是含自变量的整式,不是二次函数;,,二次项系数不能确定是否为,不是二次函数.故选.2.【答案】B【解答】解:由正方形面积公式得:.故选.3.【答案】C【解答】解:函数的对称轴是轴,开口向上,顶点;函数的对称轴是轴,开口向上,顶点;这两个函数的二次项系数都是,则它们的形状相同.故选.4.【答案】D【解答】解:,∵,抛物线与轴无交点,本选项错误;,∵二次项系数,抛物线开口向下,本选项错误;,当时,,抛物线与轴交点坐标为,本选项错误;,∵,∴抛物线顶点坐标为,本选项正确.故选.5.【答案】B【解答】此题暂无解答6.【答案】C【解答】解:∵∴抛物线顶点坐标为,故选.7.【答案】C【解答】解:、对称轴为直线,正确;、当时,,正确;、当时,,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线,正确. 故选.8.【答案】B【解答】解:由题意得:二次函数的对称轴为,故,把代入二次函数可得,当时,.故选.9.【答案】A【解答】解:长是:,宽是:,由矩形的面积公式得则.故选.10.【答案】【解答】解:、由抛物线可知,.故正确;、…二次函数的图象与轴有两个交点,∴即…故正确;、由对称轴可知,∴,故错误;、关于的对称点为…当时,,故正确;故选:.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:把代入得,解得.故答案为.12.【答案】=【解答】∵抛物线=开口向上,对称轴是直线=,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵取时所对应的点离对称轴最远,取与时所对应的点离对称轴一样近,∴=.13.【答案】【解答】解:因为二次函数的图象绕它与轴的交点旋转后,其对称轴不变,只是图象开口向下,因此二次函数新抛物线表达式为故答案为:.14.【答案】【解答】解:设平移后抛物线的表达式为,把代入,得,解得.所以平移后的抛物线的解析式是.故答案为:.15.【答案】【解答】解:∵抛物线的对称轴是直线,∴,解得:,∴,故答案为:.16.【答案】.【解答】解:设函数的解析式是.把代入函数解析式得,解得:,则抛物线的解析式是.17.【答案】【解答】解:∵当时,,而抛物线的对称轴为直线,开口向上,∴三点都在对称轴的左边,随的增大而减小,∴.故本题答案为:.18.【答案】【解答】解:.故答案为.19.【答案】【解答】解:设生产档的产品.利润,∴时,利润最大为,故答案为.20.【答案】【解答】解:根据图象可知顶点坐标,设函数解析式是:,把点代入解析式,得:,即,∴解析式为,即.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.【解答】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.22.【答案】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.【解答】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.23.【答案】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.【解答】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.24.【答案】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.【解答】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.25.【答案】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.【解答】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.26.【答案】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.【解答】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.。
华师大版九年级数学下册期末专题:第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将抛物线y=-2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( )A. y=-2(x+1)2-1B. y=-2(x+1)2+3C. y=-2(x-1)2+1 D. y=-2(x-1)2+32.已知关于x的函数y=(m﹣1)x m+(3m+2)x+1是二次函数,则此解析式的一次项系数是()A. ﹣1B. 8C. ﹣2D. 13.把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A. y=-2(x+1)2+2B. y=-2(x+1)2-2C. y=-2(x-1)2+2D. y=-2(x-1)2-24.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A. y= 254x2 B. y=﹣25 4x2 C. y=﹣4 25x2 D. y= 425x25.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c <0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正确的个数为()A. 2B. 3C. 4D. 56.已知二次函数y =x 2+x +m ,当x 取任意实数时,都有y >0,则m 的取值范围是( ).A.m ≥14B.m >14C.m ≤14D.m <147.下列关系式中,属于二次函数的是(x 是自变量)( )A. y=13x 2B. y=√x 2−1C. y=1x 2D. y=ax 2+bx+c8.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列4个结论,其中正确的结论是( )A. abc >0B. 2a −b =0 C. b >a +c D. b 2−4ac <09.若A(-4,y 1),B(-3,y 2),C(1,y 3)为二次函数y=x 2+4x-m 的图象上的三点,则y 1, y 2, y 3的大小关系是( )A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 3 <y 1<y 2D.y 1<y 3<y 210.抛物线y=ax 2+bx+c 的图角如图,则下列结论:①abc>0;②a+b+c=2;③a<12;④b>1.其中正确的结论是( )A. ①② B. ②③ C. ②④ D. ③④二、填空题(共10题;共30分)11.把抛物线y =(x −1)2+2沿x 轴向左平移4个单位,再沿y 轴向上平移3个单位后,所得新抛物线相应的函数表达式是________.12.若抛物线y =x 2-2x -3与x 轴分别交于A ,B 两点,则AB 的长为 ________.13.如果抛物线y=2x 2与抛物线y=ax 2关于x 轴对称,那么a 的值是________.14.若二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1, 0)、(x 2, 0),且x 1<x 2,图象上有一点M (x 0, y 0)在x 轴下方,在下列四个算式中判定正确的是________ ①a (x 0﹣x 1)(x 0﹣x 2)<0;②a >0;③b 2﹣4ac ≥0;④x 1<x 0<x 2.15.抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是________ .16.如图,边长为1的正方形ABCO,以A为顶点,且经过点C的抛物线与对角线交于点D,点D的坐标为________.17.如图,二次函数y=x2﹣6x+5的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为________ .18.将抛物线y=2(x−1)2+4,绕着它的顶点旋转180∘,旋转后的抛物线表达式是________.19.将抛物y=−(x−1)2向左平移1个单位后,得到的抛物线的解析式是________.20.如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是________.①EF= √2 OE;②S四边形OEBF:S正方形ABCD=1:4;③在旋转过程中,当△BEF与△COF的面积之和最大时,AE= 3;④OG•BD=AE2+CF2.4三、解答题(共8题;共60分)21.已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.22.如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.23.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐24.如图,已知抛物线y=-14标为B(8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.25.已知二次函数图象顶点为C(1,0),直线y=x+m与该二次函数交于A,B两点,其中A点(3,4),B 点在y轴上.(1)求此二次函数的解析式;(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE 长为h,点P横坐标为x,求h与x之间的函数关系式;(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.26.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.27.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),,直线l的解析式为y=x.函数图象最低点M的纵坐标为﹣83(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.28.如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O 出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直轴于点P,连结AC交NP于Q,连结MQ.(1)点(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S 的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数图象的几何变换【解析】【解答】根据左加右减,上加下减的归则.将抛物线y=-2x2+1向右平移1个单位得y=-2(x-1)2+3,再向上平移2个单位得y=-2(x-1)2+3.故答案为:D.【分析】根据平移规律“左加右减,上加下减“”即可求解。
2.【答案】B【考点】二次函数的定义【解析】【解答】解:∵关于x的函数y=(m﹣1)x m+(3m+2)x+1是二次函数,∴m=2,则3m+2=8,故此解析式的一次项系数是:8.故答案为:B【分析】根据二次函数的定义,自变量的最高次数是2,得出m的值,再将m的值代入3m+2即可算出一次项的系数。
3.【答案】C【考点】二次函数图象的几何变换【解析】【解答】解:把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=-2(x-1)2+2,故答案为:C.【分析】根据函数平移的特点“上加下减,左加右减”,向右平移一个单位,x减去1,向上平移2个单位,函数解析式末尾加上2。
4.【答案】C【考点】待定系数法求二次函数解析式【解析】【解答】如图,由题意可设抛物线的解析式为y=ax2,∵由题意可知点A、B的坐标分别为(-5,-4)、(5,-4),且抛物线过点A、B,∴25a=−4,解得:a=−4,25x2∴抛物线的解析式为:y=−425故答案为:C.【分析】先设抛物线为 y=ax²,根据题意可得出A、B的坐标分别为(-5,-4)、(5,-4),将A、B的坐标代入 y=ax²,解出a,即为所求解析式。
5.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:解:①图象开口向下,与y轴交于负半轴,对称轴在y轴右侧,能得到:a<0,c<0,∴ac>0,故①正确;②当x=1时,y>0,∴a+b+c>0,故②错误;③当x=﹣2时,y<<1,0,∴4a﹣2b+c<0,故③正确;④∵对称轴x=﹣b2a∴2a+b>0,故④错误;⑤∵抛物线的顶点在x轴的上方,∴4ac−b2>0,4a∴4ac﹣b2<4a,故⑤正确;⑥∵2a+b>0,∴2a+b﹣a>﹣a,∴a+b>﹣a,∵a<0,∴﹣a>0,∴a+b>0,故⑥正确;综上所述正确的个数为4个,故选:C.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线的顶点坐标情况进行推理,进而对所得结论进行判断.6.【答案】B【考点】二次函数图象与系数的关系【解析】【解答】已知二次函数的解析式为:y=x2+x+m,∴函数的图象开口向上,又∵当x取任意实数时,都有y>0,∴有△<0,∴△=1-4m<0,∴m>1,4故答案为:B.【分析】二次函数图像开口向上,故y>0即为函数与x轴无交点,那么只需所对应的一元二次方程没有实数根.7.【答案】A【考点】二次函数的定义【解析】【解答】解:A、是二次函数,故A正确;B、不是二次函数的形式,故B错误;C、是分式,故C错误;D、a=0是一次函数,故D错误;故选:A.【分析】根据函数y=ax2+bx+c (a≠0)是二次函数,可得答案.8.【答案】C【考点】二次函数的图象,二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征【解析】【解答】抛物线的开口向下,则a<0;…①=1,b=-2a;…②抛物线的对称轴为x=1,则- b2a抛物线交y轴于正半轴,则c>0;…③抛物线与x轴有两个不同的交点,则:△=b2-4ac>0;由②知:b>0,b+2a=0;又由①③得:abc<0;由图知:当x=-1时,y<0;即a-b+c<0,b>a+c;故答案为:C.【分析】根据抛物线的开口方向,对称轴的位置及抛物线与y轴的交点情况,可知a<0、c>0、b >0,即可对A作出判断;根据对称轴x=1,可得出b+2a=0,可对B作出判断;将b > a + c变形为a-b+c<0,根据x=-1,即可作出判断;根据抛物线与x轴的交点个数可对D作出判断。