三数学第二阶段检测
- 格式:doc
- 大小:128.50 KB
- 文档页数:3
2024-2025学年第一学期阶段检测(二)高二数学试题注意事项:1.试卷共19题,满分150分,考试时间120分钟。
2.答卷前,考生务必将自己的考号、姓名等相关信息填写在答题卡上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需要改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡的指定区域,写在本试题卷上无效。
4.试卷包括试题卷(共4页)和答题卡(共6页)两部分,考试结束后,将本试卷和答题卡一并交回。
5.本套试卷的范围:选择性必修一全册........。
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,空间四边形OABC 中,OA a = ,OB b = ,OC c =,M 在线段OA 上,且3OA AM =,点N 为BC 中点,则MN =A .121232a b c -+B .211322a b c-++ C .111222a b c+-D .2132b a c+-2.“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知直线420mx y +-=与250x y n -+=互相垂直,垂足为()1,P p ,则m n p -+的值是A .24B .0C .20D .4-4.双曲线22:1C x y -=的一条渐近线被圆22(1)1x y -+=所截得的弦长为A .2B .1C .32D 5.已知棱长为2的正方体1111ABCD A B C D -内有一内切球O ,点P 在球O 的表面上运动,则PA PC ⋅的取值范围为A .[]22-,B .[]0,2C .[]2,4-D .[]0,46.曲线C :()10=>xy x 上到直线1620x y ++=距离最短的点坐标为A .1,44⎛⎫ ⎪⎝⎭B .14,4⎛⎫⎪⎝⎭C .14,4⎛⎫-- ⎪⎝⎭D .1,44⎛⎫-- ⎪⎝⎭7.已知抛物线()2:20C y px p =>的焦点为F ,直线l 过点F 且倾斜角为2π3,若抛物线C 上存在点M 与点3,02N ⎛⎫- ⎪⎝⎭关于直线l 对称,则抛物线C 的准线方程为A .12x =-B .=1x -C .2x =-D .14x =-8.已知椭圆()22222122:10,x y C a b c a b a b+=>>=-的右焦点为F ,过点F 作圆222:20C x y cx ++=的切线与椭圆1C 相交于,A B 两点,且2FB AF =,则椭圆1C 的离心率是A B 6C D 二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,选对但不全得部分分,有选错的得0分.9.已知曲线C 的方程为()221R 15x y m m m+=∈+-,则A .当2m =时,曲线C 为圆B .当7m =时,曲线C 为双曲线,其渐近线方程为12y x =±C .当m>2时,曲线C 为焦点在x 轴上的椭圆D .当7m =时,曲线C10.下列说法正确的有A .直线30x +=的倾斜角为150︒B .直线()32y k x -=-必过定点()2,3C .方程()2y k x =-与方程2yk x =-表示同一条直线D .经过点()2,1P ,且在,x y 轴上截距相等的直线方程为30x y +-=11.如图,在棱长为2的正方体1111ABCD A B C D -中,E F G M N 、、、、均为所在棱的中点,动点P 在正方体表面运动,则下列结论中正确的为A .P 在BC 中点时,平面PEF ⊥平面GMNB .异面直线EF GN 、所成角的余弦值为14C .E F G M N 、、、、在同一个球面上D .111112A P t A A A M t A B =+- ,则P三、填空题:本题共3小题,每小题5分,共15分.12.已知空间四点()4,1,3=A ,()2,3,1=B ,()3,7,5=-C ,(),1,3=-D x 共面,则x =.13.已知点P 是直线80-+=x y 上的一个动点,过点P 作圆()()22:114C x y -+-=的两条切线,与圆切于点,M N ,则cos MPN ∠的最小值是.14.已知双曲线E :22221x y a b -=(0a >,0b >)的左、右焦点分别为1F ,2F .过点2F 的直线与y 轴交于点B ,与E 交于点A ,且2232F B F A =-,点1F 在以AB 为直径的圆上,则E 的渐近线方程为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)已知双曲线()2222:10,0x y C a b a b-=>>的焦距为10,F 为双曲线的右焦点,且点F 到渐近线的距离为4.(1)求双曲线C 的方程;(2)若点()120A ,,点P 为双曲线C 左支上一点,求PA PF +的最小值.16.(本题满分15分)已知以点()1,2A -为圆心的圆与______,过点()2,0B -的动直线l 与圆A 相交于M ,N 两点.从①直线270x y ++=相切;②圆()22320x y -+=关于直线210x y --=对称.这2个条件中任选一个,补充在上面问题的横线上并回答下列问题.(1)求圆A 的方程;(2)当MN =l 的方程.17.(本题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,//,,2AB CD AB BC BC CD ⊥==,4,PA PD AB PB ====(1)证明:平面PAD ⊥平面ABCD ;(2)若E 为PC 的中点,求平面ADE 与平面ABCD 的夹角的余弦值.18.(本题满分17分)已知椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点P ⎛ ⎝⎭在椭圆C 上.且离心率为2.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于A ,B 两点,A ,B ,F 三点不共线,且直线AF 和直线BF 关于PF 对称.(i )证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.19.(本题满分17分)如果一条双曲线的实轴和虚轴分别是一个椭圆的长轴和短轴,则称它们为“孪生”曲线,若双曲线2C 与椭圆1C 是“孪生”曲线,且椭圆()2212:1039x y C b b +=<<,12e e =12,e e 分别为曲线12,C C 的离心率)(1)求双曲线2C 的方程;(2)设点,A B 分别为双曲线2C 的左、右顶点,过点()5,0M 的动直线l 交双曲线2C 右支于,P Q 两点,若直线,AP BQ 的斜率分别为,AP BQk k ①是否存在实数λ,使得AP BQ k k λ=,若存在求出λ的值;若不存在,请说明理由;②试探究AP BQ k k +的取值范围.。
2023-2024学年度上学期阶段(二)质量检测试卷八年级数学考生须知:1、全卷满分120分,考试时间120分钟;2、试卷和答题卡都要写上班级、姓名;3、请将答案写在答题卡上的相应位置上,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1中,无理数有()A.2个B.3个C.4个D.5个2.已知△ABC的三条边分别为a,b,c,下列条件不能判断是直角三角形的是()A.a2=b2-c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=5:12:133.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱,问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.4.直线y=kx+3与y=3x+k在同一坐标系内,其位置可能是()A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示,下列说法中正确的有()①A、B两地相距120千米;②出发1小时,货车与小汽车相遇;③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A.1个B.2个C.3个D.4个220.10100100017π8374x yx y=--=⎧⎨⎩8374x yx y=+-=⎧⎨⎩8374x yx y=++=⎧⎨⎩8374x yx y=-+=⎧⎨⎩6.如图,在平面直角坐标系中,(图中的三角形都是等边三角形),一个点从原点O 出发,沿折线移动,每次移动1个单位长度,则点的坐标为()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7______.8.点A (-2,3)关于x 轴的对称点的坐标为______.9.已知点都在直线上,则大小关系是______.10.如图,Rt △ABC 的周长为24,∠C =90°,且AB :AC =5:4,则BC 的长为______.第10题11.如图,直线y =-x +3与y =mx +n 交点的横坐标为1,则关于x 、y 的二元一次方程组的解为______.第11题12.如图,直线y =2x -4与x 轴和y 轴分别交与A ,B 两点,射线AP ⊥AB 于点A ,若点C 是射线AP 上的一11223341O A AA A A A A ===== 1234n O AA A A A 2023A ()1348,0113482⎛ ⎝11348,2⎛ ⎝()1349,0A '()()124,,2,y y -122y x =-+12,y y3x y mx y n+=-+=⎧⎨⎩个动点,点D是x轴上的一个动点,且以A,C,D为顶点的三角形与△AOB全等,则OD的长为______.第12题三、(本大题共5小题,每小题6分,共30分)13.(1(2)解方程组:14.已知2a-7和a+4是某正数的两个不同的平方根,b-11的立方根是-2.(1)求a、b的值.(2)求a+b的平方根.15.如图,一只小鸟旋停在空中4点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.16.图(1)、图(2)均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.图(1)图(2)(1)在图(1)中,△ABC的面积为5;(2)在图(2)中,△ABC是面积为的钝角三角形.)22+-23451x yx y-=+=-⎧⎨⎩5217.若的值.四、(本大题共3小题,每小题8分,共24分)18.某中学八(1)共有45人,该班计划为每名学生购买一套学具,超市现有A 、B 两种品牌学具可供选择.已知1套A 学具和1套B 学具的售价为45元;2套A 学具和5套B 学具的售价为150元.(1)A 、B 两种学具每套的售价分别是多少元?(2)现在商店规定,若一次性购买A 型学具超过20套,则超出部分按原价的6折出售.设购买A 型学具a 套(a >20)且不超过30套,购买A 、B 两种型号的学具共花费w 元.①请写出w 与a 的函数关系式;②请帮忙设计最省钱的购买方案,并求出所需费用.19.先阅读,再解方程组.解方程组时,设a =x +y ,b =x -y ,则原方程组变为,整理,得,解这个方程组,得,即,解得.请用这种方法解下面的方程组:.20.甲、乙两车间一起加工一批零件,同时开始加工,10个小时完成任务.在这个过程中,甲车间的工作效率不变,乙车间在中间停工一段时间维修设备,然后按停工前的工作效率继续加工.设甲、乙两车间各自加工零件的数量为y (个),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为______个,这批零件的总个数为______个;(2)求乙车间维护设备后,乙车间加工零件的数量y 与x 之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间加工的时间.五、(本大题共2小题,每小题9分,共18分)21.如图,已知△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点Px y ==22x xy y -+()()623452x y x yx y x y +-⎧-=⎪⎨⎪+--=⎩623452a ba b ⎧+=⎪⎨⎪-=⎩3236452a b a b +=⎧⎨-=⎩86a b =⎧⎨=⎩86x y x y +=⎧⎨-=⎩71x y =⎧⎨=⎩()()()()5316350x y x y x y x y +--=⎧⎪⎨+--=⎪⎩从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,同时停止.备用图(1)P 、Q 出发4秒后,求PQ 的长;(2)当点Q 在边CA 上运动时,出发几秒钟后,△CQB 能形成直角三角形?22.如图,已知A (3,0),B (0,4),点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求直线AB 的表达式;(2)求C 、D 的坐标;(3)在直线DA 上是否存在一点P ,使得?若存在,直接写出点P 的坐标;若不存在,请说明理由.六、(本大题共1小题,共12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.特例感知①等腰直角三角形______勾股高三角形(请填写“是”或者“不是”);②如图,已知△ABC 为勾股高三角形,其中C 为勾股顶点,CD 是AB 边上的高.若BD =1,AD =2,试求线段CD的长度.10P A B S △深入探究如图,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明:推广应用如图,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,直接写出线段DE的长度(用含a的代数式表示).八年级阶段二数学答案1.【答案】C【分析】根据无理数的定义,即可求解.,,4个.故选:C2.【答案】D.3.【答案】C4.【答案】A【分析】根据一次函数的性质分k>0,k<0两种情形分别分析即可.【详解】解:当时,两条直线都经过第一,二,三象限,四个选项都不符合题意;当时,经过第一,二,四象限,的图象经过第一,三,四象限,只有选项A正确,故选:A.5.【答案】D6.【答案】B【分析】过作轴,垂足为B,求出,,求出前若干个点的坐标,找到规律点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,计算出2023与6的商和余数,据此得到结果.【详解】解:∵图中的三角形都是等边三角形,边长为1,如图,过作轴,垂足为B,则,∴,3=-k>k<3y kx=+3y x k=+1A1AB x⊥OB1AB A1111,,1,,,12222++++++ 1A1AB x⊥212OB A B==1A B==∴点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;…分析图象可以发现,点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,,∴点的坐标为,即,故选B .7.【答案】±28.【答案】9.【答案】10.【答案】611.【答案】12.【答案】6或13.(1)1A 12⎛⎝2A ()1,03A ()2,04A 5,2⎛ ⎝5A ()3,06A ()4,0A 1111,,1,,,12222++++++20236337......1÷=2023A 133742⎛⨯+ ⎝113482⎛ ⎝()23-,-12yy >12x y =⎧⎨=⎩2+)22++-.(2)【答案】14.【详解】(1)由题意得:2a -7+a +4=0,b -11=-8,解得:a =1,b =3;(2)∵a =1,b =3,∴a +b =4,4的平方根为±2.【答案】17米【详解】解:由勾股定理得;,∴(米),∵(米),∴在中,由勾股定理得,∴此时小鸟到地面C 点的距离17米.答;此时小鸟到地面C 点的距离为17米.16.点C 到AB,进而可找到点C 所在的直线,与网格的交点即为点C 的位置).(2)如图(3)所示(点拨:由,可知点C 的距离为,进而可找到点C 所在的直线,再结合△ABC 角三角形,且点C在格点处,即可找到点C 的位置)17.【答案】13∵x y,∴x =2,y =,∴x 2-xy ﹢y 2=(x -y )2﹢xy =+1=1318.【详解】解:设A 种品牌的学具售价为x 元,B 种品牌的学具售价为y 元,根据题意有,,解之可得,222=+-34=-1=11x y =⎧⎨=-⎩222222520225BC AC AB =-=-=15BC =20128BD AB AD =-=-=Rt BCD 17CD ==52ABC AB S ==△(2()14525150x y x y +=⎧⎨+=⎩{2520x y ==所以A 、B 两种学具每套的售价分别是25和20元;因为,其中购买A 型学具的数量为a ,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w 为最小值,即元;Ⅱ、由于受到购买A 型学具数量的限制,购买A 型学具30套w 已是最小,所以全部购买B 型学具45套,此时元元,综上所述,购买45套B 型学具所需费用最省钱,所需费用为:900元.故答案为(1)A 、B 两种学具每套的售价分别是25和20元;(2)①w =-5a +1100,(20<a ≤30);②购买45套B 型学具所需费用最省钱,所需费用为900元.19.【答案】【分析】根据举例,结合换元法a =x +y ,b =x -y ,可得方程组;解方程,可以得到a ,b 的值,代入所设,组成关于x ,y 的方程组,解方程组即可.【详解】解:设,,则原方程组变为,解得,所以,解得.20.【答案】(1)75,1110(2)(3)8.5小时【详解】(1)甲车间每小时加工零件的个数为个;这批零件的总个数为个,故答案为:75,1110;(2)设乙车间维护设备后,y 与x 之间的函数关系式为,()2①2030a <≤()()2025202560%4520w a a =⨯+-⨯⨯+-⨯500153009002051100a a a =+-+-=-+51100w a =-+(2030)a <≤②①30a =5301100950(w =-⨯+=4520900(w =⨯=)950<41x y =⎧⎨=⎩5316350a b a b -=⎧⎨-=⎩a x y =+b x y =-5316350a b a b -=⎧⎨-=⎩53a b =⎧⎨=⎩53x y x y +=⎧⎨-=⎩41x y =⎧⎨=⎩4590y x =-750=7510750360=1110+y kx b =+将点代入,得,解得,∴设乙车间维护设备后,y 与x 之间的函数关系式为;(3)乙车间每小时加工零件的个数为个,设甲车间加工x 小时,则解得,∴甲车间加工8.5小时.21.【详解】(1)解:由题意可得,BQ =2×4=8(cm ),BP =ABAP =161×4=12(cm ),∵∠B =90°,∴PQcm ),即PQ 的长为cm ;(2)解:当BQ ⊥AC 时,∠BQC =90°,∵∠B =90°,AB =16cm ,BC =12cm ,∴AC (cm ),∵,∴,解得cm ,∴CQ(cm ),∴当△CQB 是直角三角形时,经过的时间为:(12+)÷2=9.6(秒);当∠CBQ =90°时,点Q 运动到点A ,此时运动的时间为:(12+20)÷2=16(秒);由上可得,当点Q 在边CA 上运动时,出发9.6秒或16秒后,△CQB 能形成直角三角形.22.【答案】(1)(2),(3)存在,或()()4,90,10,75049010360k b k b +=⎧⎨+=⎩4590k b =⎧⎨=-⎩4590y x =-90245÷=()75452930x x +-=8.5x ===20=22AB BC AC BQ = 16122022BQ ⨯=485BQ =365==365443y x =-+()80C ,()06D -,()14-,()54,【详解】(1)解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;(2)解:,,由题意得:,,,故点,设点D 的坐标为:,,解得:,故点;(3)解:存在,理由如下:设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD =4m =-6m =-()06D -,AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S ∴=⨯⨯= 10P A B S =DA (),26P a a -13102PAB BDP BDA S S S BD a ∴=-=⨯⨯-= 1a =即点P 的坐标为:或.23.【详解】解:特例感知:①等腰直角三角形是勾股高三角形.,∵,∵等腰直角三角形的一条直角边可以看作另一条直角边上的高,∴等腰直角三角形是勾股高三角形,故答案为:是;②∵是边上的高,,,∴,,∵为勾股高三角形,为勾股顶点,是边上的高,∴,∴,解得:或(负值不符合题意,舍去),∴线段;深入探究:.证明:∵为勾股高三角形,为勾股顶点且,是边上的高,∴,∴,∵,∴,∴;推广应用:过点作于,∴,∵等腰为勾股高三角形,且,为边上的高,∴,,由上问可知:,∵,∴,,∵,∴,∴,∴,()14-,()54,=)222a a -=CD AB 1BD =2AD =22221CB CD BD CD =+=+22224CA CD AD CD =+=+ABC C CD AB 222CD CA CB =-()()22241CD CD CD =+-+CD CD =CD AD CB =ABC C CA CB >CD AB 222CA CB CD -=222CA CD CB -=222CA CD AD -=22AD CB =AD CB =A AG ED ⊥G 90AGD ∠=︒ABC AB AC BC =>CD AB 222AC BC CD -=90CDB ∠=︒AD BC =ED BC ∥ADE B ∠=∠AED ACB ∠=∠AB AC =ACB B =∠∠ADE AED ∠=∠AE AD =∵,在和中,,∴,∴,∵为等腰三角形,∴,∵,,,∴,∴,∴线段的长度为.90AGD CDB ∠=∠=︒AGD △CDB △AGD CDB ADG CBD AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AGD CDB △≌△DG BD =ADE 22ED DG BD ==AB AC =AE AD =CE a =BD CE a ==2ED a =DE 2a。
2021届中考数学总复习 阶段检测2 方程与不等式一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.关于x 的方程2x -m3=1的解为2,则m 的值是( )A .2.5B .1C .-1D .3 2.小明解方程1x -x -2x=1的过程如图,他解答过程中的错误步骤是( )解:方程两边同乘以x ,得1-(x -2)=1…①去括号,得1-x -2=1…② 合并同类项,得-x -1=1…③ 移项,得-x =2…④ 解得x =2…⑤第2题图A .①②⑤B .②④⑤C .③④⑤D .①④⑤ 3.已知一元二次方程x 2+x -1=0,下列判断正确的是( ) A .该方程有两个相等的实数根 B .该方程有两个不相等的实数根 C .该方程无实数根 D .该方程根的情况不确定4.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m ,可得出x 与y 的关系是( )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-45.不等式组⎩⎪⎨⎪⎧2-x≥1,2x -1>-7的解集在数轴上表示正确的是( )6.关于x 的方程mx -1=2x 的解为正实数,则m 的取值范围是( ) A .m ≥2 B .m ≤2 C .m >2 D .m <27.某加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A.210030x =120020(26-x )B.2100x =120026-x C.210020x =120030(26-x ) D.2100x ×30=120026-x×20 8.若关于x 的分式方程2x -3+x +m 3-x =2有增根,则m 的值是( )A .m =-1B .m =0C .m =3D .m =0或m =3 9.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h10.如图,在长方形ABCD 中,放入6个形状、大小都相同的长方形,所标尺寸如图所示,则图中阴影部分面积是( )第10题图A .44cm 2B .45cm2C .46cm 2D .47cm 2二、填空题(本大题有6小题,每小题5分,共30分)11.若代数式2x -1-1的值为零,则x =____________________.12.若关于x 的一元二次方程kx 2+4x +3=0有实数根,则k 的非负整数值是____________________.13.某商品的售价为528元,商家售出一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是____________________.14.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x 名学生,根据题意,列出方程为____________________.15.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿直线匀速爬向B 点的过程中,到达C 点时用了6分钟,那么还需要____________________分钟到达B 点.第15题图16.对于非零的两个实数a ,b ,规定a ⊗b =1b -1a ,若1⊗(x +1)=1,则x 的值为____________________.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.解方程:(1)x 2-2x -1=0; (2)2x =32x -1.18.(1)解方程组⎩⎪⎨⎪⎧x -y =2, ①3x +5y =14. ②(2)解不等式组⎩⎪⎨⎪⎧1-2(x -1)≤5,3x -22<x +12,并把解集在数轴上表示出来.第18题图19.从A 地到B 地有两条行车路线: 路线一:全程30千米,但路况不太好;路线二:全程36千米,但路况比较好,一般情况下走路线二的平均车速是走路线一的平均车速的1.8倍,走路线二所用的时间比走路线一所用的时间少20分钟.那么走路线二的平均车速是每小时多少千米?20.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.应用题:小东在某商场看中的一台电视机和一台空调在“五一”前共需要5500元.由于该商场开展“五一”促销活动,同样的电视机打八折销售,,于是小东在促销期间购买了同样的电视机一台,空调两台,共花费7200元.求“五一”前同样的电视机和空调每台多少元?解:设“五一”前同样的电视机每台x 元,空调每台y 元,根据题意,得⎩⎨⎧,0.8x +2(y -400)=7200.21.某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.22.今年小芳家添置了新电器.已知今年5月份的用电量是240千瓦时.(1)若今年6月份用电量增长率是7月份用电量增长率的1.5倍,设今年7月份用电量增长率为x,补全下列表格内容;(用含x的代数式表示)月份6月份7月份月增长率用电量(单位:千瓦时)(2)在(1)的条件下,预计今年7月份的用电量将达到480千瓦时,求今年7月份用电量增长率x的值;(精确到1%)(3)若今年6月份用电量增长率是7月份用电量增长率的n倍,6月份用电量为360千瓦时,预计今年7月份的用电量将不低于500千瓦时.则n的最大值为____________________.(直接写出答案)23.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?24.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB∶BC=2∶3,区域Ⅱ四周宽度相等.①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙两瓷砖单价之比为5∶3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.第24题图参考答案阶段检测2 方程与不等式一、1—5.BABAD 6—10.CAABA二、11.3 12.1 13.440≤x≤480 14.x(x -1)=2070(或x 2-x -2070=0) 15.4 16.-12三、17.(1)x 1=1+2,x 2=1- 2 (2)x =2.18.(1)⎩⎪⎨⎪⎧x =3,y =1. (2)-1≤x<3,图略19.设走路线一的平均车速是每小时x 千米,则走路线二的平均车速是每小时1.8x 千米.得30x =361.8x +2060,得x =30,经检验x =30是原方程的解,所以1.8x =54.答:走路线二的平均车速是每小时54千米.20.被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视机每台x元,空调每台y 元,根据题意得:⎩⎪⎨⎪⎧x +y =5500,0.8x +2(y -400)=7200,解得⎩⎪⎨⎪⎧x =2500,y =3000,答:“五一”前同样的电视机每台2500元,空调每台3000元.21.(1)设A 型污水处理设备的单价为x 万元,B 型污水处理设备的单价为y 万元,根据题意可得:⎩⎪⎨⎪⎧2x +3y =54,4x +2y =68,解得:⎩⎪⎨⎪⎧x =12,y =10.答:A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元. (2)设购进a 台A 型污水处理设备,根据题意可得:220a +190(8-a)≥1565,解得:a≥1.5,∵A 型污水处理设备单价比B 型污水处理设备单价高,∴A 型污水处理设备买越少,越省钱,∴购进2台A 型污水处理设备,购进6台B 型污水处理设备最省钱.22.(1)1.5x x 240(1+1.5x) 240(1+x)(1+1.5x) (2)480=240(1+x)(1+1.5x),得x =13或x =-2(不合题意舍去),∴x =13≈33% (3)9723.(1)设原计划买男款书包x 个,则买女款书包(60-x)个.根据题意:50x +70(60-x)=3400,解得:x =40,∴60-x =20.原计划买男款书包40个,买女款书包20个. (2)设最多能买女款书包x 个,则可买男款书包(80-x)个,由题意,得70x +50(80-x)≤4800,解得:x≤40,∴最多能买女款书包40个.24.(1)由题意300S +200(48-S)≤12000,解得S≤24.∴S 的最大值为24. (2)①设区域Ⅱ四周宽度为a ,则由题意(6-2a)∶(8-2a)=2∶3,解得a =1,∴AB =6-2a =4m ,CB =8-2a =6m . ②设乙、丙瓷砖单价分别为5x 元/m 2和3x 元/m 2,则甲的单价为(300-3x)元/m 2,∵PQ∥AD,∴甲的面积=矩形ABCD 的面积的一半=12,设乙的面积为s ,则丙的面积为(12-s),由题意12(300-3x)+5x·s+3x·(12-s)=4800,解得s =600x ,∵0<s <12,∴0<600x <12,又∵300-3x >0,综上所述,50<x <100,150<3x <300,∴丙瓷砖单价3x 的范围为150<3x <300元/m 2.。
2021学年山东省青岛市某校三年级(下)第二阶段数学试卷一.算一算1. 直接写得数:2. 竖式计算,带★的要验算:854÷7=12.9−2.9=7.5+8.9=★36×48=★920÷4=3. 脱式计算:432÷6×1596+4×37804÷(130−124)二、填一填:(14%)8:30从学校出发,25分钟走到栈桥,到栈桥是________时________分。
回澜阁的开放时间是上午9时到下午5时,每天开放时间是________小时。
□59÷6,如果商是三位数,□里最小可以填________;如果商是两位数,□最大可以填________.栈桥的全长是200________,宽是10________,它的周长是________,面积是________.把一块边长6分米的正方形彩旗分割成大小相等的两块长方形彩旗,每块彩旗的面积是________.比较大小我最行三、火眼金睛辨对错.(5%)2100年全年有365天。
________.一个正方形的边长是4米,它的周长和面积相等。
________.(判断对错)长方形、正方形、平行四边形都是轴对称图形。
________.(判断对错)0.2和0.5之间的小数只有0.3和0.4.________(判断对错)每年的7月和8月都有31天。
________(判断对错)四、选一选:(5%)下面算式中与35×20计算结果不同的是()A.350×2B.305×2C.70×10电子屏报时:现在是北京时间9时整,它表示()A.上午9时B.晚上9时C.21时从125中连续减去5,减()个5后,结果是5.A.24B.19C.25下面的字,是轴对称图形的是()A.青B.岛C.中D.学两个数的平均数是46,其中一个数是23,另一个数是()A.23B.46C.69五、探索:走进第一海水浴场,看谁收获多(15%)下面的年份分一分,连一连。
2022-2023第二学期阶段性学习检测初三 数学2023.3一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个. 1.右图是某几何体的三视图,该几何体是(A )圆锥 (B )圆柱(C )三棱锥 (D )长方体2.小云同学在“百度”搜索引擎中输入“北京2022冬奥会”,能找到相关结果约为42 500 000个,将42 500 000用科学记数法表示应为(A )0.425×108(B )4.25×107(C )4.25×106(D )42.5×1053.如图,直线AB ,CD 交于点O .射线OM 平分AOC ∠,若︒=∠72BOD ,则BOM ∠等于(A )36° (B ) ︒108 (C )126° (D )144︒ 4.下列图形中,既是中心对称图形也是轴对称图形的是(A ) (B ) (C ) (D ) 5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是(A )0>+c b (B )0>bd (C )d a > (D )4-<a6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京冬奥会的会徽、吉祥物(冰墩墩)、主题口号和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是奖牌的概率是(A)15(B)25(C)12(D)357.已知2116462025451936441849432222====,,,.若n为整数,且12022+<<nn,则n的值为(A) 43 (B)44 (C)45 (D)468.线段AB=5.动点P以每秒1个单位长度的速度从点A出发,沿线段AB运动至点B,以线段AP为边作正方形APCD,线段PB长为半径作圆.设点P的运动时间为t,正方形APCD周长为y,⊙B的面积为S,则y与t,S与t满足的函数关系分别是(A)正比例函数关系,一次函数关系(B)一次函数关系,正比例函数关系(C)正比例函数关系,二次函数关系(D)反比例函数关系,二次函数关系二、填空题(本题共16分,每小题2分)9.若代数式11-x有意义,则x的取值范围是 .10.分解因式:2294yx-= .11.π小的整数是 .12.方程组⎩⎨⎧=-=+326yxyx的解为 .13.在直角坐标系xOy中,直线y x=与双曲线myx= (m≠0) 交于A,B两点.若点A,B的横坐标分别为1x,2x,则21xx+的值为 .14.如图,在△ABC中,点D、E分别AC、AB上的点,BD与 CE 交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO ;③BE=CD.利用其中两个条件可以证明△ABC是等腰三角形,这两个条件可以是 .15. A(a,0),B(5,3)是平面直角坐标系中的两点,线段AB长度的最小值为.16.甲、乙、丙三人进行羽毛球比赛赛前训练,每局两人进行比赛,第三个人做裁判,每一局都要分出胜负,胜方和原来的裁判进行新一局的比赛,输方转做裁判,依次进行.半天训练结束时,发现甲共当裁判9局,乙、丙分别进行了14局、12局比赛,在这半天的训练中,甲、乙、丙三人共进行了 局比赛,其中最后一局比赛的裁判是 .三、解答题(本题共68分,第17-23题,每小题5分,第24-25每小题6分,第26-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17. 计算:3tan30°- tan 245°+2sin60°18. 疫情防控过程中,很多志愿者走进社区参加活动.如图所示,小冬老师从A 处出发,要到A 地北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 处,再沿北偏东30°方向走,恰能到达目的地C 处,求A ,C 两地的距离.(结果取整数,参考数据:732.13414.12≈≈,)19. 已知:如图,直线 l ,和直线外一点P . 求作:过点P 作直线PC ,使得PC ∥l ,作法:①在直线l 上取点O ,以点O 为圆心,OP 长为半径画圆, 交直线l 于A ,B 两点;②连接AP ,以点B 为圆心,AP 长为半径画弧,交半圆于点C ; ③作直线PC .直线PC 即为所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明 证明:连接BP∵BC=AP ,∴=, ∴ABP ∠=∠BPC ()(填推理依据),∴直线PC ∥直线l .20.已知关于x 的方程220x x k ++=总有两个不相等的实数根. (1)求k 的取值范围;(2)写出一个k 的值,并求此时方程的根.21.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,过点D 作DE ⊥BD 交BC 的延长线于点E .(1)求证:四边形ACED 是平行四边形; (2)若BD =4,AC =3,求sin ∠CDE 的值.22.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数x y 21=的图象向上平移3个单位长度得到. (1)求这个一次函数的解析式;(2)当x > 2时,对于x 的每一个值,函数 (0)y mx m =≠ 的值大于一次函数y kx b =+的值,直接写出m 的取值范围.BC23.农业农村经济在国民经济中占有重要地位,科技兴农、为促进乡村产业振兴提供有力支撑。
《阶段检测二》基础演练(时间:100分钟 满分:100分)一、选择题(每小题2分,共20分)1.(2020·重庆)已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( )A.2B.3C.4D.5解析 ∵方程2x +a -9=0的解是x =2,∴2×2+a -9=0,解得a =5.答案 D2.(2020·永州)下面是四位同学解方程2x -1+x1-x =1过程中去分母的一步,其中正确的是 ( )A.2+x =x -1B.2-x =1C.2+x =1-xD.2-x =x -1 解析 方程的两边同乘(x -1),得2-x =x -1. 答案 D3.(2020·莆田)方程x (x +2)=x +2的两根分别为 ( ) A.x 1=-1,x 2=2 B.x 1=1,x 2=2 C.x 1=-1,x 2=-2D.x 1=1,x 2=-2解析 原方程可化为(x +2)(x -1)=0,可化为:x -1=0或x +2=0,解得:x 1=1,x 2=-2. 答案 D4.(2020·宁德)二元一次方程组⎩⎪⎨⎪⎧x +y =32x -y =6的解是( )A.⎩⎪⎨⎪⎧x =6y =-3B.⎩⎪⎨⎪⎧x =0y =3 C.⎩⎪⎨⎪⎧x =2y =1D.⎩⎪⎨⎪⎧x =3y =0解析 ⎩⎪⎨⎪⎧x +y =3 ①2x -y =6 ②①+②得,3x =9, 解得x =3,把x =3代入①得,3+y =3, 解得y =0,所以,原方程组的解是⎩⎪⎨⎪⎧x =3y =0.答案 D5.(2020·株洲)已知关于x 的一元二次方程x 2-bx +c =0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为 ( )A.b =-1,c =2B.b =1,c =-2C.b =1,c =2D.b =-1,c =-2解析 ∵关于x 的一元二次方程x 2-bx +c =0的两根分别为x 1=1,x 2=-2,∴x 1+x 2=b =1+(-2)=-1,x 1·x 2=c =1×(-2)=-2,∴b =-1,c =-2. 答案 D6.(2020·衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得 ( )A.⎩⎪⎨⎪⎧x +y =506(x +y )=320B.⎩⎪⎨⎪⎧x +y =506x +10y =320 C.⎩⎪⎨⎪⎧x +y =506x +y =320D.⎩⎪⎨⎪⎧x +y =5010x +6y =320解析 由题意得,⎩⎪⎨⎪⎧x +y =506x +10y =320.答案 B7.(2020·绵阳)已知a >b ,c ≠0,则下列关系一定成立的是 ( )A.ac >bcB.a c >bcC.c -a >c -bD.c +a >c +b解析 A.当c <0时,不等式a >b 的两边同时乘以负数c ,则不等号的方向发生改变,即ac <bc .故本选项错误;B.当c <0时,不等式a >b 的两边同时除以负数c ,则不等号的方向发生改变,即a c <bc.故本选项错误;C.在不等式a >b 的两边同时乘以负数-1,则不等号的方向发生改变,即-a <-b ;然后再在不等式的两边同时加上c ,不等号的方向不变,即c -a <c -b .故本选项错误;D.在不等式a >b 的两边同时加上c ,不等式仍然成立,即a +c >b +c ;故本选项正确. 答案 D8.(2020·义乌市)在x =-4,-1,0,3中,满足不等式组⎩⎪⎨⎪⎧x <22(x +1)>-2 的x 值是( )A.-4和0B.-4和-1C.0和3D.-1和0解析 ⎩⎪⎨⎪⎧x <2 ① 2(x +1)>-2 ②,由②得,x >-2,故此不等式组的解集为:-2<x <2,x =-4,-1,0,3中只有-1、0满足题意.答案 D9.(2020·烟台)不等式组⎩⎪⎨⎪⎧2x -1≤3x >-1的解集在数轴上表示正确的是( )解析 ⎩⎪⎨⎪⎧2x -1≤3 ①x >-1 ②解不等式①得,x ≤2,解不等式②得,x >-1, 所以不等式组的解集为-1<x ≤2. 答案 A10.(2020·义乌)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 ( )A.2B.3C.4D.8解析 由题意,令第三边为x ,则5-3<x <5+3,即2<x <8, ∵第三边长为偶数,∴第三边长是4或6. ∴三角形的三边长可以为3、5、4. ∴选C. 答案 C二、填空题(每小题2分,共20分)11.(2020·柳州)如图,x 和5分别是天平上两边的砝码,请你用大于号“>”或小于号“<”填空:x 5.解析 根据图示知被测物体x 的质量小于砝码的质量,即x <5. 答案 <12.(2020·广安)不等式2x +9≥3(x +2)的正整数解是 W. 解析 2x +9≥3(x +2),去括号得,2x +9≥3x +6,移项得,2x -3x ≥6-9,合并同类项得,-x ≥-3,系数化为1得,x ≤3,故其正整数解为1,2,3. 答案 1,2,313.(2020·菏泽)若不等式组⎩⎪⎨⎪⎧x >3x >m 的解集是x >3,则m 的取值范围是 .解析 ∵不等式组⎩⎪⎨⎪⎧x >3x >m 的解集是x >3,∴m ≤3.答案 m ≤314.(2020·陕西)小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买 瓶甲饮料.解析 设小红能买x 瓶甲饮料,则可以买(10-x )瓶乙饮料,由题意得:7x +4(10-x )≤50,解得:x ≤103,∵x 为整数,∴x 取值为0,1,2,3, 则小红最多能买3瓶甲饮料. 答案 315.(2020·杭州)某企业向银行贷款1 000万元,一年后归还银行1 065.6多万元,则年利率高于 %.解析 因为向银行贷款1 000万元,一年后归还银行1 065.6多万元,则年利率是(1 065.6-1 000)÷1 000×100%=6.56%,则年利率高于6.56%. 答案 6.5616.(2020·湛江)请写出一个二元一次方程组 ,使它的解是⎩⎪⎨⎪⎧x =2y =-1.解析 此题答案不唯一,如:⎩⎪⎨⎪⎧x +y =1 ①x -y =3 ②①+②得:2x =4, 解得:x =2,将x =2代入①得:y =-1,∴这个二元一次方程组⎩⎪⎨⎪⎧x +y =1 ①x -y =3 ②的解为:⎩⎪⎨⎪⎧x =2y =-1.答案 此题答案不唯一,如:⎩⎪⎨⎪⎧x +y =1x -y =3.17.(2020·北京)若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m 的值是 W.解析 ∵关于x 的方程x 2-2x -m =0有两个相等的实数根, ∴b 2-4ac =0,∴(-2)2-4×1×(-m )=0, 解得m =-1.答案 -118.(2020·无锡)方程4x -3x -2=0的解为 .解析 方程的两边同乘x (x -2),得:4(x -2)-3x =0,解得:x =8.检验:把x =8代入x (x -2)=48≠0,即x =8是原分式方程的解.故原方程的解为:x =8. 答案 x =819.(2020·黑龙江)某商品按进价提高40%后标价,再打8折销售,售价为2 240元,则这种电器的进价为 元.解析 设这种商品的进价是x 元.x ×(1+40%)×0.8=2 240,解得x =2 000. 答案 2 00020.(2020·山西)图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.解析 设长方体的高为x cm ,然后表示出其宽为(15-x )cm ,根据题意得:15-x =2x ,解得:x =5,故长方体的宽为10 cm ,长为20 cm ,则长方体的体积为5×10×20=1 000 cm 3. 答案 1 000三、解答题(共60分,解答应写出必要的文字说明、证明过程或推演步骤)21.(5分)(苏州)解分式方程:3x +2+1x =4x 2+2x.解 去分母得:3x +x +2=4,解得:x =12,经检验,x =12是原方程的解.22.(5分)(珠海)已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =-3时,求方程的根.解 (1)∵当m =3时,b 2-4ac =22-4×3=-8<0, ∴原方程无实数根; (2)当m =-3时, 原方程变为x 2+2x -3=0, ∵(x -1)(x +3)=0, ∴x -1=0,x +3=0, ∴x 1=1,x 2=-3.23.(5分)(台州)解不等式组⎩⎪⎨⎪⎧x +3>42x <6并把解集在数轴上表示出来.解 解不等式x +3>4,得x >1, 解不等式2x <6,得x <3, ∴不等式组的解集为1<x <3. 解集在数轴上表示为24.(5分)(杭州)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7. (1)请写出其中一个三角形的第三边的长; (2)设组中最多有n 个三角形,求n 的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.解 (1)设三角形的第三边为x , ∵每个三角形有两条边的长分别为5和7, ∴7-5<x <5+7, ∴2<x <12,∴其中一个三角形的第三边的长可以为10. (2) ∵2<x <12,它们的边长均为整数, ∴x =3,4,5,6,7,8,9,10,11, ∴组中最多有9个三角形, ∴n =9;(3)∵当x =4,6,8,10时,该三角形周长为偶数, ∴该三角形周长为偶数的概率是49.25.(8分)(株洲)在学校组织的文艺晚会上,掷飞标文艺区游戏规则如下:如图掷到A 区和B 区的得分不同,A 区为小圆内部分,B 区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:(1)求掷中A 区、B 区一次各得多少分?(2)依此方法计算小明的得分为多少分?解 (1)设掷到A 区和B 区的得分分别为x 、y 分,依题意得:⎩⎪⎨⎪⎧5x +3y =77,3x +5y =75解得:⎩⎪⎨⎪⎧x =10y =9. (2)由(1)可知:4x +4y =76,答 (1)掷中A 区、B 区一次各得10,9分;(2)小明的得分为76分.26.(8分)(无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?解 (1)设商铺标价为x 万元,则按方案一购买,则可获投资收益(120%-1)·x +x ·10%×5=0.7x ,投资收益率为0.7x x×100%=70%; 按方案二购买,则可获投资收益(120%-0.85)·x +x ·10%×(1-10%)×3=0.62x ,投资收益率为0.62x 0.85x×100%≈72.9%; ∴投资者选择方案二所获得的投资收益率更高.(2)由题意得0.7x -0.62x =5,解得x =62.5万元∴甲投资了62.5万元,乙投资了53.125万元.答 (1)投资者选择方案二所获得的投资收益率更高;(2)甲投资了62.5万元,乙投资了53.125万元.27.(8分)(湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙、丙三种树的价格之比为2∶2∶3,甲种树每棵200元,现计划用210 000元资金,购买这三种树共1 000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵数是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10 120元的购树款,在购买总棵数不变的前提下,求丙种树最多可以购买多少棵?解 (1)已知甲、乙、丙三种树的价格之比为2∶2∶3,甲种树每棵200元,则乙种树每棵200元,丙种树每棵32×200=300(元); (2)设购买乙种树x 棵,则购买甲种树2x 棵,丙种树(1 000-3x )棵.根据题意:200×2x +200x +300(1 000-3x )=210 000,解得x =300,∴2x =600,1000-3x =100,(3)设购买丙种树y 棵,则甲、乙两种树共(1 000-y )棵,根据题意得:200(1 000-y )+300y ≤210 000+10 120,解得:y ≤201.2,∵y 为正整数,∴y 取201.答 (1)乙树每棵200元;丙树每棵300元;(2)买甲种树600棵,乙种树300棵,丙种树100棵;(3)丙种树最多可购买201棵.28.(8分)(深圳)“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:价格种类 进价(元/台) 售价(元/台)电视机5 000 5 500 洗衣机2 000 2 160 空调 2 400 2 700(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1 000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张?解 (1)设购进电视机x 台,则洗衣机是x 台,空调是(40-2x )台,根据题意得:⎩⎪⎨⎪⎧40-2x ≤3xx ≥0 40-2x ≥0 5 000x +2 000x +2 400(40-2x )≤118 000,解得:8≤x ≤10,根据x 是整数,则从8到10共有3个正整数,分别是8、9、10,因而有3种方案:方案一:电视机8台、洗衣机8台、空调24台;方案二:电视机9台、洗衣机9台、空调22台;方案三:电视机10台、洗衣机10台、空调20台.(2)三种电器在活动期间全部售出的金额y =5 500x +2 160x+2 700(40-2x ),即y =2 260x +108 000.由一次函数性质可知:当x 最大时,y 的值最大.x 的最大值是10,则y 的最大值是:2 260×10+108 000=130 600元.由现金每购1 000元送50元家电消费券一张,可知130 600元的销售总额最多送出130张消费券.答 (2)商家估计最多送出130张.29.(8分)(玉林)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65 000元,甲车每天的租金比乙车每天的租金多1 500元.试问:租甲乙两种车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.解 (1)设甲车单独完成任务需要x 天,乙车单独完成需要(x +15)天,由题意可得:10⎝ ⎛⎭⎪⎫1x +1x +15=1, 解得: x 1=15 ,x 2=-10(不合题意,应舍去),经检验知x =15是原分式方程的解,x +15=30;即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车每天租金为a 元,乙车每天租金为b 元,则根据两车合运共需租金6 5000元,甲车每天的租金比乙车每天的租金多1 500元可得:⎩⎪⎨⎪⎧10a +10b =65 000,a -b =1 500 解得:⎩⎪⎨⎪⎧a =4 000b =2 500 ①租甲乙两车需要费用为:65 000元;②单独租甲车的费用为:15×4 000=60 000元;③单独租乙车需要的费用为:30×2 500=75 000元;综上可得,单独租甲车租金最少.答 (1)甲车单独完成需要15天,乙车单独完成需要30天;(2)单独租甲车租金最少.。
密校名 班级姓名 座号密 封 线 内 不 得 答 题三年级数学科第二阶段质量检测卷评分:一、我会判断。
( 对的打“√”,错的打“×” )(5分)1、两个数相乘,乘数的末尾没有0,积的末尾也一定没有0。
…… ( )2、两个数的积一定大于两个数的和。
……………………………… ( )3、0乘任何数都得0,0除以任何数也得0。
…………………………( )4、一个边长为4厘米的正方形,周长和面积相等。
…………………( )5、劳动节、国庆节、元旦都在大月。
…………………………………( ) 二、我会选。
(请选正确字母填在括号里)(6分) 1、25×36,用36十位上的3乘25,得( )。
A 、75 B 、750 C 、75002、用1平方厘米的小正方形拼成下面的图形,周长最长的是( ), 面积最大的是( )。
ABC墙 3、如图,王奶奶开垦了一块正方体形的菜地, 一面靠墙,其他三面围篱笆。
篱笆长36米, 这块菜地的面积是( )平方米。
A 、81B 、144C 、48。
4、钟面上,如果时针转了5圈,分针要转( )圈。
A 、30 B 、6 C 、605、丫丫每分钟走62米,她从家走到游泳馆大约需要28分钟。
丫丫家离 游泳馆大约有( )米。
A 、1200B 、1800C 、2100密 封 线 内 不 得 答 题四、我会算。
(共31分) 1. 直接写得数。
(10分)70×30= 40×200= 50×22= 700×6= 160×4=68×32≈ 41×58≈ 302×8≈ 303÷6≈ 77×6≈ 2.用竖式计算。
(12分)43×13= 24×36= 58×37=35×11= 61×28= 45×76=3.脱式计算。
(9分)(45−16)×48 85÷5×36 840÷8÷3五、计算下面各图形的面积。
阶段质量检测(二) (A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6. 10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12. 答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57,∴s 2甲<s 2乙,故甲车间产品比较稳定.16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M=0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2, b ^=--+--+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a×0.5,解得a=0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是( )A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是( )A.总体B.个体C .样本D .样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是( )A .1,2,…,106B .0,1,2,…,105C .00,01,…,105D .000,001,…,105解析:选D 由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定; ③乙队几乎每场都进球;④甲队的表现时好时坏. A .1个 B .2个 C .3个D .4个解析:选D 因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s 甲=3,s 乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是( )A .①B .②C .③D .①②③④解析:选D 运用计算公式x =1n (x 1+x 2+…+x n ),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n ,则n ×(0.1+0.12)×1=11,所以n =50,故所求的城市数为50×0.18=9. 答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?解:(2)(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲82 81 79 78 95 88 93 84乙92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∵x 甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x2i =280,∑i =17x i y i =3 487,(1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17xiyi -7x - y-∑i =17x2i -7x 2=3 487-7×6×79.86280-7×62≈4.75.a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15.(2)∵0.000 2×(1 500-1 000)=0.1,0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-+0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25,所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).。
天津市南开区2022-2023学年高三上学期12月阶段性质量监测(二)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{3,2,1,2},{3,1,2,3}S T =--=--,则S T S ð等于().A .{3,2}-B .{2,1}-C .{1,3}-D .{2,1,1,3}--2.函数1()ln f x x x ⎛⎫=- ⎪⎝⎭的图象可能是().A .B .C .D .3.“1a <”是“22R,20x x x a ∃∈-+<”的().A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.人耳的听力情况可以用电子测听器检测,正常人听力的等级为025dB -(分贝),并规定测试值在区间(0,5]为非常优秀,测试值在区间(5,10]为优秀.对500人进行了听力测试,从中随机抽取了50人的测试值作为样本,制成如图频率分布直方图,从总体的500人中随机抽取1人,估计其测试值在区间(0,10]内的概率为().A .0.2B .0.8C .0.02D .0.085.已知0.154log 2,log 3,2a b c ===,则().A .c b a<<B .c a b<<C .a b c<<D .a c b<<6.已知函数π()sin (0)6f x x ωω⎛⎫=-> ⎝⎭图象的一条对称轴和一个对称中心的最小距离为3π4,则下列区间中()f x 单调递增的是().A .ππ,2⎡⎤-⎢⎥⎣⎦B .π,π2⎡⎤-⎢⎥⎣⎦C .30,π2⎡⎤⎢⎥⎣⎦D .5π,π2⎡⎤⎢⎥⎣⎦7.用底面半径为3cm 的圆柱形木料车出7个球形木珠,木珠的直径与圆柱形木料的高相同.下料方法:相邻的木珠相切,与圆柱侧面接触的6个木珠与侧面相切,如图所示是平行于底面且过圆柱母线中点的截面.则7个木珠的体积之和与圆柱形木料体积之比为().A .227B .427C .727D .14278.已知双曲线22:1124x y C -=,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P到C 的一条渐近线的距离为d ,则||d PF +的最小值为()A .2+B .C .8D .109.定义{},,max ,,.p p q p q q p q ≥⎧=⎨<⎩已知函数{}2()max ,32,()||f x x x g x x =-=.若方程3(())2f g x ax =+有四个不同的实数解,则实数a 的取值范围是().A .10,2⎛⎫⎪⎝⎭B .11,22⎛⎫- ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(1,1)-二、填空题10.若复数1ii iz a +=-+(i 为虚数单位)为纯虚数,则实数a 的值为________________.11.在53x ⎫-⎪⎭的展开式中,x 的系数为______________.12.在平面直角坐标系中,经过直线20x y +-=与两坐标轴的交点及点(0,0)的圆的方程为___________.三、双空题13.一个袋中有质地一样的小球5个,其中3个白色,2个黑色.现从中不放回地随机摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,则摸球两次停止的概率为____________;停止摸球时,摸到的白球个数多于黑球个数的概率为______________.四、填空题14.已知0,0,3a b a b >>+=______.五、双空题15.已知平行四边形ABCD 中,2,45AB DAB ==∠=,E 是BC 的中点,点P 满足2AP AE AD =-,则||PD =________;PE PD ⋅=__________.六、解答题16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若cos 4A =,求cos(2)A C +的值;(3)若c ABC =△的面积为2,求ABC 的周长.17.在如图所示的多面体中,,,AB CD AB AD AE ⊥⊥∥平面,ABCD CF ⊥平面ABCD ,1,2AB AE CF AD CD =====,M ,N 分别是,BF DE 的中点.(1)求证:MN ∥平面CDF ;(2)求DF 与平面BEF 所成角的正弦值;(3)设平面BEF I 平面CDF l =,求二面角B l C --的正弦值.18.已知数列{}n a 是公差不等于0的等差数列,其前n 项和为n S ,且11241,,,a S S S =成等比数列.(1)求数列{}n a 的通项公式;(2)设()12n n n b n a a *+=∈⋅N ,其前n 项和为n T .(ⅰ)若222,,m T T T 成等差数列,求m 的值;(ⅱ)求121ia ni iT =-∑.19.设椭圆2222:1(0)x y E a b a b+=>>的离心率为12,其左焦点到(2,1)P.(1)求椭圆E 的方程;(2)椭圆E 的右顶点为D ,直线:l y kx m =+与椭圆E 交于A ,B 两点(A ,B 不是左、右顶点),若其满足0DA DB ⋅= ,且直线l 与以原点为圆心,半径为17的圆相切;求直线l的方程.20.已知函数()e xx f x =.(1)求()f x 的单调区间和极值;(2)若0x =是函数()()()sin g x f a f x x =⋅+的极值点.(ⅰ)证明:2ln 20a -<<;(ⅱ)讨论()g x 在区间()π,π-上的零点个数.参考答案:1.C【分析】求出{3,2,1,1,2,3}S T =--- ,再根据补集的定义即可求得答案.【详解】由集合{3,2,1,2},{3,1,2,3}S T =--=--可得{3,2,1,1,2,3}S T =--- ,故{1,3}S T S =- ð,故选:C 2.D【分析】通过函数的定义域与零点个数排除A 、B 、C 选项,分析D 选项符合函数的性质.【详解】令1()ln 0f x x x ⎛⎫=- ⎪⎝⎭=得11x x -=即210x x --=,此有方程有两根,故()f x 有两个零点,排除A 选项;函数1()ln f x x x ⎛⎫=-⎪⎝⎭有意义满足10x x->解得1x >或10x -<<,当1x <-时函数无意义,排除B 、C 选项;对D 选项:函数的定义域符合,零点个数符合,又∵当10x -<<与及1x >时,函数1y x x=-单调递增,结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,故单调性也符合,所以()f x 的图象可能是D ;故选:D 3.B【分析】求得22R,20x x x a ∃∈-+<时的a 的取值范围,判断和“1a <”的逻辑推理关系,可得答案.【详解】由题意知22R,20x x x a ∃∈-+<,即方程2220x x a -+=的判别式2440a ∆=->,即11a -<<,故1a <时推不出11a -<<,但11a -<<时,一定有1a <成立,故“1a <”是“22R,20x x x a ∃∈-+<”的必要不充分条件,故选:B 4.A【分析】利用频率分布直方图,结合频率之和为l ,求出样本中测试值在区间(0,10]内的频率,由频率估计概率,即可得到案.【详解】根据频率分布直方图可知,样本中测试值在区间(0,10]内的频率为:1(0.060.080.02)510.80.2-++⨯=-=,以频率估计概率,故从总体的500名学生中随机抽取1人,估计其测试值在区间(0,10]内的概率为0.2,故选:A 5.C【分析】根据指数函数和对数函数的单调性即可求解.【详解】因为55441log 2log log 2log 312a b =<==<=<,又因为0.10221c =>=,所以c b a >>,故选:C .6.B【分析】求出最小正周期,进而得到2π23T ω==,利用整体法求解单调递增区间,得到答案.【详解】设π()sin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为T ,由题意得:13π44T =,解得3πT =,因为0ω>,所以2π23T ω==,所以2π()sin 36f x x ⎛⎫=- ⎪⎝⎭,令2πππ2π,2π,Z 3226x k k k ⎡⎤-∈-++∈⎢⎥⎣⎦,解得:π3π,π3π,Z 2x k k k ⎡⎤∈-++∈⎢⎥⎣⎦,当0k =时,π,π2x ⎡⎤∈-⎢⎥⎣⎦,B 正确;当1k =-时,7π,2π2x ⎡⎤∈--⎢⎥⎣⎦,当1k =时,5π4π2,x ⎡⎤∈⎢⎥⎣⎦,故其他选项,均不满足要求.故选:B 7.D【分析】由题意推出球形木珠和圆柱的半径之间的关系,确定圆柱的高,根据球和圆柱的体积公式即可求得答案.【详解】设球形木珠的半径为r ,圆柱形木料的底面半径为R ,由截面图可知26,3R r R r =∴=,圆柱形木料的高为2r ,故7个木珠的体积之和与圆柱形木料体积之比为3322447π7π1433π2π(3)227r r R r r r ⨯⨯==⨯⨯⨯⨯,故选:D 8.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离,利用双曲线定义将||d PF +转化为2||a PE F P ++',利用当,,P F E '三点共线时,2F a PE P ++'取得最小值,即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b ==,(40)F ,,设双曲线左焦点为(40)F '-,,不妨设一条渐近线为:3b l y x a =-=-,即0x =,作PE l ⊥,垂足为E ,即||PE d =,作F H l '⊥,垂足为H,则||2F H '=,因为点P 为C 左支上的动点,所以2PF PF a '-=,可得2PF a PF '=+,故2|2|d FP PE a PF a PE F P '+=++=++',由图可知,当,,P F E '三点共线时,即E 和H 点重合时,2||a PE F P ++'取得最小值,最小值为2||2F H '⨯=,即||d PF +的最小值为2,故选:A .9.B【分析】根据新定义确定函数()()f g x 的解析式,作出其图象,结合条件,观察图象列不等式求出a 的取值范围.【详解】因为{}2()max ,32,()||f x x x g x x =-=,所以{}2(())max ,32f g x x x =-,由232x x ≤-,可得2230x x +-≤,又0x ≥,所以01x ≤≤,即11x -≤≤,所以,(){}222,1max ,3232,11,1x x f x x x x x x x ⎧<-⎪=-=--≤≤⎨⎪>⎩,作出函数()f x的图象如下图所示:因为方程()()302f x ax a =+>有四个不同的实根,则3120a a ⎧-+>⎪⎨⎪>⎩或3120a a ⎧+>⎪⎨⎪<⎩或0a =,解得1122a -<<,所以a 的取值范围是11,22⎛⎫- ⎪⎝⎭.故选:B.10.1-【分析】根据复数的除法运算化简1ii iz a +=-+,再根据纯虚数的概念,令实部等于0,虚部不等于0,即可求得答案.【详解】由题意得复数22221i (1i)(i)12i=i=i i 111a a a a z a a a a ++-+--=--+++++,因为复数1i i i z a +=-+为纯虚数,故令2101a a +=+且22201a a a --≠+,解得1a =-,即实数a 的值为1-,故答案为:1-11.15-【分析】在二项展开式的通项公式()53215C 3rr r r T x-+=⋅-⋅中,令x 的幂指数等于1,求出r 的值,即可求得展开式中含x 项的系数.【详解】53x ⎫⎪⎭的展开式中,通项公式为()53521553C C 3rr rr rrr T x x --+⎛⎫=-=⋅-⋅ ⎪⎝⎭,令5312r-=,求得1r =,可得展开式中含x 项的系数()15C 315⨯-=-,故答案为:15-.12.22220x y x y +--=【分析】根据直线的方程求出直线与坐标轴的交点,利用待定系数法及点在圆上即可求解.【详解】令0y =,得020x +-=,解得2x =,所以直线20x y +-=与x 轴的交点为()2,0A ,令0x =,得020y +-=,解得2y =,所以直线20x y +-=与y 轴的交点为()0,2B ,设圆的方程为220x y Dx Ey F ++++=,则因为()2,0A ,()0,2B ,(0,0)O 三点都在圆上,所以222202200D F E F F ⎧++=⎪++=⎨⎪=⎩,解得2,2,0,D E F =-=-=故所求圆的方程为22220x y x y +--=故答案为:22220x y x y +--=.13.35##0.6310##0.3【分析】根据先分类再分步的思想,古典概型的概率公式解决概率问题即可.【详解】由题知,现从中不放回地随机摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,所以摸球两次停止是指第一次摸得白球且第二次摸得黑球,或第一次摸得黑球且第二次摸得白球两种情况,所以摸球两次停止的概率为111132231154C C C C 123C C 205P +===;停止摸球时,摸到的白球个数多于黑球个数,说明至少得摸球3次,包括第一次摸得白球且第二次摸得白球且第三次摸得黑球,或第一次摸得白球且第二次摸得白球且第三次摸得白球且第四次摸得黑球,所以停止摸球时,摸到的白球个数多于黑球个数的概率为1111111322321211111115435432C C C C C C C 12123C C C C C C C 6012010P =+=+=,故答案为:35;31014.【分析】由柯西不等式求解即可.【详解】解:由柯西不等式可得()222221112+⎡⎤⎢+⎥⎣⎦≤=,2a =,1b =时,等号成立,故答案为:15.5【分析】利用向量的线性运算得2A A P B =,将PD PE,都用AB AD ,表示,计算||PD 与PE PD ⋅即可.【详解】由题意知245AB AD DAB =∠=,12AE AB AD =+ ,22122AB AD AP AE AD AD AB =+⎛⎫=-- ⎪=⎝⎭ ,2PD AD AP AD AB =-=- ,所以2222244PD AD AB AD AB AD AB--⋅+= =2242cos 454210-⨯+⨯==,所以||PD = PE PD ⋅= ()()()1222AE AD AB A AP AP D AB AD AB ⎛⎫⋅=+-- ⎪⎝--⎭ ()122AD AB AD AB ⎛⎫-- ⎪⎝=⎭()22211125222AD AB PD ===-⨯= .;516.(1)π3(3)5【分析】(1)结合正弦定理、正弦和公式、三角形三角关系、诱导公式化简求值即可;(2)由平方关系、倍角公式、余弦和公式化简求值;(3)由余弦定理及面积公式化简求得a b +,即可求得周长.【详解】(1)由正弦定理得,()2cos (sin cos sin cos )2cos sin sin C A B B A C A B C +=+=,即()2cos sin π2cos sin sin C C C C C -==,∵()0,πC ∈,∴sin 0C ≠,∴1cos 2C =,∴π3C =;(2)()0,πA C Î、、∴221sin sin sin 22sin cos cos 2cos sin 4C A A A A A A A =====-=-,∴()11cos 2cos 2cos sin 2sin 42A C A C A C +=-=-⨯-(3)由余弦定理得222222cos 7c a b ab C a b ab =+-Þ=+-,由面积公式得1sin 62ab C ab =Þ=,则()2223736255a b a b ab ab a b +=+-+=+´=Þ+=,∴ABC的周长为5a b c ++=+.17.(1)详见解析;【分析】(1)建立空间直角坐标系,运用空间向量方法证明线线平行从而证明线面平行(2)运用空间向量求取线面夹角和二面角.通过解方程求得平面BEF 的法向量m,利用sin cos DF θ=< ,m > 得解;(3)通过求解cos n <,m >=,然后利用sin ,m n <>= 即可得二面角的正弦值.【详解】(1)⊥AE 平面ABCD ,且AB AD ⊥,以A 为坐标原点,AB ,AD ,AE 所在直线分别为x ,y ,z 轴,建立空间直角坐标系如图;则()0,0,0A ,()0,2,0D ,()1,0,0B ,()2,2,0C ,()0,0,1E ,()2,2,1F ,31,1,22M ⎛⎫ ⎪⎝⎭,10,1,2N ⎛⎫ ⎪⎝⎭,3(,0,0)2MN =- ,(2,0,0)CD =- ,由34MN CD = ,可得MN CD ∥,又CD ⊂平面CDF ,MN ⊄平面CDF ,所以MN ∥平面CDF .(2)设平面BEF 的法向量(),,m x y z = ,(2,2,0)EF = ,(1,0,1)EB =- 则·0·220m EB x z m EF x y ⎧=-=⎨=+=⎩取1,x =()1,1,1m =- ,设求DF 与平面BEF 所成角为θ,则sin cos DF θ=<,m >=所以DF 与平面BEF所成角的正弦值为5.(3)由(2)知平面BEF 的法向量()1,1,1m =- ,平面ABE ∥平面CDF ,且平面ABE 的一个法向量为()0,1,0n = ,所以平面CDF 的一个法向量为()0,1,0n = ,故cos n <,3m >=-;sin ,3m n <>= ,平面ABE 与平面CDF所成的二面角的正弦值等于3.18.(1)21n a n =-(2)(ⅰ)4;(ⅱ)1261(4918n n ++-+⨯【分析】(1)设出等差数列{}n a 的公差,根据给定条件列式计算即可作答.(2)由(1)的结论求出n b ,借助裂项相消法求出n T ,利用222,,m T T T 成等差数列建立m 方程求解,再利用错位相减法求121ia ni i T =-∑..【详解】(1)设等差数列{}n a 的公差为()d d ≠0,因为124,,S S S 成等比数列,且11a =,所以4221S S S =⨯,所以2(2)1(46)d d +=⨯+,解得2d =,于是有()11221n a n n =+-⨯=-,所以数列{}n a 的通项公式是21n a n =-.(2)由(1)知,()()1221121212121n n n b a a n n n n +===-⋅-+-+,因此,11111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭.(ⅰ)因为2T ,m T ,22T 成等差数列,则2222m T T T +=,即11111214144121m ⎛⎫-+-=- ⎪+++⎝⎭,整理得11219m =+,解得4m =;(ⅱ)由(ⅰ)知2121221(21)2()41121(1)21i a i i ii i i T i --==+⨯=+⨯---+,记11221()412i a nn i n i i i i M T ==+==⨯-∑∑,则2313572121444()4()422222n nn n n M --+=⨯+⨯+⨯++⨯+⨯ 所以234135721214444(4()422222n n n n n M +-+=⨯+⨯+⨯++⨯+⨯ 两式相减得23132134(444)()422n n n n M ++-=⨯++++-⨯ 211144212616()4()414236n n n n n +++-++=+-⨯=-⨯-,所以1261()4918n n n M ++=-+⨯,即112261()41918i a n n i in T +=+=-+⨯-∑.19.(1)22143x y +=(2)321y x =-或321y x =-+【分析】(1)利用两点间的距离公式和椭圆的离心率公式,结合椭圆中,,a b c 的关系即可求解.(2)根据椭圆方程得出D 的坐标,将直线方程与椭圆方程联立,利用韦达定理及点在直线上,结合向量的数量积的坐标运算及直线与圆相切的条件即可求解.【详解】(1)由题意可知,椭圆的焦点位于x 轴上,即椭圆的左焦点为()1,0F c -,因为左焦点到(2,1)P,所以1PF ==()229c +=,解得1c =或5c =-(舍),又因为椭圆E 的离心率为12,所以12c e a ==,即112a =,解得2a =,所以2223b a c =-=,故所求椭圆E 的方程为22143x y +=.(2)由题可得()2,0D ,设()()1122,,,A x y B x y ,由22143y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()2223484120k x mkx m +++-=,所以()()()22284344120mk k m ∆=-+->,即22340k m +->,所以21212228412,3434mk m x x x x k k-+=-=++,所以()()()2212121212y y kx m kx m k x x km x x m =++=+++222222224128343123344m mk k k m k k k km m -⎛⎫=⋅+-+= ⎝⎭-+++,因为0DA DB ⋅= ,所以()()()11221212122,2,240x y x y x x x x y y -⋅-=-+++=,所以2222224128343431224430m mk k k k m k -⎛-+++⎫-⋅-++= ⎪⎝⎭,即2271640m mk k ++=,解得2m k =-或27k m =-,满足22340k m +->,当2m k =-时,:2l y kx k =-过点D ,不合题意,所以27k m =-①,又直线l 与以原点为圆心半径为17的圆相切,17=②,联立①②,解得3k m ⎧=⎪⎪⎨⎪=⎪⎩或3k m ⎧=-⎪⎪⎨⎪=⎪⎩所以直线l的方程为321y x =-或321y x =-+.20.(1)函数在(),1-∞上单调递增,在()1,+∞上单调递减,有极大值1e,无极小值.(2)(ⅰ)证明见解析;(ⅱ)2【分析】(1)求导得到导函数,根据导函数的正负确定单调区间,计算极值得到答案.(2)(ⅰ)计算得到1()cos e ea x a x g x x -'=⋅+,确定e 0a a +=,设()e x F x x =+,根据函数的单调性结合()01F =,()2ln 20F -<得到证明;(ⅱ)求导得到导函数,考虑()π,0x ∈-,0x =,()0,πx ∈三种情况,构造()e sin x F x x x =-,确定函数的单调区间,根据()00F =,()00F x >,()π0F <得到零点个数.【详解】(1)()e x x f x =,1()e x x f x -'=,取1()0e xx f x -'==得到1x =,当1x <时,()0f x ¢>,函数单调递增;当1x >时,()0f x '<,函数单调递减.故函数在(),1-∞上单调递增,在()1,+∞上单调递减,有极大值()11e f =,无极小值.(2)(ⅰ)()()()sin sin e e a x a x g x f a f x x x =⋅+=⋅+,1()cos e e a xa x g x x -'=⋅+,(0)10e a a g '=+=,故e 0a a +=,设()e x F x x =+,函数单调递增,()010F =>,()2ln 212ln 2e 2ln 2ln 404F --=-=-<.根据零点存在定理知2ln 20a -<<.(ⅱ)()sin e x x g x x =-+,()00g =,1()cos e x x g x x -'=+,设1()cos e x x h x x -=+,2()sin e xx h x x -'=-,当()π,0x ∈-时,20,sin 0e x x x -><,故()0h x '>,()g x '单调递增,()()0110g x g ''<=-+=,故函数()g x 单调递减,()()00g x g >=,故函数在()π,0-上无零点;当()0,πx ∈时,()1()sin e sin e e x x xx g x x x x =-+=-,设()e sin x F x x x =-,()()e sin cos 1x F x x x '=+-,设()()e sin cos 1x k x x x =+-,则()2e cos x k x x '=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=>,当π,π2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=<故()k x 在π0,2⎛⎫ ⎪⎝⎭单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减,()00k =,π2πe 102k ⎛⎫=-> ⎪⎝⎭,()ππe 10k =--<,故存在0π,π2x ⎛⎫∈ ⎪⎝⎭使()00k x =,当()00,x x ∈时,()0k x >,()F x 单调递增;当()0,πx x ∈时,()0k x <,()F x 单调递减.()00F =,故()00F x >,()ππ0F =-<,故函数在()0,πx 上有1个零点.综上所述:()g x 在区间()π,π-上的零点个数为2【点睛】关键点睛:本题考查了利用导数解决函数的单调性和极值,根据极值求参数,零点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论是解题的关键,三角函数的有界性和正负交替是经常用到的关键思路.。
三年级数学阶段质量调研【20181126】
一、卷面书写整洁分(共10分)
友情提醒:书写工整,字迹美观,答题规范,卷面整洁。
二、细心填写。
(每空1分,计20分)
1、36的5倍是(),128是()的8倍。
2、784÷3商的最高位是()位,商的最高位上是()。
3、□34÷5,商是三位数,□里最小填()。
4、在括号里填上合适的单位名称。
小华的身高是130(),他的体重是35()。
一辆卡车载重6000( ),一个梨约重80( )。
5、□÷△=35……7,△最小是(),此时□是()。
6、三位数除以一位数,商可能是()位数,也可能是()位数。
7、一个三角形,三条边都相等,每条边长6厘米,周长是( )厘米。
8、小雨看一本童话故事,4天看了72页。
还剩下90页没看。
照这样计算,看完这本书还要用()天。
9、用8根长2厘米的小棒围成一个正方形,正方形的周长是
()厘米,如果用它们来围长方形,长方形的周长是()厘米。
10、从一张长30厘米,宽20厘米的长方形纸上剪下一个最大的正方形,这个正方形的边长是()厘米,周长是()厘米,剩下部分的周长是()厘米。
三、火眼金睛。
(对的打“√”,错的打“×”,每题1分,共5分)
1、被除数的末尾有零,商的末尾一定有零。
………()
2、 0和任何数相乘都等于0。
………………………()
3、对边相等的四边形一定是长方形。
…………()
4、称一般物体有多重,常用克作单位。
……………()
5、4千克棉花和4000克石头一样重。
…………()
四、选择正确答案。
(每小题2分,共计10分。
)
1、250×□积的末尾只有一个0,□里是()。
A、2 B、3 C、4
2、一份稿件有800个字,王老师每分钟打104个字,7分钟能打完这份稿件吗?()A、能 B、不能 C、不能确定
3、下面由4个边长为1厘米的正方形摆成的图形中,()的
.
.
周长最短。
A 、
B 、 C
4、张师傅说“我每天加工5张桌子,”丁师傅说“我3天加工21张桌子。
”他们谁做得快些?( )
A 、张师傅
B 、丁师傅
C 、-样快
5、一杯水连杯重450克,半杯水连杯重300克,一个空杯重( )。
A 、100克
B 、150克
C 、200克
七、解决实际问题。
(第6题6分,其余每小题5分,共31计分。
)
1、一袋薯片重250克,8袋这样的薯片重多少克?合多少千克?
2、李奶奶家养了10只公鸡,21只母鸡。
鸭的只数是鸡的总数
的3倍。
李奶奶家养了多少只鸭?
3、用一根线正好能围成一个边长9分米的正方形。
如果把它改围成长方形,长是11分米,宽是多少分米?
4、
57个轮子最多可以装多少辆车?
5、学校组织同学们去秋游,每班配两名老师。
三年级有3个班,
共有学生93人,平均每辆车坐多少人?
6、用两个长6厘米,宽3厘米的长方形拼成正方形或长方形,拼成的正方形、长方形的周长各是多少厘米?
八、挑战自我。
(1~2题,每题2分,第3、4题每题3分,共
计10分。
)
1、今年小红10岁,妈妈38岁。
5年前,妈妈比小红大()
岁。
2、王爷爷打算靠墙围一个长方形菜地,长8米,宽5米。
如果
给菜地围上篱笆,篱笆最长()米,最短()米。
3、停车场停了大客车和小轿车两种车。
大客车的辆数是小轿车
的一半,小轿车比大客车多32辆。
停车场停了多少辆车?
4、用两个完全一样的长方形纸重叠成左边的图形。
已知长方形
纸的长为3厘米,宽为1厘米,那么这个图形的周长是多少?
3cm
1cm
终于做完了,请细心检查,争取更好的成绩!
.。