一类无穷级数的求和
- 格式:pdf
- 大小:61.25 KB
- 文档页数:3
⽆穷级数求和问题的⼏种⽅法-⽆穷级数求和的⽅法⽬录摘要 (2)1⽆穷级数求和问题的⼏种⽅法 (2)利⽤级数和的定义求和 (2)利⽤函数的幂级数展开式求和 (3)利⽤逐项求积和逐项求导定理求和 (4)逐项求极限 (5)利⽤Flourier级数求和 (7)构建微分⽅程 (9)拆项法 (9)'将⼀般项写成某数列相邻项之差 (10)2总结 (12)3参考⽂献 (12)$⽆穷级数求和问题的⼏种⽅法摘要:⽆穷级数是数学分析中的⼀个重要内容,同时⽆穷级数求和问题,也是学⽣学习级数过程中较难掌握的部分.然⽽,⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 关键词:数项级数;幂级数;级数求和⽆穷级数是数学分析中的⼀个重要内容,它是以极限理论为基础,⽤以表⽰函数,研究函数的性质以及进⾏数值计算的⼀种重要⼯具.然⽽数学分析中注重函数的敛散问题,却对⽆穷级数求和问题的⽅法介绍的⽐较少,所以求和问题是学⽣学习级数过程中较难掌握的部分.⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据不同的⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 1利⽤级数和的定义求和定义[1]若级数1n n u ∞=∑的部分和数列{}n S 收敛于有限值S ,即1lim lim n n n n n S u S ∞→∞→∞===∑,则称级数1n n u ∞=∑收敛,记为1n n u S ∞==∑,此时S 称为级数的和数;若部分和数数列{}n S 发散,则称级数1n n u ∞=∑发散.例1 /例2求级数()∑∞=--1112n n q n ,1≤q 的和 .解: 2311357(21)n n S q q q n q -=+++++- (1) 2341357(23)(21)n n n qS q q q q n q n q -=+++++-+- (2)(1)-(2)得:11(1)12(21)1n n n q q S q n q q ---=+---12112(21)1(1)1n nn q q S q n q q q--=+-----212lim 1(1)n n qS q q →∞=+--即级数和2121(1)q S q q =+--. 2利⽤函数的幂级数展开式求和利⽤函数的幂级数展开式可以解决某些级数的求和问题.下⾯是⼏个重要的幂级数展开式:例(01,!xnn e x x n ∞==-∞<<+∞∑1,111n n x x x ∞==-<<-∑ 01ln(1),11!n x x x n ∞=-=--≤<∑3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-等等. 例2 求0(1)(21)!nn nn ∞=-+∑的和.解 : 0(1)(21)!nn n n ∞=-+∑0(21)11(1)(21)!2n n n n ∞=+-=-?+∑ 0111(1)2(2)!(21)!n n n n ∞=??=--??+??∑=001111(1)(1)2(2)!2(21)!n n n n n n ∞∞==---+∑∑ 注意到3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-242cos 1(1),()2!4!(2)!nx x x x x n =-+-+-+-∞<+∞>得1(1)(cos1sin1)(21)!2nn n n ∞=-=-+∑.3利⽤逐项求积和逐项求导定理求和定理[2]设幂级数()nnn a x x ∞=-∑的收敛半径为R ,其和函数为()x S ,则在00(,)x R x R -+内幂级数可以逐项积分和逐项微分.即:对00(,)x R x R -+内任意⼀点x ,有:10000()()()1xx nn nn x x N n a a x x x x S x dx n ∞∞+==-=-=+∑∑10000()()()n n n n n n d d a x x na x x S x dx dx ∞-==??-=-=??∑∑并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为R . 例3[]3 计算⽆穷级数()() +-++?-+--14534231215432n n x xxxxnn之和(1)x <.解:对于级数()xxnn n+=∑-∞=111(1)x <. ^两边从0积分到x 得()()x nx n n n+=++∞=∑-1ln 11,(1)x <,两边从0积分到x 得()()()()()()x x x x dt t n n xn n nx++-+=+=++?∑-+∞=1ln 1ln 1ln 21021,(1)x <上式右边是原级数. 故级数和()()x x x x S ++-+=1ln 1ln ,(1)x <.例4 求幂级数()()x nn n n n 2112111??-+∑-∞=的和函数()x S .解:令2t x =,幂函数()11111(21)n n n t n n ∞-=??-+??-??∑的收敛半径 '11(21)lim 11(1)(21)n n n R n n →∞+-=+++故原函数的收敛半径1R ==,从⽽收敛区间为(1,1)-,⽽知级数2122211(1)(),(1,1)1n nnn n x xx x x ∞∞-==-=--=∈-+∑∑,记1211()(1),(0)0(21)n n n x x n n ??∞-==-=-∑,'121'12()(1),(0)021n n n x x n ??∞--==-=-∑且''12212212()(1)22(1),(1,1)1n n n n n n x xx x x∞∞---===-?=-?=∈-+∑∑ 于是(1,1)x ∈-,对上式,从0到x 作积分得'''0 ()()()2arctan x x x d x x ??==?,'()()()2arctan xxx x d x xdx ??==??=122012(arctan 2arctan ln(1)1x x dx x x x x -=-++?因此222()2tan ln(1),(1,1)1x f x x x x x x=+-+∈-+. 4逐项求极限如果函数在端点处⽆定义,那么可⽤求极限的⽅法讨论在端点处的和函数. 例5 []4 求幂级数121(1)1n nn x n +∞=--∑的和函数.,解:(1)容易验证该幂级数的收敛域为[]1,1-.(2)再求幂级数在其收敛区间(1,1)-上的和函数,下⾯⽤逐项求导的⽅法求解.设1122()(1)1n n n x f x n +∞-==--∑,(1,1)x ∈- 则有1'12()(1)1n n n x f x n +∞-==--∑ 1n x x n ∞==-∑再设1()(1)nnn x g x n ∞==-∑,(1,1)x ∈-⼜有1'11()(1)1n nn x g x n x -∞==-=-+∑-于是对上式两边进⾏积分,得1()()(0)1xg x dt g t=-++?ln(1)x =-+ 并有'()()ln(1)f x xg x x x ==-+.再进⾏积分,⼜得0()ln(1)(0)xf x t t dt f =-++?221ln(1)224x x x x -=+-+(3)最后讨论幂级数在其收敛域上的和函数.因为函数221()ln(1)224x x x f x x -=+-+在1x =处左连续,⽽幂级数在1x =处收敛,所以等式》21(1)ln(1),1224n n n x x x x x n +∞-=--=+-+-∑ 在1x =处也成⽴.但因()f x 在1x =-处⽆定义,故要改⽤逐项求极限来确定该幂级数在1x =-处的值,即由22111lim ()lim ln(1)224x x x x x f x x ++→-→-??-=+-+ 11ln(1)3lim 1241x x x x +→-??-+=?++?12131lim 14(1)x x x +→-+=+-+34= 得到112123lim ((1))41n n x n x n ++∞-→-==--∑11212lim ((1))1n n x n x n ++∞-→-==--∑ 1122(1)(1)1n n n n +∞-=-=--∑2211n n ∞==-∑ %所以原幂级数的和函数为221ln(1),(1,1]224()3,14x x x x x S x x ?-+-+∈-??=??=-??.5利⽤Flourier 级数求和求某些数值级数的和可选择某个特殊的函数在[]0,2π或[],ππ-上展成傅⾥叶级数,然后再去适当的x 值或逐项积分即可.例6[5]求21(1)nn n ∞=-∑的和.解:21(1)n n n ∞=-∑可以看作是余弦函数21(1)cos nn nx n∞=-∑在0x =时的值,因此可以考虑适当选取⼀个偶函数()f x ,满⾜21(1)()cos nf x nxdx nπππ--=?对于上式左端利⽤分部积分,得到'''22111()cos ()cos ()cos f x nxdx f x nx f x nxdx n n πππππππππ---??=-='''(3)233111()cos ()sin ()f x nx f x nx f x n n nπππππππππ---??-+ 注意到$cos cos()(1)nn n ππ=-=-有1(1)1()cos ()()()sin n f x nxdx f f f x nxdx n n πππππππππ---??=--+?取21()4f x x =,则21(1)()cos nf x nxdx nπππ--=?同时211()6f x dx n πππ-=?,这样21()4f x x =在[],ππ-上的Flourier 级数为 222111(1)cos 412n n x nx nπ∞=-==+∑ `令0x =,得2=-=∑ 例7[4]证明: 441190k k π∞==∑.证明:将函数2()()2xf x π-=展成傅⾥叶级数222001()26xa dx ππππ-==22211()cos 2k xa kxdx k πππ-=, 0k b =是2221cos ()(),02212k xkxf x x k πππ∞=-==+≤≤∑由柏塞⽡尔等式(函数2()( )2xf x π-=连续)2224040111()()22k k k a xa b dx k πππ∞=-++=∑?,有2422444011111ππππππππ∞-=-+===∑?即441190k k π∞==∑. 6构建微分⽅程如果某些级数的⼀般项的分母类似于阶乘的级数时,可以利⽤经过逐项积分或逐项积分后得到的级数之和函数与原级数的和函数构成微分⽅程,然后解微分⽅程来求其和.例8 求级数11112242462468-+-+之和.解:设幂级数246821()(1)2242462468(2)!!nn x x x x x S x n -=-+-++-+则3572'1()(1)224246(2(1))!!nn x x x x S x x n -=-+-++-+24681()2242462468x x x x x ??=--+-+(1())x S x =-于是所得⼀阶微分⽅程:'()(1())S x x S x =-,其通解为22()1,x S x Ce-=+由(0)0S =得1C =- 因此得22121()(1)1(2)!!x nn N xS x Ce n ∞--==-=-∑从⽽121111(1)12242462468S e --+-+==-.7拆项法⽆穷级数求和时,有时根据⼀般项的特点,将⼀般项进⾏拆分来简化运算过程.例9 求幂级数121(1)n n n n x ∞-=-∑的和函数.解:先求幂级数的收敛域.因为1n =,且级数121(1)n n n ∞-=-∑与21所以幂级数的收敛域为(1,1)-. 由于2(1)(2)3(1)1n n n n =++-++因此12111111(1)(1)(1)(2)3(1)(1)(1)n nn nnnn n n n n n n x n n x n x x ∞∞∞∞---====-=-++--++-∑∑∑∑12''11'11(1)()3(1)()1n n n n n n x xx x ∞∞-+-+===---++∑∑ 12''11'1())3((1)())1n n n n n n x xx x∞∞-+-+===---++∑∑ 32'''()3()111x x x x x x=-++++ 【23(1)x x x -=+,(1,1)x ∈-因为幂级数的收敛域为,所以所求和函数为23()(1)x x S x x -=+,(1,1)x ∈-.8将⼀般项写成某数列相邻项之差⽤这⼀⽅法求⽆穷级数的和,⾸先需要解决:已知1n n u ∞=∑,如何求n v当111n n n n m u b b b ++-=,其中(1,2,)i b i =形成公差为d 的等差数列时,1111n n n n m v md b b b ++-=-(m 为待定因⼦).于常数项级数1n n u ∞=∑,如果能将⼀般项写某数列{}n v 的相邻两项之差:1n n n u v v +=-且极限lim n n u v ∞→∞=存在,则21321111()()()n k n n n n S u v v v v v v v v ∞++===-+-+。
无穷级数的求和方法及实际应用无穷级数是数学中的一个重要概念,其是指由无限个项所组成的数列之和。
在数学领域中,无穷级数的求和方法及实际应用具有很高的研究价值。
本文将为您全面介绍无穷级数的求和方法及实际应用。
一、无穷级数的表示方法无穷级数的表示方法有数列求和法和函数求和法两种。
数列求和法是指将每个项加起来得到的和。
可以表示为S=a1+a2+...+an+...。
当数列有收敛的极限值时,就称这个级数收敛,当数列的极限值不存在或无穷大时,就称这个级数发散。
函数求和法则是用函数的形式来表示无穷级数。
对于动态无穷级数来说,函数求和法较为常见,它可以表示为S=f(n)。
在函数求和法中,一个级数的求和值被等价于它所描述的函数之和在某个范围内的极限值。
当函数收敛到一个固定的值时,就可以说这个无穷级数收敛。
如果函数的极限不存在或分明无反应,则称级数发散。
二、无穷级数的求和方法1、和式变换法和式变换法是一种求解级数和的方法。
它的主要思想是将原来的级数转化为一个更熟悉的级数,以便更容易解决。
比如,将级数S=1+1/2+1/4+1/8+...转换为S=2,从而快速得出级数S的和。
2、换序求和法如果一个级数的每个数列都是绝对收敛的,那么它是允许换序的。
换序求和法是指通过交换级数中每个项的位置,从而使级数的求和更具效率。
但是,当级数不绝对收敛时,换序不会得到正确的求和结果。
3、比较判别法比较判别法是一种判断无穷级数收敛与发散的方法,其基本思想是将一个无穷级数与另一个已知的级数进行比较。
如果已知的级数是收敛的,那么它就可以作为一个新的级数的上界或下界。
如果新的级数的和小于已知级数的和,那么新的级数也会收敛。
4、积分判别法积分判别法是一种判断无穷级当前后发散的方法之一。
它建立在函数积分的基础之上,通过计算两个函数之间的积分,然后将结果与一个已知级数比较,从而得出级数的收敛与发散。
三、无穷级数的实际应用无穷级数在很多实际应用中都有广泛的应用。
无穷级数求和公式大全(最新版)目录1.引言2.无穷级数求和公式的分类3.常见无穷级数求和公式及其应用4.结论正文【引言】在数学领域,无穷级数求和是一个重要的研究方向。
求和公式是解决无穷级数问题的关键工具,它们可以帮助我们计算各种无穷级数的和。
本文将介绍一些常见的无穷级数求和公式,并探讨它们的应用。
【无穷级数求和公式的分类】无穷级数求和公式可以根据求和的方法进行分类,主要包括以下几类:1.裂项相消法:将无穷级数的每一项分解为两个部分,然后通过裂项相消的方法求和。
2.求和公式法:利用常见的求和公式,如等差数列求和公式、等比数列求和公式等,直接求得无穷级数的和。
3.级数收敛性判定法:通过判断无穷级数的收敛性,如发散、单调有界、单调无穷等,从而求得级数的和。
4.积分法:将无穷级数转化为一个定积分,然后求解该积分得到级数的和。
5.递推法:通过构造一个递推关系式,逐步求解无穷级数的和。
【常见无穷级数求和公式及其应用】1.等差数列求和公式:S_n = n(a_1 + a_n)/2,其中 S_n 表示前 n 项和,a_1 表示第一项,a_n 表示第 n 项。
该公式适用于各项之间差值为常数的无穷级数。
2.等比数列求和公式:S_n = a_1(1 - q^n)/(1 - q),其中 S_n 表示前 n 项和,a_1 表示第一项,q 表示公比。
该公式适用于各项之间比值为常数的无穷级数。
3.交错级数求和公式:S_n = (a_1 + a_3 + a_5 +...+ a_n) - (a_2 + a_4 + a_6 +...+ a_(n-1)),适用于各项正负相间的无穷级数。
4.柯西收敛准则:当一个级数的各项绝对值单调有界时,该级数收敛。
该准则可以用于判断无穷级数的收敛性。
5.积分法求和:将无穷级数表示为某个函数的积分,然后求解该积分得到级数的和。
例如,求解 x^n 在区间 [0, 1] 上的积分,可以得到等比数列求和公式。
无穷级数求和公式大全无穷级数是数学中的一个重要概念,它由一系列无穷多个数相加而成。
在许多实际问题中,我们需要计算无穷级数的和。
本文将介绍一些常见的无穷级数求和公式,帮助读者更好地理解和计算无穷级数。
1.等差数列求和公式等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
当n趋近于无穷大时,等差数列的和可以通过以下公式计算:Sn = lim(n→∞) (n/2) [2a1 + (n-1)d]其中Sn是前n项和。
2.等比数列求和公式等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
当,r,<1时,等比数列的和可以通过以下公式计算:Sn=a1/(1-r)当,r,>1时,等比数列的和不存在。
3.幂级数求和公式幂级数是形如∑(n=0)∞a^n的无穷级数,其中a为常数。
幂级数的和可以通过以下公式计算:S=1/(1-a)该公式要求幂级数的绝对值,a,<14.调和级数求和公式调和级数是形如∑(n=1)∞1/n的无穷级数。
调和级数的和发散,即不存在有限的和。
然而,其部分和可以逼近自然对数的常数项:S = ∑(n=1)∞ 1/n ≈ ln(n) + γ5.奇数级数求和公式奇数级数是形如∑(n=1)∞(2n-1)的无穷级数。
奇数级数的和可以通过以下公式计算:S=∑(n=1)∞(2n-1)=n^26.平方和级数求和公式平方和级数是形如∑(n=1)∞n^2的无穷级数。
平方和级数的和可以通过以下公式计算:S=∑(n=1)∞n^2=n(n+1)(2n+1)/67.指数级数求和公式指数级数是形如∑(n=0)∞(x^n/n!)的无穷级数,其中x为常数。
S=∑(n=0)∞(x^n/n!)=e^x8.费马级数求和公式费马级数是形如∑(n=1)∞(1/n^2)的无穷级数。
费马级数的和可以通过以下公式计算:S=∑(n=1)∞(1/n^2)=π^2/6上述是一些常见的无穷级数求和公式,希望能够帮助读者更好地理解和计算无穷级数的和。
无穷级数的求和Investigate of the summation ofinfinite series专业: 应用化学精细化工**: ***学号: ************摘要本文介绍了运用裂项相消, 错位相减, 逐项微分, 逐项积分, 运用特殊级数的和这几种方法求级数的和, 并通过实例说明了这些方法的应用.关键词: 级数; 求和; 幂级数; 傅里叶级数简介无穷级数求和是无穷级数中的主要内容,针对无穷级数求和归纳为6种方法.即利用无穷级数和的定义、递推、构造成幂级数、傅里叶级数、幂级数的逐项求导或逐项积分、微分方程,以下让我通过简单的例子,通过分析,总结归纳出无穷级数求和的解题技巧,使求解这类问题有章可循目录摘要 (I)简介 (II)1 引言 (1)2 裂项相消法 (1)3 错位相减法 (2)4 逐项微分法 (6)5 逐项积分法 (8)6 运用特殊级数的和求和法 (9)参考文献 (13)1 引言无穷级数(简称级数)是高等数学的一个重要组成部分. 它是表示函数, 研究函数性质以及进行数值计算的一种重要工具. 众所周知, 收敛级数都有和, 然而求出收敛级数的和常常是较困难的. 因此, 本文将讨论运用裂项相消, 错位相减, 逐项微分, 逐项积分, 运用特殊级数的和来求级数的和, 并通过实例说明了这些方法的应用.为行文的简洁, 本文中未特别申明的符号与文献[1]一致.2 裂项相消法设1n u n ∞=∑, 1n n n u v v +=-, 则1n u n ∞=∑的部分和为11n n s v v +=-.若 1lim n n v A +→∞=, 则1lim n n s A v →∞=-.也就是说1n u n ∞=∑的和为 1A v -.我们称上述求级数和的方法为裂项相消法.利用裂项相消法求级数的和, 关键是怎样将级数的通项拆成前后有抵消部分的形式, 通常经过变形, 有理化分子或分母, 三角函数恒等变形等处理可达到裂项相消的目的. 以下用具体例子来进行说明.例1 求无穷级数11(2)n n n ∞=∑+的和.解 因为1111()(2)22n n n n =-++,所以1111111111[(1)()()](1)232422212n S n n n n =-+-+⋅⋅⋅+-=+--+++,于是lim n n S S →∞=1111(1)2212n n =+--++34=. 所以113(2)4n n n ∞==∑+.如果一个级数的通项是一个三角函数式, 则可考虑利用三角函数公式, 将其化简为两式之差以便运用裂项相消法.例2 求级数 201arctan1n n n ∞=∑++ 的和.解 先考虑变换问题的数学形式, 由21(1)arctanarctan 11(1)k kk k k k+-=++++,联想到正切的差角公式tan tan tan()1tan tan αβαβαβ--=+,再设 tan 1,k k αβ=+=, 则原级数的部分和为2111arctan1arctan arctan arctan371arctan1(arctan 2arctan1)(arctan 3arctan 2)[arctan arctan(1)][arctan(1)arctan ]arctan(1),n S n n n n n n n =+++⋅⋅⋅+++=+-+-+⋅⋅⋅+--++-=+所以201arctanlim lim arctan(1)12nn n n S n n n π∞→∞→∞===+=∑++. 如果一个级数的通项是一个分母为若干根式之积的分式, 则可考虑将其分母或分子有理化以便运用裂项相消法.例3求和n ∞=∑.解 先对通项分母中的和式进行有理化, 得==,于是, 有(1n S =-++⋅⋅⋅++1=-,所以lim lim(11n n n n S ∞→∞→∞===-=∑.3 错位相减法设{}n u 为等差数列, 公差为d , {}n v 为等比数列, 公比为q , 则称0n n n u v ∞=∑为混合级数,这类级数的求和问题一般采用错位相减法.事实上, 设112233n n S u v u v u v u v n =+++⋅⋅⋅+, (1)两边同时乘以公比q 得112233n n n qS u v q u v q u v q u v =+++⋅⋅⋅+,即12233411n n n n n qS u v u v u v u v u v -+=+++⋅⋅⋅++, (2)(5)式减去(6)式得11231(1)()n n n n q S u v d v v v u v +-=+++⋅⋅⋅+-,112311lim lim[]1()n n n n n n S S qu v d v v v u v +→∞→∞+++⋅⋅⋅+-==-.我们这种求级数和的方法为错位相减法.例4 求级数113n n n∞-=∑的和. 解 因为21231333n n n-=+++⋅⋅⋅+S , (3)23112333333n n n=+++⋅⋅⋅+S , (4) (7)式减去(8)得23112111113333333n n n n n n --==++++⋅⋅⋅++S S S ,即1(1)3313(1)12323313n n n n n n n S -=-=---, 于是2313lim lim[(1)]32332n n n n n n S →∞→∞=--=, 所以 339lim 224n n S →∞=⨯=, 故 11943n n n ∞-==∑.4 逐项微分法定理[2]1 若在[,]a b 上, 1()n n u x ∞=∑的每一项都具有连续导数'()n u x 一致收敛于()x δ,又1()n n u x ∞=∑收敛于()S x , 则'()()S x x δ=, 即11()()nn n n d du x u x dx dx∞∞===∑∑, 且1()n n u x ∞=∑一致收敛于()S x .这定理说明了和号同求导运算可以交换, 它也称为逐项微分的定理. 但要注意的是, 仅仅在条件“1()n n u x ∞=∑一致收敛”之下, 即使'()n u x 存在且连续, 也不能保证和号同求导数号可以交换.例5 求级数357(1)357x x x x x -+-+⋅⋅⋅≤的和.解 令357()357x x x F x x =-+-+,在收敛域[]1,1-内逐项微分, 得()24621'11F x x x x x=-+-+⋅⋅⋅=+. 注意到(0)0F =, 所以20()arctan 1xdtF x x t ==+⎰, 于是当1x ≤时, 有357arctan 357x x x x x -+-+⋅⋅⋅=.例6 求级数11111(1)3521n n --+-⋅⋅⋅+-+⋅⋅⋅-的和.解 令35121111(1)3521n n x x x x x n --=-+-⋅⋅⋅+-+⋅⋅⋅-S(),逐项求导得2412321'()1(1)1n n S x x x x x --=-+-⋅⋅⋅+-+⋅⋅⋅=+, 所以2001()'()arctan 1x x S x S x dx dx x x ===+⎰⎰.因为级数12111(1)21n n n x n -∞-=-∑-在1x =处收敛, 所以 (1)arctan14S π==,即11111(1)35214n n π--+-⋅⋅⋅+-+⋅⋅⋅=-. 例7 求级数210(21)!n n x n +∞=∑+的和函数.解 ()-∞+∞该级数的收敛区间为,, 令()213501(210)!3!5!n n x x x y x n +∞===+++⋅⋅⋅∑+,2240'()12!2!4!n n x x x y x n ∞===+++⋅⋅⋅∑,所以234()'()12!3!4!x x x x y x y x x e +=+++++⋅⋅⋅=,()()'()x y x y x y x e +=即满足微分方程, 此方程为一阶线性微分方程,其通解为1()2x x y x e ce -=+.例8 求幂级数221[(1)!](2)(1)(2)!n n n x x n ∞=-<∑的和. 解 在 1x < 上对()S x 逐项求导, 可知2211[(1)!]'()2(2)(21)!n n n S x x n ∞-=-=-∑,2221[(1)!]4(2)(22)!n n n x n ∞-=--∑. 由此可得 2(1)''()'()4x S x xS x --=. 在这两端乘以 212(1)x --, 我们有'())'1x x =<,解得()(1)S x x =+<.5 逐项积分法定理2[2]设1()n n u x ∞=∑在[,]a b 上一致收敛于()S x , 并且每一()n u x 都在[,]a b 上连续, 则11()()()b bb x n aaan n u x dx S x dx u x dx ∞∞====∑∑⎰⎰⎰,亦即和号可以与积分号交换. 又在[,]a b 上, 函数项级数1()x n an u t dt ∞=∑⎰也一致收敛于()x aS t dt ⎰.该定理也称为逐项积分定理.例9 求级数234234(1)x x x x x ++++⋅⋅⋅<的和.解 令234()234F x x x x x =++++⋅⋅⋅, 其收敛域为(1,1)-, 在收敛域内逐项积分, 得234234234234123()234111(1)(1)(1)234111()()234ln(1)1x F t dt x x x x x x x x x x x x x x x x x=+++⋅⋅⋅=-+-+-+⋅⋅⋅=++++⋅⋅⋅-++++⋅⋅⋅=+--⎰,其中1x <, 于是21'()[ln(1)],11(1)n n x xF x nx x x x x ∞===+-=<∑--.例10 求下列级数的和()S x(1) 410(2)1()()412n n x S x x n +∞==<+∑; (2) 0()()(1)21nn x S x x n ∞=-=<+∑.解 (1) 在 12x <上对()S x 作逐项积分, 可知 222444000()111121arctan(2)ln ().24122x x xnn n n dtS x tdt t dt t x x x x∞∞=====-+=+<-∑∑⎰⎰⎰(2) 对 01x <<, 令 2x t =, 有2220002220001()(1)(1)2111((1))1arctan .n t nn n n n t t n n n t S t x dtn t dt x dt t t x t t ∞∞==∞==-=-+=-=+=∑∑⎰∑⎰⎰由此知()arctan S x = 对 10x -<<, 令 2x t =-, 有222200001111()ln 21121n t t n n n t dt tS t x dx n t t x t t ∞∞==+-====+--∑∑⎰⎰,由此可得()S x =6 运用特殊级数的和求和法这种方法的基本思想是: 将待求和的级数用一些已知级数来表示, 通过代入已知级数求得待求级数的和. 以下运用例子来说明该方法.例11 求123423434845165632S =-+-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅. 解 原式可以用级数表示如下1111(1)()(1)(2)2nn n k n S n n ++==-⋅∑++.考虑级数111(1)(1)(2)nn n k n x n n ++=-⋅∑++, 其收敛半径为1, 故当12x =时收敛, 设其和函数为()f x , 下面在区间()0,1内求()f x . 由于21(1)(2)21n n n n n =-++++,所以1111112111122()(1)(1)212(1)(1)2112[ln(1)]ln(1)22(1)ln(1)2,n n n n n n n n n n n x x f x n n x x x n n n xx x x x x x x++++∞∞=-++++∞==---∑∑++∞=-+-∑∑++-=+-+++-=++-令12x =, 即得13()5ln 222S f ==-. 例12 (1)求级数111111()()()2346812++++++⋅⋅⋅的和;(2)求级数111()23n n n ∞=+∑的和.解 (1) 由于111111111111()()[()()]2346223211111111[()][()]2422363211111122112311221211(1),232n n n n n n nn n S ----=++++⋅⋅⋅++=++⋅⋅⋅+++⋅⋅⋅--=⋅+⋅--=-+- 所以1215lim[1(1)]2323n n n n S S →∞==-+-=, 故11115()()23463++++⋅⋅⋅=. (2) 因为22111111()()()232323n n n S =++++⋅⋅⋅++22111111()()222333n n =++⋅⋅⋅+++⋅⋅⋅+1111(1)(1)3322111123n n --=+--, 所以13lim 122n →∞=+=, 从而1113()232n n n ∞=+=∑.例13 求下列级数的和: (1)112n n n∞-=∑; (2)12(1)!n n n ∞=+∑+. 解 (1)由于1211,(1)(1)n n nx x x ∞-==<∑-, 令()11111157111317f x -+-+-+⋅⋅⋅+=12x =,得112n n n∞-=∑的和, 因此 111211211()422(1)n n x n n n n x -∞∞-======∑∑-.(2)由于当x -∞<<+∞时, 有 212!!nxx x e x n =+++⋅⋅⋅++⋅⋅⋅, 故令1x =即得11112!!e n =+++⋅⋅⋅++⋅⋅⋅, 于是有11112(1)111(1)!(1)!!(1)!n n n n n n n n n n ∞∞∞∞====+++==+∑∑∑∑+++ (1)(2)23e e e =-+-=-.例14 求下列常数项级数之和:(1) 111113579-+-+-⋅⋅⋅;(2) 111111135791113+--++--⋅⋅⋅;(3) 11111157111317-+-+-+⋅⋅⋅.解 将()4f x π=在[]0,π内展开为正弦级数有()0,1,2,3,n a n ==⋅⋅⋅, 01()2sin 40()n n b nx dx n n πππ⎧⎪==⎨⎪⎩⎰为奇数为偶数,所以()()()11sin sin 3sin 2104321f x x x n x x n ππ==++⋅⋅⋅+-+⋅⋅⋅≤≤-. (1) 当2x π=时, 有1111135794π-+-+-⋅⋅⋅=.(2) 当4x π=时,有1111111357911134+--++-⋅⋅⋅=. (3) 当3x π=时,有11111157111317-+-+-+⋅⋅⋅=.例15 求2221111357++++⋅⋅⋅的和. 解 将函数[],x ππ-在上展成傅里叶级数得[]224cos3cos5(cos ),,235x xx x x ππππ=-+++⋅⋅⋅∈-. 令x π=, 则222211113578π++++⋅⋅⋅=.例16 求和0cos !n nxn ∞=∑.解 令 ixz e =, 则0!nZ n z e n ∞==∑. 因为 ()()cos 000cos sin ,cos sin sin sin !!!n Z x n n n z nxnx i e e x i x n n n ∞∞∞====+=+⎡⎤∑∑∑⎣⎦, 按实部和虚部分别相等的关系, 即得()()cos 0cos cos sin ,,!x n nxe x n ∞==-∞+∞∑.利用四则运算等将所给级数转化为()S x 代数方程再求解, 这种思维方式和求解方法与错位相减法类似, 只不过在错位相减法中两边同乘的是等比级数的公比q , 在这里则需依具体情况而定, 同乘以关于x 的某个代数式再两式相减以得化简.例17 求级数21n n nx ∞=∑的和.解 因为该级数的收敛半径1lim1nn n a R a →∞+==, 又因为当1x =±时,该级数发散,所以级数收敛域为(-1,1).()21n n nx S x ∞==∑设, 则()24623n S x x x x nx =+++⋅⋅⋅++⋅⋅⋅ , (5) ()2468223n x S x x x x nx +=+++⋅⋅⋅++⋅⋅⋅, (6)(9)式减去(10)得()()222468211x x S x x x x x x -=++++⋅⋅⋅=-,故()()()222,1,11x S x x x =∈--.转化为微分方程求解, 即研究它的导数或其与它本身有何特点及相关联系, 看其是否满足某微分方程及定解条件. 找出求和级数所满足的微分方程及定解条件, 再解该方程.参考文献[1] 刘玉琏. 数学分析讲义(下册)[M], 北京: 高等教育出版社, 2003. [2] 陈传璋. 数学分析讲义下册[J], 北京: 高等教育出版社, 2004. [3] 张春平. 无穷级数的求和探讨[J], 沈阳师范大学学报, (3) 2008, 20-21. [4] 郑春雨. 数项级数和的求法例谈[J], 海南广播电视大学学报, (3)2006, 96-97. [5] 蔡炯辉. 胡晓敏, 收敛级数求和的初等方法[J], 玉溪师范学院院报, (6)2006, 95-98. [6] 华东师范大学数学系, 数学分析下册(第三版)[M], 北京:高等教育出版社, 2003. [7] 汪晓勤, 韩祥临. 中学数学中的数学史[M], 北京: 科学出版社, 2002. [8] 同济大学数学教研室, 高等数学(下册), 北京: 高等教育出版社, 1996. [9] 宣立新主编. 高等教育(上、下册), 北京: 高等教育出版社, 2000.[10] 高建福. 无穷级数与连分数[M], 合肥: 中国科学技术大学出版社, 2007, 43. [11] 朱文辉, 张亭. p 级数的求和[J], 大学数学, (3) 2005, 114-116 [12] R.R. Goldberg. Fourier Transforms[M]. cambridge, 1961.[13] Peppard, Kim. “College Algebra Tutorial on Geometric Sequences and series ”. New York: Halsledpress, 1981.。
高考数学中的无穷级数求和技巧无穷级数是高考数学中比较重要的知识点,也是比较难以理解的概念。
在高考数学中,考察无穷级数求和的技巧与方法是十分必要的,今天本文将从无穷级数的概念、性质以及求和技巧三个方面来阐述高考数学中的无穷级数求和技巧。
一、无穷级数的概念无穷级数是指一连串的数的和,其中每个数都有着相同的规律。
无穷级数是数学中的一个概念,在高考数学中也是比较难以理解的概念。
无穷级数由一系列数的和组成,每个数都有着相同的规律,因此可以使用通项公式来表示其中的每个数。
二、无穷级数的性质无穷级数有以下的性质:1. 收敛性如果一个无穷级数最终的和是有限的,称这个无穷级数是收敛的。
如果一个无穷级数的和趋近于某个数时,这个无穷级数也是收敛的。
2. 散度性如果一个无穷级数的和不是有限的,称这个无穷级数是散度的。
如果一个无穷级数的和趋向于正无穷或负无穷时,这个无穷级数也是散度的。
3. 可加性如果两个收敛的无穷级数相加,其和也是收敛的。
同样地,如果两个散度的无穷级数相加,其和也是散度的。
4. 等比数列求和公式在高考数学中,等比数列求和公式是比较重要的一个式子,也是求和技巧中的一种。
对于形如 $a + ar + ar^2 + ar^3 + ...$($|r| <1$)的等比数列求和公式,其和为 $\frac{a}{1-r}$。
三、无穷级数的求和技巧在高考数学中,求和技巧也是无穷级数的重要知识点。
以下是几种常见的无穷级数求和技巧:1. 等差数列求和公式对于形如 $a_1 + a_2 + a_3 + ... + a_n$ 的等差数列求和公式,其和为 $\frac{(a_1 + a_n)n}{2}$。
2. 折半法对于形如 $1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + ...$ 的无穷级数,可以使用折半法来求和。
首先将一项拆开成两个,然后分别求和,再将两个和相减即可得到无穷级数的和。
大学数学无穷级数的收敛性与求和大学数学:无穷级数的收敛性与求和无穷级数是数学中一个重要的概念,它由一系列无穷多项的代数和组成。
在数学中,我们对于一个无穷级数的收敛性和求和有着浓厚的兴趣和研究。
本文将讨论无穷级数的基本概念、收敛性判定方法以及求和公式。
一、无穷级数的概念无穷级数的概念可表示为:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁,a₂,a₃,...,aₙ代表级数的每一项。
根据级数的无穷性质,我们可以看到级数的项数n无限大。
因此,无穷级数可以看作是无限多项求和的结果。
二、无穷级数的收敛性对于无穷级数的研究,我们最关注的问题之一就是它的收敛性。
在数学中,无穷级数可能出现以下三种情况:1. 收敛:如果一个无穷级数的部分和数列存在有限的极限值,即Sₙ的极限存在,则称该级数是收敛的。
我们可以用符号表示为:S = a₁ + a₂ + a₃ + ... + aₙ + ...= lim Sₙ (n→∞)2. 发散:如果一个无穷级数的部分和数列没有有限的极限值,即Sₙ的极限不存在,则称该级数是发散的。
3. 不确定:在某些情况下,我们无法判断一个无穷级数的收敛性,这种情况被称为不确定。
三、无穷级数的收敛性判定为了确定一个无穷级数的收敛性,数学家们发展了许多判定方法。
下面介绍其中几种主要的方法:1. 正项级数判别法:如果一个无穷级数的每一项都是非负数,并且部分和数列有界,则该级数是收敛的。
2. 比较判别法:如果一个无穷级数的每一项都大于等于另一个级数的对应项,而另一个级数是收敛的,则该级数也是收敛的。
类似地,如果一个无穷级数的每一项都小于等于另一个级数的对应项,而另一个级数是发散的,则该级数也是发散的。
3. 比值判别法:对于一个无穷级数,如果存在一个正常数r,使得级数的项的绝对值与n的幂次之比的极限为r,则有以下结论: - 当r<1时,级数收敛;- 当r>1时,级数发散;- 当r=1时,判定不确定。
parseval等式在一类无穷级数求和中的
应用
Parseval等式是一种数学定理,它说明了在一类无穷级数
求和中,把一个函数的谱分解为一组无穷个正交函数的线性组合,使得求和的结果等于原函数的平方的积分。
它的两边的积分,对应着函数的谱和函数本身之间的关系,我们称之为Parseval等式。
Parseval等式可以用来检验求和的准确性,也
可以用来求解某些复杂的函数的积分。
在一类无穷级数求和中,Parseval等式的应用非常广泛。
首先,它可以用来求解复杂函数的积分,例如求解复杂函数在某一区间上的积分。
其次,它可以用来检验求和的准确性,当我们求出一类无穷级数的和时,可以用Parseval等式检验所得
的结果准确性,如果两边的积分值不相等,就说明求和的结果不准确,需要重新求和。
此外,Parseval等式还可以用来求解
一些复杂的函数,例如求解谱密度函数,也就是说,我们可以用Parseval等式来求出某些函数的谱,从而知道函数的频谱分
布情况。
因此,Parseval等式在一类无穷级数求和中有很多应用,
可以用来求解复杂函数的积分,也可以用来检验求和的准确性,还可以用来求解一些复杂的函数的谱,因此,它在数学中被广泛应用。