数项级数求和的若干方法
- 格式:doc
- 大小:2.60 MB
- 文档页数:43
求级数的和的方法总结求解级数的和是数学中常见的问题之一、在数学中,级数是由一系列项组成的无穷序列,而求解级数的和就是对这些项进行求和运算得到的结果。
级数求和方法的总结如下:一、等差级数求和:等差级数是指级数中每一项与前一项之差都是相等的级数,求等差级数的和的方法包括以下几种:1. 公式法:等差级数和的公式为Sn = (n/2)(a1+an),其中n为级数的项数,a1为第一项,an为第n项。
通过代入这些值即可求得。
2. 差分法:将等差级数分解为两个等差数列之和,然后分别求和。
例如,Sn = (n/2)(a1+an) = (n/2)(a1+(a1+d(n-1))) = (2a1+d(n-1))(n/2) = (2a1+2d(n-1))(n/4) = 2(a1+d(n-1))(n/4)。
二、等比级数求和:等比级数是指级数中每一项与前一项之比都是相等的级数,求等比级数的和的方法包括以下几种:1. 公式法:等比级数和的公式为Sn = (a1 - an*r)/(1-r),其中n为级数的项数,a1为第一项,an为第n项,r为公比。
通过代入这些值即可求得。
2. 求和法:当公比r在-1到1之间时,等比级数和的求和公式可以通过不断地相加前n项来逼近真实值。
即Sn = a1/(1-r) - an*r/(1-r)。
三、收敛级数求和:收敛级数是指级数在求和过程中会逐渐趋于一个有限的值的级数。
常用的收敛级数求和方法主要有以下几种:1. 逐项求和法:如果级数每一项能够逐项求和,那么可以通过逐项求和来求得级数的和。
例如,级数Sum(1/n^2) = 1/1^2 + 1/2^2 +1/3^2 + ...,可以通过逐项求和将级数的每一项相加来得到和。
2. 极限求和法:如果级数满足级数的通项能够构造成一个已知数列,那么可以通过求出这个数列的极限来得到级数的和。
例如,级数Sum(1/n) = 1/1 + 1/2 + 1/3 + ...,通过求出数列1/n的极限为0,可以得知级数的和为无穷大。
关于数项级数求和的几种特殊方法数项级数是指由一系列数相加所得的无穷级数。
求解数项级数的和是数学中的一个基本问题,涉及到许多特殊的求和方法。
以下将介绍几种常见的数项级数求和方法。
1.等差数列求和法:如果数项级数的通项形式是等差数列(an = a0 + nd),其中a0为首项,d为公差,n为项数,则可以用等差数列的求和公式来求和。
求和公式为Sn = (n/2)(a0 + an)。
2. 几何级数求和法:如果数项级数的通项形式是几何级数(an =ar^n),其中a为首项,r为公比,n为项数,则可以用几何级数的求和公式来求和。
当,r,<1时,求和公式为Sn = a(1 - r^n) / (1 - r);当,r,>1时,数项级数的和为无穷,即Sn = ∞。
3. 收敛数项级数的逐项求和法:如果数项级数的每一项都是收敛的,即lim(n→∞) an = 0,则可以使用逐项求和法来求和。
逐项求和法是将级数中的每一项逐项相加,得到一个新的数列,然后求这个数列的极限,得到数项级数的和。
4. 绝对收敛数项级数的重排法:如果数项级数的每一项都是绝对收敛的,即级数Σ,an,是收敛的,则可以使用重排法来改变数项级数的次序,从而得到新的数项级数的和。
重排法的基本思想是将原数项级数中的正项和负项分别移到前面,并保持它们的相对位置不变,然后将分别得到的两个数项级数分别求和,再将两个数项级数的和相加。
应注意的是,只有在级数绝对收敛的情况下,可以使用重排法。
5. 幂级数求和法:如果数项级数的通项形式是幂级数(an = cnx^n),其中c为常数,x为自变量,n为项数,则可以使用幂级数的求和公式来求和。
幂级数的求和公式是一个特殊的函数,称为幂函数。
通过幂函数的特性,可以将幂级数转化为一个已知的函数,并求出幂级数的和。
6.泰勒级数求和法:如果数项级数的通项形式是一个函数的泰勒级数展开,即级数的每一项都是函数在其中一点的导数值除以相应阶乘的结果,则可以使用泰勒级数的求和公式来求和。
数项级数求和方法探讨
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
1、倒序相加法
倒序相乘法如果一个数列{an}满足用户与首末两项等“距离”的两项的和成正比(或等同于同一常数),那么谋这个数列的前n项和,需用倒序相乘法。
2、分组求和法
分组议和法一个数列的通项公式就是由几个等差或等比或可以议和的数列的通项公式共同组成,议和时需用分组议和法,分别议和而后相乘。
3、错位相减法
错位二者加法如果一个数列的各项就是由一个等差数列和一个等比数列的对应项之积形成的,那么这个数列的前n项和需用此法xi,例如等比数列的前n项和公式就是用此法推论的。
4、裂项相消法
裂项二者消法把数列的通项切割成两项之差,在议和时中间的一些项可以相互抵销,从而求出其和。
5、乘公比错项相减(等差×等比)
这种方法就是在推论等比数列的'前n项和公式时所用的方法,这种方法主要用作谋数列{an×bn}的前n项和,其中{an},{bn}分别就是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和sn可以轻易用等差、等比数列的前n项和公式展开解。
运用公式解的注意事项:首先必须特别注意公式的应用领域范围,确认公式适用于于这个数列之后,再排序。
7、迭加法
主要应用于数列{an}满足用户an+1=an+f(n),其中f(n)就是等差数列或等比数列的条件下,可以把这个式子变为an+1-an=f(n),代入各项,获得一系列式子,把所有的式子提至一起,经过整理,纡出来an,从而算出sn。
1.7方程式法 (3)1.8原级数转化为子序列求和 (3)1.9数项级数化为函数项级数求和 (3)1.10化数项级数为积分函数求原级数和 (4)1.11三角型数项级数转化为复数系级数 (4)1.12构造函数计算级数和 (5)1.13级数讨论其子序列 (5)1.14裂项法求级数和 (6)1.15裂项+分拆组合法 (7)1.16夹逼法求解级数和 (7)2函数项级数求和 (8)2.1方程式法 (8)2.2积分型级数求和 (8)2.3逐项求导求级数和 (9)2.4逐项积分求级数和 (9)2.5将原级数分解转化为已知级数 (10)2.6利用傅里叶级数求级数和 (10)2.7三角级数对应复数求级数和 (11)2.8利用三角公式化简级数 (12)2.9针对2.7的延伸 (12)2.10添加项处理系数 (12)2.11应用留数定理计算级数和 (13)2.12利用Beta函数求级数和 (14)参考文献 (15)级数求和的常用方法级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题.由于无穷级数求和是个无穷问题,我们只能得到一个n →∞的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性.1数项级数求和1.1等差级数求和等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和.11((1)22n n a a n n s na d +-=+=),其中1a 为首项,d 为公差 证明:12=++...+n s a a a ①,21s=+...++n a a a ② ①+②得:()12-112(+++...+(+)n n n s a a a a a a =+) 因为等差级数11...+n n a a a a +==所以1(2n n a a s +=)此证明可导出一个方法“首尾相加法”见1.2. 1.2首尾相加法此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和. 例1:求01235...(21)n n n n n c c c n c +++++.解:01235...(21)n n n n n s c c c n c =+++++,210(21)...53n n n n n s n c c c c =++++,两式相加得:21012(22)(...)(1)2n n n n n n s n c c c c n +=++++=+⋅,即: 01235...(21)(1)2n n n n n n c c c n c n +++++=+.1.3等比级数求和等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和.当q =1,1s na =;当q ≠1,1(1)1n a q s q-=-,其中1a 为首项,q 为公比.证明:当q =1,易得1s na =,当q ≠1,11111=++...+n s a a q a q - ①, 2111=++...+n qs a q a q a q ②, ①-②得11(1)n q s a a q -=-.可以导出一种方法“错位相减”见下1.4 1.4错位相减法此方法通常适用于等差与等比级数混合型,通过乘以等比级数公比q ,再与原级数四则运算后化为等差或等比级数求和.例2:计算212n n -∑.解: 2313521...2222n n s -=++++ ①,21352121 (222)n n s --=++++ ②,②-①得: 121121************n n n k k k n k k k k k n s s s -===---=-=+-=+-=∑∑∑111121121213122212n n n n n n -----+-=---,lim n s →∞=3.1.5蕴含型级数相消法此类型级数本身各项之间有蕴含关系,通过观察可知多项展开会相互之间相消部分项,从而化简级数求和.例3:计算1ni =∑.解:将各项展开可得:(1...s =-+++++11==lim n s →∞= 1.6有理化法求级数和对于一些级数通项含有分式根式的级数,我们可以仿照数学中经常使用的方法“有理化”处理,以期达到能使得级数通项化简,最后整个级数都较容易求和.例4:计算1n ∞=.解:可以看出此级数含根式较多,因此尝试运用有理化的方法去处理,即通项n a =对其分母有理化得:−−−−=−分母有理化,则原级数可以采用本文中的1.5“蕴含型级数相消法”,则可以快速求得级数和的极限为1. 1.7方程式法此型级数通过一系列运算能建立级数和的方程式,通过解方程求解级数和.准确建立方程是关键问题,方程类型不固定,有类似与微分方程之类的,故要视具体情况建立方程,解方程也要准确,才能求出级数和.例5:计算2cos cos 2...cos n q q n q θθθ+++,其中1q <. 解:记2cos cos 2...cos =nq q n s q θθθ+++= =1cos nk k k q θ∑两边同时乘以cos 2q θ得[]+1+1=1=1cos cos cos =2=2cos+1+cos -1)nnk k k k k k k q s qq θθθθθ•••∑∑()( 即:+1222cos cos+1cos )(cos )2=n n n n q s q s q q q s q θθθθ+•++-+-()( 解此方程得:2122cos cos(1)cos =12cos n n q n q n q q s q q θθθθ++-++-+-22lim cos 12cos n q q s q q θθ→∞-=+-. 1.8原级数转化为子序列求和若下列条件成立[1]:(1)当n →∞时级数的通项0n a →(2)级数各项没有破坏次序的情况而得新序列n 1n b ∞=∑收敛于原级数 .例6:计算11111111111++-1+++-+++-+ (2345627893)()()().解:lim 0n n a →∞=,应用欧拉公式1111++...ln 23n c n e n++=++,其中c 为欧拉常数,0()n e n →→∞111111+++...+-1--...-2332s n n=3ln 3ln n n n n e e =-+-,lim ln3n s →∞=.1.9数项级数化为函数项级数求和数项级数化为相应函数项级数,再通过函数项级数求和,并赋予函数未知数相应未知数后记得相应原级数的和.例7:求级数和11135...n n ∞=••••∑(2-1).解:建立函数项级数2111()135...n n s x x n ∞-==••••∑(2-1)由函数敛散性知识可知其收敛域为(,)-∞+∞,将函数项级数逐项求导可得:'2211()1135...n n s x x n ∞-==+••••∑(2-3)=211111()135...n n x x xs x n ∞-=+=+••••∑(2-1),由此可知()s x 满足微分方程'()()1s x xs x -=,且易知(0)0s =,解此常微分方程得:221122()xx t dt s x ee-=⎰,令1x =则可以求出原级数和:211122s t eedt =⎰.1.10化数项级数为积分函数求原级数和将原级数通过化简,构造积分极限式,从而转化为积分求原级数和也不失为一种好方法,构造积分式子是关键,一般原级数中通过四则运算将n 与积分中的分割相联系从而构造分割,建立级数与积分式子的桥梁.例8:计算11k n k∞=+∑,其中()n →∞.解:记1011111lim =ln21+1n n n k k dx s k n k n x n∞→∞==−−−−−−−−→==←−−−−−−−−++∑∑⎰分子分母同时除以构造分割建立级数与积分的桥梁. 1.11三角型数项级数转化为复数系级数将三角型数项级数转化为复数域上的级数,由于复数的实部对应于数项级数,从而转化为求复数系级数进而求原级数和.例9[7]:设2cos cos 2...cos = n s q q n q θθθ+++,求s .解:由于1cos =nk k s q k θ=∑,令(cos sin )i z qe q i θθθ==+为复数,其中0,1,2...k =(cos sin )k k ik k z q e q k i k θθθ==+,其中1,2...k =,得:122011+...1(cos sin )(cos 2sin 2)+1n nk n k z z z z z q i q i z θθθθ+=-==+++=++++-∑ 323cos 2cos 3(cos3sin 3)+...+(cos sin )1cos n q q q i q n i n q θθθθθθθ++++=++2...+cos (sin )sin 2...sin nn q n i q qq n θθθθ++++而另一方面1111(cos(+1)sin(+1))11(cos sin )n n z q n i n z q i θθθθ++--+=--+=211-2cos q qθ+ {1221cos cos(1)cos(1)cos sin(1)sin n n n q q n q n q n θθθθθθ+++⎡⎤--+++++⎣⎦+ 212sin cos(1)sin sin(1)sin(1)cos n n n i q q n q n q n θθθθθθ+++⎡⎤-+-+++⎣⎦}取实部对应原级数和即得:12211(1cos cos(1)cos )1-2cos n n q qs q q n q n θθθθ+++=--+++即: 11221(1cos cos(1)cos 12cos )1-2cos n n s q q n q n q q q qθθθθθ++=--++-+-+ 当n →∞,且1q <时22lim cos 12cos n q q s q q θθ→∞-=+-.1.12构造函数计算级数和将级数各项转化为其它函数式子化简级数并求原级数和,关键在于各项的化简函数是否基本统一,如何选择函数式子才能有效化简,将级数参数化为函数式子中的未知数,并无一般的通用函数,选择函数视具体情况而定,下面我们先看一个例子感受这种方法,并从中体会这种方法.例10[7]:请计算下面的级数式子:记2323=1-+......)1111nn t t t t s t t t t t ++++++++()(,其中1t →-.解:构造函数式子:1()11x x xe f x e e --==++,此函数在[0,)+∞单调递减. 由于000(1)ln(1)|ln 211x xx x x e d e dx dx e e e--+∞+∞-+∞---+==-+=++⎰⎰, 令ln h t =-,满足11lim limln t t h t →→==0ln 1111hthe t eeh h----=-=-=,ln ln ()()1()11k t k hk kt k hk t e e f kh t e e ----===+++. 代入题目中的级数式子得:23231lim 1-+......)111n n t t t t t t t t t t -→+++++++()(+1= 011lim ()h h k e h f kh h -∞→=-∑=0011lim ()ln 21h xx h k e e h f kh dx h e --∞+∞-→=-==+∑⎰. 1.13级数讨论其子序列引理[1]:数列}{n s 收敛的充分必要条件是}{n s 的任一子序列都收敛且有相同的极限.特别的:数列}{n s 收敛于s 的充分必要条件是两个互补的子列}{2n s ,}{12-n s ,收敛于同一极限.推广可得:定理[1]:若级数∑∞=1n n a 通项满足当n →∞时, 0→n a (收敛判别的必要条件),∑∞=1n n a 收敛于s 的充分必要条件是:部分和}{n s 的一个子序列}{np s 收敛于s ,其中p 满足:p 是某个正整数p =1,2,…将级数分情况讨论,化为多个子序列之和,利用原级数收敛则级数任意添加括号得到的级数和收敛于原级数和原理,通过求各个子序列之和求解原级数和,关键在于如何分解原级数为不同子序列,然而子序列相对于原级数来说易求些,这样方法才行之有效,这和1.6的“原级数转化为子序列求和”是不同的.分情况讨论在三角中讨论角的大小我们已不陌生,下面我们就看一个这样讨论角的幅度的例题.例11[6]:计算:12cos32n n n π∞=∑. 解:记12cos32n n n s π∞==∑,由级数敛散性知识可知,该级数绝对收敛.按幅度角的讨论将级数分解为:1{|3,0,1,2...}A n n k k ===,2{|31,0,1,2...}A n n k k ==+=,3{|32,0,1,2...}A n n k k ==+=.则:1232222coscos cos cos 3333=++2222n n n nn n A n A n A n n n n ππππ∞∞∞∞=∈∈∈∑∑∑∑331320002coscos +133+222k k k k k k πππ∞∞∞++====+∑∑∑() 1211+cos +cos +()2343k k πππ∞=∑3=01(())2 1115(1)148718=--=-,所以:12cos23127n n n s π∞==-=-∑. 1.14裂项法求级数和针对级数是分数形式,且满足分母为多项乘积形式,且各项之间相差一个相同的整数,裂项后各项就独立出来,而原来各项之间相差整数则裂项后新级数等价于求解某一个级数,其余新级数照此可求出,从而原级数和可以求出. 裂项一般形式:1111()()(+)x m x n n m x m x n=-+-++,此处m n >.例12:计算111...123234(1)(2)s n n n =+++++. 解:记1(1)(2)n a n n n =++,111[]2(1)(1)(2)n a n n n n =-+++ 针对11(1)nk k k =⋅+∑同理采用裂项法记111(1)1n b n n n n ==-++则11(1)nk k k =+∑=11111111111(1)()()()()+...+()2233445561n n −−−−−−−−−−→-+-+-+-+--←−−−−−−−−−−+裂项后后面项可以消去前面项部分这就是裂项法的好处! 11-1n +,111lim lim[1-]1(1)1nn n k k k n →∞→∞===++∑,所以 111111lim lim [](1)(2)2(1)(1)(2)nnn n k k k k k k k k k →∞→∞===++++++∑∑= 11111111lim lim()2(1)2(1)2n n n n k k k k k k +→∞→∞==--++∑∑=1111(1)2224--=. 1.15裂项+分拆组合法将裂项与分拆组合法合用在一起,运用裂项法分拆级数,再将分拆重新组合级数,由新级数返回求原级数和.例13:计算1(+1)(+2)n nn n n ∞=∑(+3).解:11235+1+2+3(+1)(+2)n n n n n n n ++-=(+3)111111251()(+1)(+2)3+1+2+33(+1)(+2)n n n n n n n n n n n n n ∞∞∞===∴=+--∑∑∑(+3)(+3)=1125111()()3233464+--=. 1.16夹逼法求解级数和在数学分析中运用夹逼法则求解极限,在求极限和中我们也可以借鉴此方法,运用两个级数逼近原级数,最后两逼近级数和等于原级数和.例14[8]:设m 为一给定的正整数,求221,1n m nm n ∞=≠-∑. 解:12222221,11111m Nm m Nm Nn m n n n ms m n m n m n +-++=≠==+==+---∑∑∑ 1111111111[ (21122121)m Nn m m m m m m m m n m n +=+=++++++++-+-+--+∑] 1111111(1...1...)22222m m N N m m =+++------+ 21112...2122+1m m N m N N N m N +++++++<<且∞→N 时,2lim 0+1N mN →∞=,且2lim 0+2N m N m →∞=,所以23lim 04m N N s m +→∞=-,即2221,134n m nm n m ∞=≠=--∑ 2 函数项级数求和函数项级数和依据未知数x 的而定,因此在收敛域内寻找一个新函数去刻画级数和.2.1方程式法类似于数项级数,函数项级数建立方程,通过方程求解求函数项级数和.例15:计算函数项级数23456()1 (21324135246)x x x x x s x x =+++++++ 解:由函数项级数收敛性知识可知题中函数项级数收敛半径为+∞,逐项求导得3'2()1 (2)x s x x x =++++即:'()1()s x xs x =+(0)1s =解此微分方程得:2222()(1)x t x s xe e dt -=+⎰.2.2积分型级数求和积分型级数求和显然直接求和会带来困难,通常积分也积不出来,所以要转化,将积分式子化简是个想法,通过变量替换等积分技术化简积分式子,再求级数和,所以关键在于处理积分式子,下面我们看个例题.例16:计算级数(21)220x k k k eππ∞+-=∑⎰.解:因为(2,(21x k k ππ∈+)),作变量替换t k x +=π2得:(21)(222200=x t tk k k k ee e e ππππππ+--+--=⎰⎰⎰)再根据:'22t t ee dt --=⎰⎰C +得:(422204tt tk ee e πππππ-+--=-+⎰⎰⎰)=4042|2eeπππ--=84042|24eeec ππππ---=.所以原级数=8211t k k eee ππππ∞----==-∑⎰. 2.3逐项求导求级数和根据幂级数逐项求导收敛半径不变原理,对原级数逐项求导后化为一些易求和的幂级数,再往回求积分,从而求原级数和.易知的级数往往是通过泰勒展式或者麦克劳林展式获得的。
高数级数求和公式高数中的级数求和公式是非常重要的一部分,通过这些公式我们可以快速计算很多常见级数的和。
在这篇文章中,我将详细介绍几个常见的级数求和公式。
等差级数是指首项为a,公差为d的序列,其求和公式为:Sn=n/2*(2a+(n-1)d)其中,Sn表示前n项的和,a表示首项,d表示公差。
这个公式非常简单且易于理解,可以通过将等差级数化为相同项数的等差数列求和来证明。
等比级数是指首项为a,公比为r的序列,其求和公式为:Sn=a*(1-r^n)/(1-r)其中,Sn表示前n项的和,a表示首项,r表示公比。
这个公式可以通过将等比级数乘以公比然后减去原等比级数来证明。
幂级数是指以x为自变量的项为x^n的级数,其求和公式为:S(x)=a/(1-x)其中,S(x)表示幂级数的和,a表示首项。
这个公式的证明可以通过对幂级数进行收敛性分析得到。
调和级数是指以倒数为自变量的项为1/n的级数Sn = ln n + γ + 1/2n - 1/12n^2 + 1/120n^4 - ...其中,Sn表示前n项的和,ln表示自然对数,γ表示欧拉常数。
这个公式的证明可以通过泰勒级数展开以及对调和级数进行收敛性分析得到。
泰勒级数是指将函数在其中一点处展开成幂级数,其求和公式为:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+...其中,f(x)表示函数的值,f(a)表示函数在a点的值,f'(a)表示函数在a点的一阶导数,f''(a)表示函数在a点的二阶导数,以此类推。
这个公式可以通过对函数进行泰勒展开得到。
以上是几个常见的级数求和公式,它们在高数中是非常重要的工具,可以帮助我们快速计算很多级数的和。
在实际应用中,我们需要结合具体题目来选择合适的求和公式,并注意对级数的收敛性进行分析。
级数求和的八种方法一、列方程法:列方程法是通过将级数的部分项与一些已知的函数进行比较,然后列出方程,并求解得到级数的和。
常用的列方程法有以下几种:1.等差级数:等差级数是指级数的每一项与前一项之间的差都相等的级数。
求等差级数和的方法有两种常用的方式:(1)利用等差级数的通项公式:对于等差级数来说,其通项公式可以表示为:an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。
利用这个通项公式,可以列出等差级数的部分和Sn的表达式,然后求解得到 Sn 的值。
(2)利用等差级数的求和公式:等差级数的求和公式是 Sn = (a1 + an)n/2,其中n表示级数的项数,a1表示首项,an表示末项。
将对应的值代入公式,即可求得等差级数的和。
2.等比级数:等比级数是指级数的每一项与前一项之间的比例都相等的级数。
求等比级数和的方法有以下两种常见的方式:(1)利用等比级数的通项公式:对于等比级数来说,其通项公式可以表示为:an = a1 * q^(n-1),其中a1是首项,q是公比,n是项数。
利用这个通项公式,可以列出等比级数的部分和Sn的表达式,然后求解得到 Sn 的值。
(2)利用等比级数的求和公式:等比级数的求和公式是Sn=a1*(1-q^n)/(1-q),其中a1表示首项,q表示公比,n表示级数的项数。
将对应的值代入公式,即可求得等比级数的和。
二、借助公式法:由于有些级数的部分和难以直接计算,可以利用已知的级数求和公式,借助一些已知级数的和,表示成新的级数的和。
常见的借助公式法有以下几种:1.幂级数的求和公式:幂级数是指级数的每一项都是幂函数的项。
对于幂级数来说,有一些常用的求和公式,可以将一个复杂的幂级数表示成一个已知幂级数的和,从而利用已知的幂级数求和公式得到级数的和。
2.三角函数级数的求和公式:三角函数级数是指级数的每一项都是一个三角函数的项。
对于三角函数级数来说,有一些常用的求和公式,可以将一个复杂的三角函数级数表示成一个已知三角函数级数的和,从而利用已知的三角函数级数求和公式得到级数的和。
级数求和的若干方法级数求和是高等数学中的一个重要内容。
本文主要分为数项级数求和与函数项级数求和两部分。
在数项级数求和的若干方法中,主要讨论了级数收敛定义求和法,傅里叶级数求和法,阿贝耳定理法,利用幂级数求数项级数的和。
其中,用级数收敛定义法是基础,包括裂项相消,错位相减等九种常见方法。
在函数项级数求和的若干方法中,则选取特殊的幂级数与三角函数项级数,讨论了幂级数性质法,逐项求导法与逐项积分法,转换成微分方程法等。
并采用讲述和举例相结合的方式,选取一些典型题目进行分析,体会理解方法。
无穷级数理论是高等数学中的一个重要组成部分。
它是研究函数的性质,函数的表达,进行数值计算的有力工具,其应用是随着微积分理论的发展而发展起来的,无论是在数学学科还是在其他科学技术中都有广泛的应用,其理论的发展也起到了极其重要的影响和作用。
求收敛级数的和是研究级数的任务之一。
无穷级数求和是一个综合性的问题,涉及到的数学理论知识和方法很多,技巧性也比较强,一般很难掌握遵循的规律和解题的要领,是学习的重点也是难点,所以归纳总结一些级数求和的常用方法显得尤为重要。
在大多数教材或者其他数学书籍中,大量的介绍了级数的有关概念以及判断级数敛散性的定理,级数求和的常用方法,并且很多文献对级数求和进行了深层的探讨,数项级数求和法一般归纳为三类:一是基本方法,包括利用等比数列的求和公式,裂项,组合及错位相减等方法;二是常用方法,包括逐项微分和逐项积分法,利用初等函数的幂级数展开式,利用函数的傅里叶级数展开式等;三是特殊方法,包括交换求和顺序等;幂级数求和法归纳为两类:一是利用幂级数的性质法,包括幂级数的运算,逐项微分与逐项积分;二是把幂级数转化成微分方程法。
这些方法之间是相互联系的。
例如,待定系数法中,把待定的系数求出后再用裂项相消法。
多数方法所解决的一类题目都是有共同特点的,比如说求部分和子序列法对非正项级数常常是行之有效的。
但并不是每一道题目,只能用那一种方法,很多题目可以有多种不同的解法。
安徽工业大学信息与计算科学系毕业论文┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊题目:中文:级数求和的若干方法English:Summation of several methods 姓名: 徐科学院: 数理学院专业: 信息与计算科学班级: 2009级1班学号: 099084166指导教师: 张敬和2013年6月8日安徽工业大学信息与计算科学系毕业论文┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊安徽工业大学毕业设计(论文)任务书课题名称级数求和的若干方法学院数理学院专业班级信息与计算科学 091班姓名徐科学号099084166毕业设计(论文)的主要内容及要求:1、了解正项级数,任意项级数,函数项级数,幂级数的相关概念。
2、熟悉各种级数收敛的的理论,理解部分定理的证明过程。
3、尽可能的对某些定理之间的区别以及联系稍加分析。
4、借助幂级数,数列等知识给出数项级数求和的若干方法。
5、参阅数学分析,常微分方程等与级数相关的教材或者文献,充分利用图书馆以及电子阅览室。
提高自己查阅资料的能力。
6、论文必须符合科技论文的要求,格式严格按照本科毕业论文的规范来撰写。
7、查阅相关文献资料,至少10篇,其中英文文献不少于2篇。
8、翻译一篇跟本设计有关的外文文献,要求翻译无错误,可以通顺阅读。
9、熟悉微软Word或者金山的WPS的使用方法和技巧,以期提高使用计算机的能力。
指导教师签字:安徽工业大学 信息与计算科学系 毕业论文┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊I级数求和的若干方法安徽工业大学 数理学院 信息与计算科学系091班 徐科 学号:099084166摘 要级数,重要的数学工具。
无论是对数学学科本身,还是在其他学科及技术的研究与发展方面,都发挥着特别重要的作用和影响,且其与我们的日常生活息息相关。
需要我们去掌握并利用,我们也应该去发掘出它更为广泛的应用领域,为我们的研究与学习奠定基础。
级数求和,作为级数理论及应用的主要板块之一。
它有着比较繁多的方法和很强的技巧性,而目前国内大多数数学教材及其他相关书籍中没有专门针对级数求和的常用方法设立板块,若要理解并掌握它的方法和技巧,则需要借鉴一些国内外涉及此内容的数学书籍,进行总结和提炼。
本文对级数的有关概念,收敛的定义以及部分定理给与了证明,介绍了运用裂项相消, 错位相减, 逐项微分, 逐项积分, 运用特殊级数求和等等这几种方法求数项级数的和, 并通过实例说明了这些方法的应用.关键词:级数,收敛,数项级数求和,幂级数。
安徽工业大学 信息与计算科学系 毕业论文┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊IISummation of several methodsANHUI UNIVERSITY OF TECHNOLOGYThe Mathematical Institute Information and computing science departmentClass 091 Xu Ke Student ID: 099084166AbstractProgression , important mathematical tools ! Both for mathematics itself , or in other disciplines and technology research and development, has played a particularly important role and influence , and its our daily lives. We need to grasp and use , we should go to discover its broader application areas for our research and learning foundation . Summation as a series theory and application of the main plate. It has a relatively strong variety of methods and techniques , while most domestic mathematics textbooks and other books not specifically for the establishment of a common method Summation sector , to understand and grasp its methods and techniques , then needs to learn some of this content and abroad involved in the mathematical books were summarized and refined .In this paper, the concept series , convergence theorems give some definitions and proved , introduces the use of destructive Splitting , dislocation subtract itemized differential , itemized points , the use of these types of special summation etc. method for solving a number of series and , and through examples illustrate the application of these methods .Keywords : series , convergence, Summation , power series .安徽工业大学 信息与计算科学系 毕业论文┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊III目 录摘要 ............................................................................................................................ Ⅰ Abstract ................................................................................................................. Ⅱ 一、综述 . (1)1.1 级数的背景知识 ........................................................................................... 1 1.2 研究现状 ....................................................................................................... 2 1.3 研究意义 ....................................................................................................... 2 二、基础知识 .............................................................................................................. 3 2.1 引言 (3)2.2 级数的分类及定义 ....................................................................................... 3 2.2.1 数项级数 ............................................................................................ 3 2.2.2 函数项级数 ........................................................................................ 3 2.2.3 三个重要级数 .................................................................................... 4 2.3 级数收敛的定义 . (4)2.4 级数收敛的判断 (4)2.4.1 正项级数收敛的判断 ........................................................................ 5 2.4.1.0 级数收敛的必要条件 ............................................................. 5 2.4.1.1 定理02 .................................................................................... 5 2.4.1.2 正项级数的收敛原理 ............................................................. 5 2.4.1.3 常用级数 ................................................................................. 5 2.4.1.4 正项级数的各种判别法 ......................................................... 7 2.4.1.5 引理 ....................................................................................... 11 2.4.2 任意项级数收敛的判断 .................................................................. 14 2.4.3 函数项级数收敛的判断 .................................................................. 16 2.4.4 幂级数 .............................................................................................. 17 2.4.4.1 幂级数的基本概念和定理 ................................................... 18 2.4.4.2 函数的幂级数的展开 ........................................................... 21 三、级数求和 (26)<一> 简单易用的求和方法 .............................................................................. 26 3.1 根据定义求级数的和 ......................................................................... 26 3.2 首尾相加法 ......................................................................................... 26 3.3 错位相减法 ......................................................................................... 27 3.4 分组求和法 .. (28)3.5 微分方程法 (28)安徽工业大学 信息与计算科学系 毕业论文┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊IV3.6 利用递推法求和 ................................................................................. 29 3.7 部分和子列 ......................................................................................... 29 3.8 列项相消法 ......................................................................................... 30 <二> 利用幂级数的知识求和 .......................................................................... 32 3.9 逐项微分求和 ..................................................................................... 32 3.10 逐项积分求和 ................................................................................... 33 3.11 转化为已知的特殊的幂级数求和 .................................................... 34 四、致谢 .................................................................................................................... 36 参考文献 .. (37)安徽工业大学 信息与计算科学系 毕业论文┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊第 1 页 共 7 页一 综述1.1级数的背景知识[1]早在大约公元前450年,古希腊有一位名叫Zero 的学者,曾提出若干个在数学发展史上产生过重大影响的悖论,“Achilles (希腊神话中的英雄)追赶乌龟”即是其中较为著名的一个。