级数求和常用方法
- 格式:doc
- 大小:884.50 KB
- 文档页数:14
级数求和的技巧与方法世间的一切现象,都可以用数学语言进行描述和表达。
而级数,作为数学中非常重要的一种数列形式,被广泛应用于各种领域。
对于级数的求和,是数学分析中常常遇到的问题。
本文将探讨级数求和的技巧和方法。
一、级数和首先,我们需要明确什么是级数和。
级数和指的是数列的和,只不过这个数列是由表达式得到的。
具体而言,如果有一个数列$\{a_n\}$,那么它对应的级数就是:$$S=\sum_{n=1}^{\infty}a_n=a_1+a_2+a_3+...$$而级数和也就是$S$的值。
在计算级数和时,我们需要用到各种技巧和方法,下面将分别进行介绍。
二、收敛与发散在级数求和之前,我们需要了解一下收敛和发散的概念。
如果一个级数的和可以被有限地表示,那么这个级数就是收敛的;反之,如果它的和不能被有限地表示,那么这个级数就是发散的。
要注意的是,有些级数是交替收敛的(即部分和的符号交替),有些是条件收敛的(即正、负项级数分别收敛),而有些是绝对收敛的(即正、负项级数分别收敛且绝对值级数收敛)。
这些收敛方式会影响到我们后面讲解的级数求和方法,需要特别注意。
三、重要技巧与方法1. 赋值变形法对于一些级数,如果我们对原始式子进行赋值变形,就能使其变得容易求和。
比如:$$\sum_{n=1}^{\infty}\frac{1}{n(n+1)}=\sum_{n=1}^{\infty}\left (\frac{1}{n}-\frac{1}{n+1}\right)=1$$这里使用了一个常见的技巧——部分分式分解,具体的证明过程略,可以自行思考。
通过赋值变形法,我们可以将原本比较复杂的级数转化为一个简单的几何级数或等差级数等等,从而完成求和的操作。
2. Telescoping SeriesTelescoping series是指那些可以通过一些特殊的技巧使得级数的每一项之间产生会互相抵消的级数。
比如:$$\sum_{n=1}^{\infty}\frac{1}{n(n+1)}=\sum_{n=1}^{\infty}\left (\frac{1}{n}-\frac{1}{n+1}\right)=1$$这里使用了一个常见的技巧——部分分式分解,具体的证明过程略,可以自行思考。
级数的处理技巧级数是数列的和。
数列是一列按照顺序排列的数字,而级数则是把数列中的每一项按照一定规律相加得到的结果。
在数学中,级数的处理技巧非常重要,可以帮助我们求解一些复杂的数学问题。
下面我将介绍一些常用的级数处理技巧。
一、等差级数的求和公式等差级数是指数列中每一项之间的差都相等的级数。
如果等差级数的首项为a,公差为d,那么级数的前n项和Sn可以表示为:Sn = (2a + (n-1)d)n/2这个公式非常有用,可以方便的求解等差级数的和。
例如,要求等差级数1+3+5+...+99的和,可以使用上述公式,代入a=1,d=2,n=50,得到Sn=2500.二、等比级数的求和公式等比级数是指数列中每一项之间的比例都相等的级数。
如果等比级数的首项为a,公比为r,那么级数的前n项和Sn可以表示为:Sn = a(1-r^n)/(1-r)这个公式也非常重要,可以方便的求解等比级数的和。
例如,要求等比级数2+4+8+...+256的和,可以使用上述公式,代入a=2,r=2,n=9,得到Sn=510.三、特殊级数的求和方法除了常见的等差级数和等比级数,还有一些特殊级数,它们的求和方法也有一些特殊的技巧。
1. 调和级数调和级数是指级数的每一项都是倒数,即Sn=1+1/2+1/3+...+1/n。
调和级数在数学中经常出现,但其求和并不容易,因为随着级数的项数增多,每一项的值趋近于0,但是总和趋近于无穷大。
调和级数的求和公式为:Sn = Hn = 1 + 1/2 + 1/3 + ... + 1/n ≈ln(n) + γ其中,Hn表示调和级数的前n项和,γ为欧拉常数(约为0.57721)。
2. 幂级数幂级数是指级数的每一项都是某个变量的幂次,形如:Sn = a0 + a1x + a2x^2 + ... + anx^n,其中x为变量,a0、a1、a2等为常数。
幂级数也是一种重要的级数,在数学分析中有广泛的应用。
对于特定的常数a0、a1、a2等,可以使用泰勒级数或者麦克劳林级数展开幂级数,并通过求导和整理的方式得到幂级数的和。
无穷级数求和公式大全
无穷级数求和是数学中的一种重要计算方法,它广泛应用于各种数学分析、物理、工程等领域。
求和公式大全旨在为大家提供一个全面的参考,以便更好地理解和应用无穷级数求和。
一、无穷级数求和的概念与意义
无穷级数是指一个无限项的数列,每一项都是一个函数的值。
求和公式则是用来计算无穷级数前n项和的公式。
在数学分析中,级数收敛性是判断级数求和的关键,只有收敛的级数才有意义进行求和。
二、常见无穷级数求和公式
1.等差数列求和公式:Sn = n(a1 + an)/2
2.等比数列求和公式:Sn = a1(1 - q^n)/(1 - q)
3.调和级数求和公式:Hn = ln(n) - ln(1 + 1/n)
4.几何级数求和公式:S = a/(1 - r)
5.幂级数求和公式:S = ∑(an^k),其中a是级数的首项,n是项数,k是指数。
三、无穷级数求和方法概述
1.收敛性判断:如泰勒级数、级数收敛则求和收敛。
2.部分求和法:将级数分为部分,分别求和,再求总和。
3.数学归纳法:用于证明收敛级数的求和公式。
4.数值计算方法:如迭代法、蒙特卡洛方法等,用于求解非收敛级数的近似值。
常见幂级数展开式求和公式幂级数展开式是一种重要的数学工具,可以将各种函数表示为无穷级数的形式。
常见的幂级数展开式求和公式有泰勒级数、麦克劳林级数和幂级数的逐项积分求和公式。
下面将逐一介绍这些公式。
1.泰勒级数求和公式:泰勒级数是将一个函数在其中一点展开成无穷级数的形式,用于近似表示函数在该点的值。
对于具有充分多次可导性的函数f(x),其在x=a 处的泰勒级数展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f^n(a)表示f(x)在x=a点的n阶导数,n!表示n的阶乘。
当n 足够大时,泰勒级数可以提供较准确的函数近似。
2.麦克劳林级数求和公式:麦克劳林级数是泰勒级数在x=0处展开的特殊形式。
对于具有充分多次可导性的函数f(x),其在x=0处的麦克劳林级数展开式为:f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+...麦克劳林级数将函数近似表示为多项式的形式,方便计算。
3.幂级数逐项积分求和公式:对于幂级数∑a_n(x-a)^n,可以对其逐项积分得到:∫[∑a_n(x-a)^n]dx = ∑[a_n/(n+1)(x-a)^(n+1)] + C其中,C为积分常数。
这个公式可以用于计算幂级数的积分。
除了上述三种常见幂级数展开式求和公式,还有一些其他的展开式求和公式,如:4.欧拉恒等式:欧拉恒等式表示以自然对数e为底的指数函数和三角函数的关系:e^ix = cos(x) + i·sin(x)其中,i表示虚数单位。
这个等式广泛应用于复数分析、信号处理等领域。
5.贝塞尔函数展开式:贝塞尔函数是一类特殊的函数,可以用无穷级数表示。
对于整数阶的贝塞尔函数J_n(x),其展开式为:J_n(x)=(∑[(-1)^k/(k!(n+k)!)(x/2)^(2k+n)])/(x/2)^n贝塞尔函数在物理学、工程学等领域中有广泛的应用。
无穷级数求和7个公式展开一、等差数列求和公式等差数列是最基本的数列之一,其求和公式为:\[S_n = \frac{n}{2}(a_1 + a_n)\]其中,\(S_n\)表示前n个数的和,\(a_1\)表示首项,\(a_n\)表示末项。
这个公式的推导非常直观,可以通过对等差数列的各项进行求和求得。
二、几何数列求和公式几何数列也是常见的数列类型之一,其求和公式为:\[S_n = \frac{a_1(1-r^n)}{1-r}\]其中,\(S_n\)表示前n个数的和,\(a_1\)表示首项,r表示公比。
这个公式的推导可以通过对几何数列的各项进行求和求得。
三、调和级数求和公式调和级数是由倒数构成的无穷级数,其求和公式为:\[S_n = 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n} =\ln(n)+O(1)\]其中,\(S_n\)表示前n项的和。
这个公式的推导较为复杂,可以通过级数的收敛性以及极限的定义来推导得到。
四、指数级数求和公式指数级数是由指数函数构成的无穷级数,其求和公式为:\[S_n = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!} = e^x-1\]其中,\(S_n\)表示前n项的和,x表示指数。
这个公式的推导可以通过级数展开以及指数函数的特性来得到。
五、幂级数求和公式幂级数是由幂函数构成的无穷级数,其求和公式为:\[S_n = 1+a+2a^2+3a^3+...+na^n = \frac{1}{(1-a)^2}(1-(n+1)a^n+na^{n+1})\]其中,\(S_n\)表示前n项的和,a表示幂级数的底数。
这个公式的推导可以通过级数展开以及幂函数的性质来得到。
六、Bernoulli数的幂级数展开Bernoulli数是数论中的一类特殊数列,其幂级数展开公式为:\[\frac{1}{e^x-1} = \sum_{n=0}^\infty \frac{B_n x^n}{n!}\]其中,\(B_n\)表示Bernoulli数,\(x\)表示自变量。
1.7方程式法 (3)1.8原级数转化为子序列求和 (3)1.9数项级数化为函数项级数求和 (3)1.10化数项级数为积分函数求原级数和 (4)1.11三角型数项级数转化为复数系级数 (4)1.12构造函数计算级数和 (5)1.13级数讨论其子序列 (5)1.14裂项法求级数和 (6)1.15裂项+分拆组合法 (7)1.16夹逼法求解级数和 (7)2函数项级数求和 (8)2.1方程式法 (8)2.2积分型级数求和 (8)2.3逐项求导求级数和 (9)2.4逐项积分求级数和 (9)2.5将原级数分解转化为已知级数 (10)2.6利用傅里叶级数求级数和 (10)2.7三角级数对应复数求级数和 (11)2.8利用三角公式化简级数 (12)2.9针对2.7的延伸 (12)2.10添加项处理系数 (12)2.11应用留数定理计算级数和 (13)2.12利用Beta函数求级数和 (14)参考文献 (15)级数求和的常用方法级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题.由于无穷级数求和是个无穷问题,我们只能得到一个n →∞的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性.1数项级数求和1.1等差级数求和等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和.11((1)22n n a a n n s na d +-=+=),其中1a 为首项,d 为公差 证明:12=++...+n s a a a ①,21s=+...++n a a a ② ①+②得:()12-112(+++...+(+)n n n s a a a a a a =+) 因为等差级数11...+n n a a a a +==所以1(2n n a a s +=)此证明可导出一个方法“首尾相加法”见1.2. 1.2首尾相加法此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和. 例1:求01235...(21)n n n n n c c c n c +++++.解:01235...(21)n n n n n s c c c n c =+++++,210(21)...53n n n n n s n c c c c =++++,两式相加得:21012(22)(...)(1)2n n n n n n s n c c c c n +=++++=+⋅,即: 01235...(21)(1)2n n n n n n c c c n c n +++++=+.1.3等比级数求和等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和.当q =1,1s na =;当q ≠1,1(1)1n a q s q-=-,其中1a 为首项,q 为公比.证明:当q =1,易得1s na =,当q ≠1,11111=++...+n s a a q a q - ①, 2111=++...+n qs a q a q a q ②, ①-②得11(1)n q s a a q -=-.可以导出一种方法“错位相减”见下1.4 1.4错位相减法此方法通常适用于等差与等比级数混合型,通过乘以等比级数公比q ,再与原级数四则运算后化为等差或等比级数求和.例2:计算212n n -∑.解: 2313521...2222n n s -=++++ ①,21352121 (222)n n s --=++++ ②,②-①得: 121121************n n n k k k n k k k k k n s s s -===---=-=+-=+-=∑∑∑111121121213122212n n n n n n -----+-=---,lim n s →∞=3.1.5蕴含型级数相消法此类型级数本身各项之间有蕴含关系,通过观察可知多项展开会相互之间相消部分项,从而化简级数求和.例3:计算1ni =∑.解:将各项展开可得:(1...s =-+++++11==lim n s →∞= 1.6有理化法求级数和对于一些级数通项含有分式根式的级数,我们可以仿照数学中经常使用的方法“有理化”处理,以期达到能使得级数通项化简,最后整个级数都较容易求和.例4:计算1n ∞=.解:可以看出此级数含根式较多,因此尝试运用有理化的方法去处理,即通项n a =对其分母有理化得:−−−−=−分母有理化,则原级数可以采用本文中的1.5“蕴含型级数相消法”,则可以快速求得级数和的极限为1. 1.7方程式法此型级数通过一系列运算能建立级数和的方程式,通过解方程求解级数和.准确建立方程是关键问题,方程类型不固定,有类似与微分方程之类的,故要视具体情况建立方程,解方程也要准确,才能求出级数和.例5:计算2cos cos 2...cos n q q n q θθθ+++,其中1q <. 解:记2cos cos 2...cos =nq q n s q θθθ+++= =1cos nk k k q θ∑两边同时乘以cos 2q θ得[]+1+1=1=1cos cos cos =2=2cos+1+cos -1)nnk k k k k k k q s qq θθθθθ•••∑∑()( 即:+1222cos cos+1cos )(cos )2=n n n n q s q s q q q s q θθθθ+•++-+-()( 解此方程得:2122cos cos(1)cos =12cos n n q n q n q q s q q θθθθ++-++-+-22lim cos 12cos n q q s q q θθ→∞-=+-. 1.8原级数转化为子序列求和若下列条件成立[1]:(1)当n →∞时级数的通项0n a →(2)级数各项没有破坏次序的情况而得新序列n 1n b ∞=∑收敛于原级数 .例6:计算11111111111++-1+++-+++-+ (2345627893)()()().解:lim 0n n a →∞=,应用欧拉公式1111++...ln 23n c n e n++=++,其中c 为欧拉常数,0()n e n →→∞111111+++...+-1--...-2332s n n=3ln 3ln n n n n e e =-+-,lim ln3n s →∞=.1.9数项级数化为函数项级数求和数项级数化为相应函数项级数,再通过函数项级数求和,并赋予函数未知数相应未知数后记得相应原级数的和.例7:求级数和11135...n n ∞=••••∑(2-1).解:建立函数项级数2111()135...n n s x x n ∞-==••••∑(2-1)由函数敛散性知识可知其收敛域为(,)-∞+∞,将函数项级数逐项求导可得:'2211()1135...n n s x x n ∞-==+••••∑(2-3)=211111()135...n n x x xs x n ∞-=+=+••••∑(2-1),由此可知()s x 满足微分方程'()()1s x xs x -=,且易知(0)0s =,解此常微分方程得:221122()xx t dt s x ee-=⎰,令1x =则可以求出原级数和:211122s t eedt =⎰.1.10化数项级数为积分函数求原级数和将原级数通过化简,构造积分极限式,从而转化为积分求原级数和也不失为一种好方法,构造积分式子是关键,一般原级数中通过四则运算将n 与积分中的分割相联系从而构造分割,建立级数与积分式子的桥梁.例8:计算11k n k∞=+∑,其中()n →∞.解:记1011111lim =ln21+1n n n k k dx s k n k n x n∞→∞==−−−−−−−−→==←−−−−−−−−++∑∑⎰分子分母同时除以构造分割建立级数与积分的桥梁. 1.11三角型数项级数转化为复数系级数将三角型数项级数转化为复数域上的级数,由于复数的实部对应于数项级数,从而转化为求复数系级数进而求原级数和.例9[7]:设2cos cos 2...cos = n s q q n q θθθ+++,求s .解:由于1cos =nk k s q k θ=∑,令(cos sin )i z qe q i θθθ==+为复数,其中0,1,2...k =(cos sin )k k ik k z q e q k i k θθθ==+,其中1,2...k =,得:122011+...1(cos sin )(cos 2sin 2)+1n nk n k z z z z z q i q i z θθθθ+=-==+++=++++-∑ 323cos 2cos 3(cos3sin 3)+...+(cos sin )1cos n q q q i q n i n q θθθθθθθ++++=++2...+cos (sin )sin 2...sin nn q n i q qq n θθθθ++++而另一方面1111(cos(+1)sin(+1))11(cos sin )n n z q n i n z q i θθθθ++--+=--+=211-2cos q qθ+ {1221cos cos(1)cos(1)cos sin(1)sin n n n q q n q n q n θθθθθθ+++⎡⎤--+++++⎣⎦+ 212sin cos(1)sin sin(1)sin(1)cos n n n i q q n q n q n θθθθθθ+++⎡⎤-+-+++⎣⎦}取实部对应原级数和即得:12211(1cos cos(1)cos )1-2cos n n q qs q q n q n θθθθ+++=--+++即: 11221(1cos cos(1)cos 12cos )1-2cos n n s q q n q n q q q qθθθθθ++=--++-+-+ 当n →∞,且1q <时22lim cos 12cos n q q s q q θθ→∞-=+-.1.12构造函数计算级数和将级数各项转化为其它函数式子化简级数并求原级数和,关键在于各项的化简函数是否基本统一,如何选择函数式子才能有效化简,将级数参数化为函数式子中的未知数,并无一般的通用函数,选择函数视具体情况而定,下面我们先看一个例子感受这种方法,并从中体会这种方法.例10[7]:请计算下面的级数式子:记2323=1-+......)1111nn t t t t s t t t t t ++++++++()(,其中1t →-.解:构造函数式子:1()11x x xe f x e e --==++,此函数在[0,)+∞单调递减. 由于000(1)ln(1)|ln 211x xx x x e d e dx dx e e e--+∞+∞-+∞---+==-+=++⎰⎰, 令ln h t =-,满足11lim limln t t h t →→==0ln 1111hthe t eeh h----=-=-=,ln ln ()()1()11k t k hk kt k hk t e e f kh t e e ----===+++. 代入题目中的级数式子得:23231lim 1-+......)111n n t t t t t t t t t t -→+++++++()(+1= 011lim ()h h k e h f kh h -∞→=-∑=0011lim ()ln 21h xx h k e e h f kh dx h e --∞+∞-→=-==+∑⎰. 1.13级数讨论其子序列引理[1]:数列}{n s 收敛的充分必要条件是}{n s 的任一子序列都收敛且有相同的极限.特别的:数列}{n s 收敛于s 的充分必要条件是两个互补的子列}{2n s ,}{12-n s ,收敛于同一极限.推广可得:定理[1]:若级数∑∞=1n n a 通项满足当n →∞时, 0→n a (收敛判别的必要条件),∑∞=1n n a 收敛于s 的充分必要条件是:部分和}{n s 的一个子序列}{np s 收敛于s ,其中p 满足:p 是某个正整数p =1,2,…将级数分情况讨论,化为多个子序列之和,利用原级数收敛则级数任意添加括号得到的级数和收敛于原级数和原理,通过求各个子序列之和求解原级数和,关键在于如何分解原级数为不同子序列,然而子序列相对于原级数来说易求些,这样方法才行之有效,这和1.6的“原级数转化为子序列求和”是不同的.分情况讨论在三角中讨论角的大小我们已不陌生,下面我们就看一个这样讨论角的幅度的例题.例11[6]:计算:12cos32n n n π∞=∑. 解:记12cos32n n n s π∞==∑,由级数敛散性知识可知,该级数绝对收敛.按幅度角的讨论将级数分解为:1{|3,0,1,2...}A n n k k ===,2{|31,0,1,2...}A n n k k ==+=,3{|32,0,1,2...}A n n k k ==+=.则:1232222coscos cos cos 3333=++2222n n n nn n A n A n A n n n n ππππ∞∞∞∞=∈∈∈∑∑∑∑331320002coscos +133+222k k k k k k πππ∞∞∞++====+∑∑∑() 1211+cos +cos +()2343k k πππ∞=∑3=01(())2 1115(1)148718=--=-,所以:12cos23127n n n s π∞==-=-∑. 1.14裂项法求级数和针对级数是分数形式,且满足分母为多项乘积形式,且各项之间相差一个相同的整数,裂项后各项就独立出来,而原来各项之间相差整数则裂项后新级数等价于求解某一个级数,其余新级数照此可求出,从而原级数和可以求出. 裂项一般形式:1111()()(+)x m x n n m x m x n=-+-++,此处m n >.例12:计算111...123234(1)(2)s n n n =+++++. 解:记1(1)(2)n a n n n =++,111[]2(1)(1)(2)n a n n n n =-+++ 针对11(1)nk k k =⋅+∑同理采用裂项法记111(1)1n b n n n n ==-++则11(1)nk k k =+∑=11111111111(1)()()()()+...+()2233445561n n −−−−−−−−−−→-+-+-+-+--←−−−−−−−−−−+裂项后后面项可以消去前面项部分这就是裂项法的好处! 11-1n +,111lim lim[1-]1(1)1nn n k k k n →∞→∞===++∑,所以 111111lim lim [](1)(2)2(1)(1)(2)nnn n k k k k k k k k k →∞→∞===++++++∑∑= 11111111lim lim()2(1)2(1)2n n n n k k k k k k +→∞→∞==--++∑∑=1111(1)2224--=. 1.15裂项+分拆组合法将裂项与分拆组合法合用在一起,运用裂项法分拆级数,再将分拆重新组合级数,由新级数返回求原级数和.例13:计算1(+1)(+2)n nn n n ∞=∑(+3).解:11235+1+2+3(+1)(+2)n n n n n n n ++-=(+3)111111251()(+1)(+2)3+1+2+33(+1)(+2)n n n n n n n n n n n n n ∞∞∞===∴=+--∑∑∑(+3)(+3)=1125111()()3233464+--=. 1.16夹逼法求解级数和在数学分析中运用夹逼法则求解极限,在求极限和中我们也可以借鉴此方法,运用两个级数逼近原级数,最后两逼近级数和等于原级数和.例14[8]:设m 为一给定的正整数,求221,1n m nm n ∞=≠-∑. 解:12222221,11111m Nm m Nm Nn m n n n ms m n m n m n +-++=≠==+==+---∑∑∑ 1111111111[ (21122121)m Nn m m m m m m m m n m n +=+=++++++++-+-+--+∑] 1111111(1...1...)22222m m N N m m =+++------+ 21112...2122+1m m N m N N N m N +++++++<<且∞→N 时,2lim 0+1N mN →∞=,且2lim 0+2N m N m →∞=,所以23lim 04m N N s m +→∞=-,即2221,134n m nm n m ∞=≠=--∑ 2 函数项级数求和函数项级数和依据未知数x 的而定,因此在收敛域内寻找一个新函数去刻画级数和.2.1方程式法类似于数项级数,函数项级数建立方程,通过方程求解求函数项级数和.例15:计算函数项级数23456()1 (21324135246)x x x x x s x x =+++++++ 解:由函数项级数收敛性知识可知题中函数项级数收敛半径为+∞,逐项求导得3'2()1 (2)x s x x x =++++即:'()1()s x xs x =+(0)1s =解此微分方程得:2222()(1)x t x s xe e dt -=+⎰.2.2积分型级数求和积分型级数求和显然直接求和会带来困难,通常积分也积不出来,所以要转化,将积分式子化简是个想法,通过变量替换等积分技术化简积分式子,再求级数和,所以关键在于处理积分式子,下面我们看个例题.例16:计算级数(21)220x k k k eππ∞+-=∑⎰.解:因为(2,(21x k k ππ∈+)),作变量替换t k x +=π2得:(21)(222200=x t tk k k k ee e e ππππππ+--+--=⎰⎰⎰)再根据:'22t t ee dt --=⎰⎰C +得:(422204tt tk ee e πππππ-+--=-+⎰⎰⎰)=4042|2eeπππ--=84042|24eeec ππππ---=.所以原级数=8211t k k eee ππππ∞----==-∑⎰. 2.3逐项求导求级数和根据幂级数逐项求导收敛半径不变原理,对原级数逐项求导后化为一些易求和的幂级数,再往回求积分,从而求原级数和.易知的级数往往是通过泰勒展式或者麦克劳林展式获得的。
发散级数求和法
发散级数求和法指的是一种特殊的数学方法,用于求解无限级数中的和。
在这种方法中,我们不需要确切地知道级数的收敛性,而是通过一些技巧性的方法来计算出级数的和。
其中比较常见的方法包括:
1. 扩展欧拉求和法:这种方法适用于某些发散的级数,但是其部分和数列可以被表示为某个函数的级数形式。
我们可以通过对这个函数进行一些简单的变换,得到级数的和。
2. 几何级数求和法:这种方法适用于形如a + ar + ar^2 + ... 的级数,其中a为首项,r为公比。
我们可以通过求出这个级数的部分和公式,然后对公比进行特殊处理,得到级数的和。
3. 狄利克雷求和法:这种方法适用于某些交替级数或者周期级数。
我们可以通过一些技巧性的操作,将这些级数转化为另外一些级数的形式,然后再求和。
发散级数求和法在实际问题中也有广泛的应用,比如在量子场论中的费曼图计算中,就需要用到这种方法来处理发散级数。
- 1 -。
级数求和的方法标题: 级数求和的方法正文:级数是一类重要的数学函数,在实际应用中有着广泛的应用。
其中,级数求和是一种常见的计算方式。
下面,我们将介绍一种常见的级数求和方法,即对数级数求和。
假设有一个正整数n,我们定义一个级数:$$a_0 + a_1 + cdots + a_n = frac{1}{1 - x^n}$$其中,$a_0, a_1, cdots, a_n$是正整数,$x$是一个实数。
这个级数可以表示为:$$a_0 + a_1 + cdots + a_n = sum_{k=0}^{n} a_k x^k$$那么,级数求和公式如下:$$frac{1}{1 - x^n} = sum_{k=0}^{n} a_k x^k$$这里,$frac{1}{1 - x^n}$是一个常数函数,可以表示为:$$frac{1}{1 - x^n} = frac{1}{1 - x} cdot sum_{k=0}^{n} a_k x^k$$ 将级数和级数求和公式代入,可以得到:$$frac{1}{1 - x} cdot sum_{k=0}^{n} a_k x^k = a_0 + a_1 + cdots + a_n$$ 这就是级数求和公式。
我们可以使用这个公式来计算任意级数。
例如,我们可以计算以下两个级数的和:$$1 + 2 + cdots + 9 = frac{10}{1 - x^9}$$$$frac{1}{1 - x} cdot (1 + 2 + cdots + 9) = frac{10}{1 - x}$$将这两个级数代入级数求和公式,可以得到:$$frac{10}{1 - x} = sum_{k=0}^{9} a_k x^k$$$$10 = a_0 + a_1 + cdots + a_9$$$$a_0 = 1, a_1 = 2, cdots, a_9 = 10$$这就是一个典型的对数级数求和的例子。
除了对数级数求和,还有其他的级数求和方法。
级数求和的八种方法一、列方程法:列方程法是通过将级数的部分项与一些已知的函数进行比较,然后列出方程,并求解得到级数的和。
常用的列方程法有以下几种:1.等差级数:等差级数是指级数的每一项与前一项之间的差都相等的级数。
求等差级数和的方法有两种常用的方式:(1)利用等差级数的通项公式:对于等差级数来说,其通项公式可以表示为:an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。
利用这个通项公式,可以列出等差级数的部分和Sn的表达式,然后求解得到 Sn 的值。
(2)利用等差级数的求和公式:等差级数的求和公式是 Sn = (a1 + an)n/2,其中n表示级数的项数,a1表示首项,an表示末项。
将对应的值代入公式,即可求得等差级数的和。
2.等比级数:等比级数是指级数的每一项与前一项之间的比例都相等的级数。
求等比级数和的方法有以下两种常见的方式:(1)利用等比级数的通项公式:对于等比级数来说,其通项公式可以表示为:an = a1 * q^(n-1),其中a1是首项,q是公比,n是项数。
利用这个通项公式,可以列出等比级数的部分和Sn的表达式,然后求解得到 Sn 的值。
(2)利用等比级数的求和公式:等比级数的求和公式是Sn=a1*(1-q^n)/(1-q),其中a1表示首项,q表示公比,n表示级数的项数。
将对应的值代入公式,即可求得等比级数的和。
二、借助公式法:由于有些级数的部分和难以直接计算,可以利用已知的级数求和公式,借助一些已知级数的和,表示成新的级数的和。
常见的借助公式法有以下几种:1.幂级数的求和公式:幂级数是指级数的每一项都是幂函数的项。
对于幂级数来说,有一些常用的求和公式,可以将一个复杂的幂级数表示成一个已知幂级数的和,从而利用已知的幂级数求和公式得到级数的和。
2.三角函数级数的求和公式:三角函数级数是指级数的每一项都是一个三角函数的项。
对于三角函数级数来说,有一些常用的求和公式,可以将一个复杂的三角函数级数表示成一个已知三角函数级数的和,从而利用已知的三角函数级数求和公式得到级数的和。
数学中的数列和级数求和数学是一门充满魅力的学科,其中数列和级数求和是数学中一个重要且有趣的概念。
数列是由一系列按照特定规律排列的数字组成的序列,而级数是由数列中的项相加而得到的结果。
在数学中,我们经常需要求解数列和级数的值,这不仅有助于我们理解数学规律,还可以应用于实际问题的解决。
一、数列求和数列求和是指将数列中的所有项相加,得到一个确定的值。
在数学中,常见的数列求和方法有等差数列求和和等比数列求和。
1. 等差数列求和等差数列是指数列中相邻两项之差都相等的数列。
例如,1,3,5,7,9就是一个等差数列,其中公差为2。
对于等差数列求和,我们可以使用求和公式来简化计算。
求和公式:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的和,a1表示首项,an表示末项,n表示项数。
例如,对于等差数列1,3,5,7,9,我们可以使用求和公式来计算其和。
首项a1为1,末项an为9,项数n为5。
代入公式得到Sn = (1 + 9) * 5 / 2 = 25。
2. 等比数列求和等比数列是指数列中相邻两项之比都相等的数列。
例如,1,2,4,8,16就是一个等比数列,其中公比为2。
对于等比数列求和,我们可以使用求和公式来简化计算。
求和公式:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn表示等比数列的和,a1表示首项,q表示公比,n表示项数。
例如,对于等比数列1,2,4,8,16,我们可以使用求和公式来计算其和。
首项a1为1,公比q为2,项数n为5。
代入公式得到Sn = 1 * (1 - 2^5) / (1 - 2) = 31。
二、级数求和级数是指将数列中的所有项相加而得到的结果。
在数学中,常见的级数求和方法有等差级数求和和等比级数求和。
1. 等差级数求和等差级数是指级数中相邻两项之差都相等的级数。
例如,1,3,5,7,9,...就是一个等差级数,其中公差为2。
对于等差级数求和,我们可以使用求和公式来简化计算。
1.7方程式法 (3)1.8原级数转化为子序列求和 (3)1.9数项级数化为函数项级数求和 (3)1.10化数项级数为积分函数求原级数和 (4)1.11三角型数项级数转化为复数系级数 (4)1.12构造函数计算级数和 (5)1.13级数讨论其子序列 (5)1.14裂项法求级数和 (6)1.15裂项+分拆组合法 (7)1.16夹逼法求解级数和 (7)2函数项级数求和 (8)2.1方程式法 (8)2.2积分型级数求和 (8)2.3逐项求导求级数和 (9)2.4逐项积分求级数和 (9)2.5将原级数分解转化为已知级数 (10)2.6利用傅里叶级数求级数和 (10)2.7三角级数对应复数求级数和 (11)2.8利用三角公式化简级数 (12)2.9针对2.7的延伸 (12)2.10添加项处理系数 (12)2.11应用留数定理计算级数和 (13)2.12利用Beta函数求级数和 (14)参考文献 (15)级数求和的常用方法级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题.由于无穷级数求和是个无穷问题,我们只能得到一个n →∞的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性.1数项级数求和1.1等差级数求和等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和.11((1)22n n a a n n s na d +-=+=),其中1a 为首项,d 为公差 证明:12=++...+n s a a a ①,21s=+...++n a a a ② ①+②得:()12-112(+++...+(+)n n n s a a a a a a =+) 因为等差级数11...+n n a a a a +==所以1(2n n a a s +=)此证明可导出一个方法“首尾相加法”见1.2. 1.2首尾相加法此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和. 例1:求01235...(21)n n n n n c c c n c +++++.解:01235...(21)n n n n n s c c c n c =+++++,210(21)...53n n n n n s n c c c c =++++,两式相加得:21012(22)(...)(1)2n n n n n n s n c c c c n +=++++=+⋅,即: 01235...(21)(1)2n n n n n n c c c n c n +++++=+.1.3等比级数求和等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和.当q =1,1s na =;当q ≠1,1(1)1n a q s q-=-,其中1a 为首项,q 为公比.证明:当q =1,易得1s na =,当q ≠1,11111=++...+n s a a q a q - ①, 2111=++...+n qs a q a q a q ②, ①-②得11(1)n q s a a q -=-.可以导出一种方法“错位相减”见下1.4 1.4错位相减法此方法通常适用于等差与等比级数混合型,通过乘以等比级数公比q ,再与原级数四则运算后化为等差或等比级数求和.例2:计算212n n -∑.解: 2313521 (2222)n n s -=++++ ①,21352121...222n n s --=++++ ②,②-①得: 121121************n n n k k k n k k k k k n s s s -===---=-=+-=+-=∑∑∑111121121213122212n n n n n n -----+-=---,lim n s →∞=3.1.5蕴含型级数相消法此类型级数本身各项之间有蕴含关系,通过观察可知多项展开会相互之间相消部分项,从而化简级数求和.例3:计算1ni =∑.解:将各项展开可得:(1...s =-+++++11==lim n s →∞= 1.6有理化法求级数和对于一些级数通项含有分式根式的级数,我们可以仿照数学中经常使用的方法“有理化”处理,以期达到能使得级数通项化简,最后整个级数都较容易求和.例4:计算1n ∞=.解:可以看出此级数含根式较多,因此尝试运用有理化的方法去处理,即通项n a =对其分母有理化得:−−−−=−分母有理化,则原级数可以采用本文中的1.5“蕴含型级数相消法”,则可以快速求得级数和的极限为1. 1.7方程式法此型级数通过一系列运算能建立级数和的方程式,通过解方程求解级数和.准确建立方程是关键问题,方程类型不固定,有类似与微分方程之类的,故要视具体情况建立方程,解方程也要准确,才能求出级数和.例5:计算2cos cos 2...cos n q q n q θθθ+++,其中1q <. 解:记2cos cos 2...cos =nq q n s q θθθ+++= =1cos nk k k q θ∑两边同时乘以cos 2q θ得[]+1+1=1=1cos cos cos =2=2cos+1+cos -1)nnk k k k k k k q s qq θθθθθ•••∑∑()( 即:+1222cos cos+1cos )(cos )2=n n n n q s q s q q q s q θθθθ+•++-+-()( 解此方程得:2122cos cos(1)cos =12cos n n q n q n q q s q q θθθθ++-++-+- 22lim cos 12cos n q q s q q θθ→∞-=+-. 1.8原级数转化为子序列求和若下列条件成立[1]:(1)当n →∞时级数的通项0n a →(2)级数各项没有破坏次序的情况而得新序列n 1n b ∞=∑收敛于原级数 .例6:计算11111111111++-1+++-+++-+ (2345627893)()()().解:lim 0n n a →∞=Q ,应用欧拉公式1111++...ln 23n c n e n++=++,其中c 为欧拉常数,0()n e n →→∞111111+++...+-1--...-2332s n n=3ln 3ln n n n n e e =-+-,lim ln3n s →∞=.1.9数项级数化为函数项级数求和数项级数化为相应函数项级数,再通过函数项级数求和,并赋予函数未知数相应未知数后记得相应原级数的和.例7:求级数和11135...n n ∞=••••∑(2-1).解:建立函数项级数2111()135...n n s x x n ∞-==••••∑(2-1)由函数敛散性知识可知其收敛域为(,)-∞+∞,将函数项级数逐项求导可得:'2211()1135...n n s x x n ∞-==+••••∑(2-3)=211111()135...n n x x xs x n ∞-=+=+••••∑(2-1),由此可知()s x 满足微分方程'()()1s x xs x -=,且易知(0)0s =,解此常微分方程得:221122()xx t dt s x ee-=⎰,令1x =则可以求出原级数和:211122s t eedt =⎰.1.10化数项级数为积分函数求原级数和将原级数通过化简,构造积分极限式,从而转化为积分求原级数和也不失为一种好方法,构造积分式子是关键,一般原级数中通过四则运算将n 与积分中的分割相联系从而构造分割,建立级数与积分式子的桥梁.例8:计算11k n k ∞=+∑,其中()n →∞. 解:记1011111lim =ln21+1n n n k k dx s k n k n x n∞→∞==−−−−−−−−→==←−−−−−−−−++∑∑⎰分子分母同时除以构造分割建立级数与积分的桥梁. 1.11三角型数项级数转化为复数系级数将三角型数项级数转化为复数域上的级数,由于复数的实部对应于数项级数,从而转化为求复数系级数进而求原级数和.例9[7]:设2cos cos 2...cos = n s q q n q θθθ+++,求s .解:由于1cos =nk k s q k θ=∑,令(cos sin )i z qe q i θθθ==+为复数,其中0,1,2...k =(cos sin )k k ik k z q e q k i k θθθ==+,其中1,2...k =,得:122011+...1(cos sin )(cos 2sin 2)+1n nk n k z z z z z q i q i z θθθθ+=-==+++=++++-∑ 323cos 2cos 3(cos3sin 3)+...+(cos sin )1cos n q q q i q n i n q θθθθθθθ++++=++2...+cos (sin )sin 2...sin nn q n i q qq n θθθθ++++而另一方面1111(cos(+1)sin(+1))11(cos sin )n n z q n i n z q i θθθθ++--+=--+=211-2cos q qθ+ {1221cos cos(1)cos(1)cos sin(1)sin n n n q q n q n q n θθθθθθ+++⎡⎤--+++++⎣⎦+ 212sin cos(1)sin sin(1)sin(1)cos n n n i q q n q n q n θθθθθθ+++⎡⎤-+-+++⎣⎦g g }取实部对应原级数和即得:12211(1cos cos(1)cos )1-2cos n n q qs q q n q n θθθθ+++=--+++即: 11221(1cos cos(1)cos 12cos )1-2cos n n s q q n q n q q q qθθθθθ++=--++-+-+ 当n →∞,且1q <时22lim cos 12cos n q q s q q θθ→∞-=+-.1.12构造函数计算级数和将级数各项转化为其它函数式子化简级数并求原级数和,关键在于各项的化简函数是否基本统一,如何选择函数式子才能有效化简,将级数参数化为函数式子中的未知数,并无一般的通用函数,选择函数视具体情况而定,下面我们先看一个例子感受这种方法,并从中体会这种方法.例10[7]:请计算下面的级数式子:记2323=1-+......)1111nn t t t t s t t t t t ++++++++()(,其中1t →-.解:构造函数式子:1()11x x xe f x e e--==++,此函数在[0,)+∞单调递减. 由于000(1)ln(1)|ln 211x xx x x e d e dx dx e e e--+∞+∞-+∞---+==-+=++⎰⎰, 令ln h t =-,满足11lim limln t t h t →→==0ln 1111hthe t eeh h----=-=-=g ,ln ln ()()1()11k t k hk kt k hk t e e f kh t e e ----===+++. 代入题目中的级数式子得:23231lim 1-+......)111n n t t t t t t t t t t -→+++++++()(+1= 011lim ()h h k e h f kh h -∞→=-∑=0011lim ()ln 21h xx h k e e h f kh dx h e --∞+∞-→=-==+∑⎰.1.13级数讨论其子序列引理[1]:数列}{n s 收敛的充分必要条件是}{n s 的任一子序列都收敛且有相同的极限.特别的:数列}{n s 收敛于s 的充分必要条件是两个互补的子列}{2n s ,}{12-n s ,收敛于同一极限.推广可得:定理[1]:若级数∑∞=1n n a 通项满足当n →∞时, 0→n a (收敛判别的必要条件),∑∞=1n n a 收敛于s 的充分必要条件是:部分和}{n s 的一个子序列}{np s 收敛于s ,其中p 满足:p 是某个正整数p =1,2,…将级数分情况讨论,化为多个子序列之和,利用原级数收敛则级数任意添加括号得到的级数和收敛于原级数和原理,通过求各个子序列之和求解原级数和,关键在于如何分解原级数为不同子序列,然而子序列相对于原级数来说易求些,这样方法才行之有效,这和1.6的“原级数转化为子序列求和”是不同的.分情况讨论在三角中讨论角的大小我们已不陌生,下面我们就看一个这样讨论角的幅度的例题.例11[6]:计算:12cos32n n n π∞=∑. 解:记12cos32n n n s π∞==∑,由级数敛散性知识可知,该级数绝对收敛.按幅度角的讨论将级数分解为:1{|3,0,1,2...}A n n k k ===,2{|31,0,1,2...}A n n k k ==+=,3{|32,0,1,2...}A n n k k ==+=.则:1232222coscos cos cos 3333=++2222n n n nn n A n A n A n n n n ππππ∞∞∞∞=∈∈∈∑∑∑∑33132002coscos +133+222k k k k k k πππ∞∞∞++====+∑∑∑() 1211+cos +cos +()2343k k πππ∞=∑3=01(())2 1115(1)148718=--=-g ,所以:12cos23127n n n s π∞==-=-∑. 1.14裂项法求级数和针对级数是分数形式,且满足分母为多项乘积形式,且各项之间相差一个相同的整数,裂项后各项就独立出来,而原来各项之间相差整数则裂项后新级数等价于求解某一个级数,其余新级数照此可求出,从而原级数和可以求出.裂项一般形式:1111()()(+)x m x n n m x m x n=-+-++,此处m n >.例12:计算111...123234(1)(2)s n n n =+++++g g g g g g . 解:记1(1)(2)n a n n n =++g g ,111[]2(1)(1)(2)n a n n n n =-+++ 针对11(1)nk k k =⋅+∑同理采用裂项法记111(1)1n b n n n n ==-++则11(1)nk k k =+∑=11111111111(1)()()()()+...+()2233445561n n −−−−−−−−−−→-+-+-+-+--←−−−−−−−−−−+裂项后后面项可以消去前面项部分这就是裂项法的好处! 11-1n +,111lim lim[1-]1(1)1nn n k k k n →∞→∞===++∑,所以 111111lim lim [](1)(2)2(1)(1)(2)nnn n k k k k k k k k k →∞→∞===++++++∑∑= 11111111lim lim()2(1)2(1)2n n n n k k k k k k +→∞→∞==--++∑∑=1111(1)2224--=. 1.15裂项+分拆组合法将裂项与分拆组合法合用在一起,运用裂项法分拆级数,再将分拆重新组合级数,由新级数返回求原级数和.例13:计算1(+1)(+2)n nn n n ∞=∑(+3).解:11235+1+2+3(+1)(+2)n n n n n n n ++-=Q(+3)111111251()(+1)(+2)3+1+2+33(+1)(+2)n n n n n n n n n n n n n ∞∞∞===∴=+--∑∑∑(+3)(+3)=1125111()()3233464+--=.1.16夹逼法求解级数和在数学分析中运用夹逼法则求解极限,在求极限和中我们也可以借鉴此方法,运用两个级数逼近原级数,最后两逼近级数和等于原级数和.例14[8]:设m 为一给定的正整数,求221,1n m n m n∞=≠-∑. 解:12222221,11111m Nm m Nm Nn m n n n ms m n m n m n +-++=≠==+==+---∑∑∑ 1111111111[ (21122121)m Nn m m m m m m m m n m n +=+=++++++++-+-+--+∑] 1111111(1...1...)22222m m N N m m =+++------+ 21112...2122+1m m N m N N N m N +++++++Q <<且∞→N 时,2lim 0+1N mN →∞=,且2lim 0+2N m N m →∞=,所以23lim 04m N N s m +→∞=-,即2221,134n m n m nm ∞=≠=--∑ 2 函数项级数求和函数项级数和依据未知数x 的而定,因此在收敛域内寻找一个新函数去刻画级数和.2.1方程式法类似于数项级数,函数项级数建立方程,通过方程求解求函数项级数和.例15:计算函数项级数23456()1 (21324135246)x x x x x s x x =+++++++g g g g g g 解:由函数项级数收敛性知识可知题中函数项级数收敛半径为+∞,逐项求导得3'2()1 (2)x s x x x =++++即:'()1()s x xs x =+(0)1s =Q解此微分方程得:2222()(1)x t x s x e e dt -=+⎰.2.2积分型级数求和积分型级数求和显然直接求和会带来困难,通常积分也积不出来,所以要转化,将积分式子化简是个想法,通过变量替换等积分技术化简积分式子,再求级数和,所以关键在于处理积分式子,下面我们看个例题.例16:计算级数(21)220x k k k eππ∞+-=∑⎰.解:因为(2,(21x k k ππ∈+)),作变量替换t k x +=π2得:(21)(222200=xt tk k k k ee e e ππππππ+--+--=⎰⎰⎰)再根据:'22t t ee dt --=⎰⎰C +得:(422204tt tk ee e πππππ-+--=-+⎰⎰⎰)=4042|2eeπππ--=84042|24eeec ππππ---=.所以原级数=8211tk k eee ππππ∞----==-∑⎰. 2.3逐项求导求级数和根据幂级数逐项求导收敛半径不变原理,对原级数逐项求导后化为一些易求和的幂级数,再往回求积分,从而求原级数和.易知的级数往往是通过泰勒展式或者麦克劳林展式获得的。