利用导数求函数的单调性
- 格式:pdf
- 大小:481.93 KB
- 文档页数:5
导数法判断函数单调性
微积分中,导数法判断函数单调性是一种直观简单、高效果的方式。
当原函数在区间上单调时,其求得的导数不可能大于零同时也不可能小于零;反之,当函数在区间上不是单调的时候,其求得的导数有可能小于零同时也有可能大于零,由于函数的单调性十分直观,这就是应用微积分来判断函数单调性的常用方法。
导数法判断函数单调性,既可以利用导数的符号属性,也可以利用导数的极值属性,即函数在自变量的极点处,此时的导数取值为零。
因此,当函数的导数存在极点的时候,改点即为函数的拐点。
当函数存在多个拐点的时候,利用导数的符号属性来判断函数的单调性,即对于拐点左右的区间,导数的符号都不可能改变,便可正确判断有关函数的单调性。
总之,导数法判断函数单调性,是一种重要且高效的方法,也是在求解非线性微分方程、定性分析流形等复杂微积分问题时,非常有效的工具之一。
第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。
课题:导数在函数中的应用——利用导数讨论函数的单调性一.复习回顾1.导数与函数的单调性:一般地,在某个区间(ab)内:(1)如果f′(x)>0,函数f (x)在这个区间内单调递增;(2)如果f′(x)<0,函数f (x)在这个区间内单调递减;(3)如果f′(x)=0,函数f (x)在这个区间内是常数函数.------利用导数的正负研究函数的增减2.利用导数讨论函数单调性的方法(1)直接解不等式:f′(x)>0和f′(x)<0;(2)利用f′(x)的图像(示意图);(3)列表法;注:考虑f′(x)=0的根;二.新课讲解(一)讨论函数的单调性【例1】(2018年全国I卷)已知函数 f(x)=aex-ln x-1 (1)设x=2是f(x)的极值点.求a,并求f(x)的单调区间;(二)讨论含参数函数的单调性【解法技巧】考虑f′(x)=0的根1. 若f′(x)=0在区间D上无解,则f′(x)恒正或恒负,f(x)在D上单调;2. 根有没有,要不要,比大小。
【例2】求f(x)=ex-ax的单调区间;【例3】已知函数f(x)=12x2-(a+1)x+a ln x(1)当a<1时,讨论f(x)的单调性;【变式】已知函数f(x)=12x2-(a+1)x+a ln x,讨论f(x)的单调性;三.归纳总结----导数讨论含参数函数单调性的思路:1. 若f′(x)=0在区间D上无解,则f′(x)恒正或恒负,f(x)在D上单调;2. f′(x)=0根有没有,要不要,比大小;①若f′(x)=0在R上无解或在R上有解但明显解不在定义域D内则f(x)在D上单调;②若f′(x)=0在R上有解但解是否在定义域D内需讨论,ⅰ若解都不在定义域D内,则f(x)在D上单调;ⅱ若有解在定义域D内,则利用f′(x)的图像或列表分析;四.课后作业:1.(2018-2019潮州高三期末)已知函数f(x)=2( x-1) ln x+a (x2-x-1+1x).(1)当 a=0讨论f(x)的单调性2. (2017·全国卷Ⅲ) 已知函数f(x)=ln x+ax2+(2a+1)x. (1)讨论f(x)的单调性;3. (2016·全国卷Ⅰ) 已知函数f(x)=(x-2)ex-a (x-1)2 (1)讨论f(x)的单调性;。
利用导数研究函数的单调性教案教案:利用导数研究函数的单调性一、教学目标1.了解函数的单调性概念,以及单调递增和单调递减的定义;2.掌握利用导数研究函数的单调性的方法;3.能够通过导数的正负性分析函数的单调区间,并作出相应的图像。
二、教学准备1.教师准备:书本、黑板、白板、彩色粉笔、计算器、实例练习题;2.学生准备:笔记本、课本。
三、教学过程1.引入导入(10分钟)导师通过提问等方式,引导学生回顾函数的增减性、最值点等概念,为接下来的学习做铺垫。
2.学习讲解(25分钟)1)导师先通过实例展示导数与函数单调性之间的关系,比如分别给出函数f(x)=x^2和函数g(x)=-x^2的导数,并解释导数大于零时函数单调递增,导数小于零时函数单调递减。
2)导师详细讲解如何利用导数分析函数的单调性:首先,对函数f(x)求导,得到它的导函数f'(x);其次,求出f'(x)的零点,即导数为零的点。
这些点将把函数f(x)的定义域划分为若干个开区间;然后,对每个开区间分别求取f'(x)的正负性,从而得到导数f'(x)在各开区间的取值范围;最后,结合导数f'(x)的正负性来分析函数f(x)的单调性。
3.实例训练(35分钟)导师通过多个实例进行讲解和学生训练,帮助学生熟悉和掌握利用导数研究函数单调性的方法。
4.小结提问(10分钟)导师通过提问进行小结,确保学生对函数的单调性及利用导数分析函数单调性的方法有一个深入的理解。
五、作业布置给定函数f(x)=2x^3+3x^2-12x+1,设置一个问题,让学生利用导数分析函数的单调性,并解决问题。
六、板书设计函数的单调性单调递增:导数大于零单调递减:导数小于零怎样利用导数研究函数的单调性?1.求导函数2.导函数的零点3.导函数的正负性导函数的正负性与函数的单调性的关系七、教学反思通过本堂课的教学,学生基本能够理解函数的单调性概念,知道如何利用导数研究函数的单调性。
利用导数求解函数的单调性与最值问题在微积分学中,导数是一个重要的概念,它被应用于许多实际问题的解决中。
本文将重点讨论如何利用导数来求解函数的单调性及最值问题。
1. 导数的定义导数描述了函数f(x)在某一点x处的变化率。
它的定义为:f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δx其中Δx表示x的增量,f(x+Δx)-f(x)表示y的增量,f'(x)表示函数f(x)在点x处的导数。
2. 求解单调性问题当函数f(x)单调递增时,其导数f'(x)>0;当函数f(x)单调递减时,其导数f'(x)<0。
因此,我们可以利用导数的正负性来判断函数的单调性。
例如,对于函数f(x)=x^2,在x>0时它单调递增,而在x<0时它单调递减。
我们可以通过求导得到它的导数:f'(x) = 2x当x>0时,f'(x)>0;当x<0时,f'(x)<0。
因此,函数f(x)=x^2在x>0时单调递增,在x<0时单调递减。
3. 求解最值问题函数f(x)在x处取得最大值或最小值,等价于在点x处的导数为0,或者在点x处的导数不存在。
因此,求解函数f(x)的最值问题,我们需要先求出它的导数f'(x),然后令f'(x)=0求出x的值,即可得到函数f(x)的极值点。
最后,再对这些极值点进行比较,就可以确定函数f(x)的最大值和最小值。
例如,对于函数f(x)=x^3-3x+5,我们可以先求出它的导数:f'(x) = 3x^2-3令f'(x)=0,解得x=±1。
这两个点即为函数f(x)的极值点。
我们还需要判断它们是否是函数的最值点。
当x=1时,f''(x)=6>0,说明f(x)在x=1处取得极小值;当x=-1时,f''(x)=-6<0,说明f(x)在x=-1处取得极大值。
用导数求单调区间的一般步骤
用导数求单调区间的一般步骤:
求解函数的单调区间是数学分析中重要的任务之一。
利用导数的信息可以帮助我们确定函数在定义域内的单调性。
下面是用导数求解单调区间的一般步骤:
1. 找出函数的定义域:首先确定函数的定义域,即使得函数有意义的自变量的取值范围。
这一步骤有助于限定我们需要研究的区域。
2. 求导数:计算函数的导数。
导数表示函数某一点的变化率,可以帮助我们研究函数的单调性。
对于连续的函数,导数存在于其定义域内的大部分点。
3. 解导数为零或不存在的方程:找出导数等于零或者导数不存在的点,解方程得到这些点的横坐标。
这些点被称为临界点,可能是函数的极值点或拐点。
4. 构造数轴并标注临界点:在一个数轴上标出函数定义域范围内的
临界点。
这样可以帮助我们形象地表示函数的变化情况。
5. 判断函数的单调性:根据导数的符号来判断函数在定义域内的单调性。
例如,如果导数为正,函数在该区间内是递增的;如果导数为负,函数在该区间内是递减的。
6. 总结单调区间:根据各个区间内函数的单调性,得出函数在定义域内的单调区间。
每个单调区间可以用开区间或闭区间表示。
通过以上步骤,我们可以利用导数来推断函数的单调性,并确定函数在定义域内的单调区间。
这样的分析可以帮助我们更好地理解函数的特性,并在问题求解中提供有效的参考。
高考数学大题精做之解答题题型全覆盖高端精品第六篇函数与导数专题02利用导数求函数的单调性类型对应典例不含参数的函数单调性典例1含参函数中主导函数是一次函数典例2含参函数中主导函数是类一次函数典例3含参函数中主导函数是二次函数(不能因式分解)典例4含参函数中主导函数是二次函数(能因式分解)典例5含参函数中主导函数是类二次函数典例6利用函数单调性求参数取值范围典例7【典例1】已知函数()()1ln f x x a R ax=+∈在1x =处的切线与直线210x y -+=平行.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点1x ,2x ,且12x x <,求证:121x x +>.【典例2】已知函数op =−En −.(1)讨论函数op 的单调性.(2)若∀>0,op ≥0,求B 的最大值.【典例3】已知函数ln ()(,)x af x bx a b R x-=-∈.(1)当0b =时,讨论函数()f x 的单调性;(2)若函数()()f x g x x=在x =e 为自然对数的底)时取得极值,且函数()g x 在(0,)e 上有两个零点,求实数b 的取值范围.【典例4】已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-.(1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【典例5】已知函数22()ln f x x ax a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()0f x ≥,求a 的取值范围.【典例6】已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.【典例7】已知函数()ln ()x e f x x x ax a R =-+∈.(1)若函数()f x 在[1,)+∞上单调递减,求实数a 的取值范围;(2)若1a =,求()f x 的最大值.1.已知函数()()22122()2xf x x x e ax a R =-+-∈.(1)当a e =时,求函数()f x 的单调区间;(2)证明:当2a ≤-时,()2f x ≥.2.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.3.已知函数()()2()1ln 1(0)f x a x x x ax a =++-->是减函数.(1)试确定a 的值;(2)已知数列{}()()*123ln 11n n n n n a a T a a a a n N n +==∈+ ,求证:()ln 212n nn T +<-⎡⎤⎣⎦.4.已知函数()22ln .f x a x x =-()1讨论函数()f x 的单调性;()2当0a >时,求函数()f x 在区间()21,e 上的零点个数.5.已知函数()()ln f x x ax a R =-∈.(1)讨论()f x 的单调性;(2)若1a =-,当0x >时,函数()()()220g x x mf x m =->有且只有一个零点,求m 的值.6.设22(),()11x e f x xe ax g x nx x x a=-=+-+-.(1)求()g x 的单调区间;(2)讨论()f x 零点的个数;(3)当0a >时,设()()()0h x f x ag x =-恒成立,求实数a 的取值范围.7.已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.参考答案【典例1】【详解】(1)函数()f x 的定义域:()0,+∞,()11112f a =-=',解得2a =,()1ln 2f x x x ∴=+,()22112122x f x x x x -∴=-='令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减;令()0f x '>,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增.(2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+=两式相减,可得121211ln ln 022x x x x -+-=即112212ln 2x x x x x x -=,1212122ln x xx x x x -=,因此1211212ln x x x x x -=,2121212ln x x x x x -=令12x t x =,由12x x <,得01t <<.则121111+=2ln 2ln 2ln t t t t x x t t t---+=,构造函数()()12ln 01h t t t t t =--<<,则()()22211210t h t t t t -=+-=>'所以函数()h t 在()0,1上单调递增,故()()1h t h <,即12ln 0t t t--<,可知112ln t t t->.故命题121x x +>得证.【典例2】解:(1)函数op 的定义域为(0,+∞),由op =−En −,得n(p =1−=K,当≤0时,n(p >0,所以函数op 在(0,+∞)上单调递增.当>0时,则∈(0,p 时,n(p <0,函数op 在(0,p 上单调递减;∈(s +∞)时,n(p >0,函数op 在(s +∞)上单调递增.(2)由(1)可知,当<0时,函数op 在(0,+∞)上单调递增,当→0时,op →−∞与op ≥0相矛盾;当=0时,∀>0,op ≥0,所以≤0,此时B =0.当>0时,函数op 在(0,p 上单调递减,函数op 在(s +∞)上单调递增.op min =op =−En −≥0,即−En ≥,则B ≤2−2lno >0).令op =2−2lno >0),则n(p =o1−2lnp .令n(p >0,则0<<,令n(p <0,则>,当=时,op =2,即当=,=B 的最大值为2.综上,B 的最大值为2.【典例3】【详解】(1)当0b =时,()ln x af x x-=,()()221ln 1ln x x a a x x f x x x ⋅--+-==',令()0f x '=,得1a x e +=,当()10,ax e+∈时,()0f x '>,当()1,ax e+∈+∞时,()0f x '<.所以函数()f x 在()10,ae+上单调递增,在()1,ae++∞上单调递减.(2)()()2ln f x x a g x b x x-==-,()()2431ln 2122ln x x a xa x x g x x x ⋅--⋅-=='+,∵()g x在x =∴0g '=即1210a +-=,∴0a =.所以()2ln x g x b x =-,()312ln xg x x-'=,函数()g x在(上单调递增,在)+∞上单调递减,得函数的极大值12gb e=-,∴当函数()g x 在()0,e 上有两个零点时,必有()0,10,2g e b e ⎧<⎪⎨->⎪⎩得2112b e e<<.当2112b e e <<时,210g e b e ⎛⎫=--< ⎪⎝⎭.∴()g x的两个零点分别在区间1e ⎛ ⎝与)e 中.∴的取值范围是211,2e e ⎛⎫⎪⎝⎭.【典例4】【详解】(1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>',对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数;②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得42a x --<或42a x ->,44022a a --<<,()f x ∴在40,2a ⎛-- ⎪⎝⎭为增函数,44,22a a ⎛--+ ⎪⎝⎭减函数.,2a ⎛⎫-++∞⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数。
如何利用导数解决函数的单调性问题
利用导数解决函数的单调性问题,是近几年高考考查的重点和热点之一,也是学生感到比较棘手的一类问题.
类型一利用导数判断函数的单调性
依据是:若函数f(x)在某
个区间(a,b)内的导数为f ‘(x),则
(1)若f ‘(x)>0,则函数f(x)在区间(a,b)内递增;
(2)若f ‘(x)0得x>1;由f ‘(x
0得x>1或01时,由f ‘(x)>0得x>a 或00 即a0 得x>
x2;由f ‘(x)0得0x2;由f ‘(x)—.
变式2:已知函数f(x)=x3+ax2+
x+1(a∈R)在区间(-—,-—)内存在单调递减区间,求实数a的取值范围.
解析:f ‘(x)=3x2+2ax+1
因为f(x)在区间(-—,-—)内存在单调递减区间,以f ‘(x)=3x2+
2ax+1-—x-—对x∈(-—,-—)有解.
令g(x)=-—x-—,x∈(-—,
-—),则g ‘(x)=-—x+—=—
所以g(x)在区间(-—,-—)内递减,在区间(-—,-—)内递增,故g (x)min=g(-—)=√3,所以实数a的取值范围是a>√3.
由函数在某区间上的单调性,求参数的取值范围问题,可以利用转化与化归的思想,将其转化为“不等式恒成立”问题,也可以利用函数与方程的思想及数形结合的思想,将其转化为“函数图像的交点”问题.。
导数求函数单调性
本文主要讨论使用导数求函数单调性的方法。
所谓函数单调性,是指函数y = f (x)中,随着x的变化,函数y也变化,但是却是以一个比较稳定的形式增加或减少。
当函数y变化比较缓慢时,其单调性就比较明显;而当函数y变化很大的时候,其单调性也就不太明显了。
那么我们可以如何使用导数来判断函数的单调性呢?对于一个函数 y=f (x),它的导数为f '(x),如果f '(x)>0,代表着函数y在某一点x处是单调递增的;如果f '(x)<0,代表着函数在某一点x处是单调递减的。
这样,我们就可以通过其导数来推测函数y在任一点x 处是否具有单调性。
当然,有时我们也可以利用积分法来判断函数单调性,只要待求函数 f (x)在一定区间内具有连续可导特性,那么我们就可以直接使用积分法来计算区间内函数 f (x)的单调性。
总之,函数的单调性可以利用导数或积分法来判断,我们可以通过其单调性来帮助我们做出一些更好的判断和有意义的决策。
利用导数确定函数的单调性教学设计一、教学目标1.理解函数的增减性和单调性的概念;2.能够通过函数的导数确定函数的单调性;3.能够应用导数确定函数的单调区间。
二、教学内容和教学步骤步骤一:引导学生了解函数的增减性和单调性的概念(约10分钟)1.引导学生回顾函数的增减性的定义:当函数在一个区间内的导数大于0,即函数单调增加;当函数在一个区间内的导数小于0,即函数单调减少;2.解释函数的单调性:当一个函数在一个区间上单调递增或单调递减时,函数称为在该区间上是单调的。
步骤二:通过例子讲解通过导数确定函数的单调性(约20分钟)1.举例说明如何通过导数确定函数的单调性。
例子:考虑函数f(x)=2x^3-9x^2+12x-3(1)求函数f(x)的导数f'(x)=6x^2-18x+12;(2)解方程f'(x)=0,得到x=1;(3)考虑x<1时,f'(x)=6x^2-18x+12>0,说明f(x)在x<1时是单调增加的;(4)考虑x>1时,f'(x)=6x^2-18x+12<0,说明f(x)在x>1时是单调减少的;(5)所以,综合以上结论,f(x)在x<1时单调增加,在x>1时单调减少。
步骤三:合作探究导数和函数的单调性的关系(约30分钟)1.将学生分成小组,并要求每个小组选择一种类型的函数进行研究,如多项式函数、指数函数、对数函数等;2.引导学生通过研究函数的导数和函数的单调性之间的关系,总结出结论;3.每个小组从导数的角度解释和证明所选择的函数的单调性;4.每个小组向全班报告他们的研究结果。
步骤四:应用导数确定函数的单调区间(约30分钟)1.引导学生如何利用导数确定函数的单调区间。
例题:已知函数f(x)=3x^4-8x^3+6x^2+x-2,求f(x)的单调区间。
(1)求函数f(x)的导数f'(x)=12x^3-24x^2+12x+1;(2)解方程f'(x)=0,找到函数f(x)的驻点;(3)将驻点和函数的定义域端点进行分类,判断函数的增减性;(4)根据步骤(3)得出函数f(x)的单调区间。
利用导数求函数的单调性利用导数求函数的单调性例 讨论下列函数的单调性:1.xx a a x f --=)((0>a 且1≠a ); 2.)253(log)(2-+=x x x f a (0>a 且1≠a ); 3.)0,11(1)(2≠<<--=b x x bx x f . 分析:利用导数可以研究函数的单调性,一般应先确定函数的定义域,再求导数)(x f ',通过判断函数定义域被导数为零的点所划分的各区间内)(x f '的符号,来确定函数)(x f 在该区间上的单调性.当给定函数含有字母参数时,分类讨论难于避免,不同的化归方法和运算程序往往使分类方法不同,应注意分类讨论的准确性.解: 1.函数定义域为R .).(ln )(ln ln )(xx x x a a a x a a a a x f --+='-⋅⋅-=' 当1>a 时,.0)(,0,0ln >'∴>+>-x f a a a x x∴函数)(x f 在),(+∞-∞上是增函数. 当10<<a 时,.0)(,0,0ln <'∴>+<-x f a a a x x ∴函数)(x f 在),(+∞-∞上是减函数.2.函数的定义域是31>x 或.2-<x )2)(13(log )56()253(253log )(22+-+='-+⋅-+='x x e x x x x x e x f a a①若1>a ,则当31>x 时,0)2)(13(,056,0log >+->+>x x x e a , ∴0)(>x f ,∴函数)(x f 在⎪⎭⎫ ⎝⎛∞+,31上是增函数; 当2-<x 时,0)(<'x f ,∴函数)(x f 在()2,-∞-上是减函数②若10<<a ,则当31>x 时,0)(<'x f , ∴函数)(x f 在⎪⎭⎫ ⎝⎛∞+,31上是减函数; 当2-<x 时,0)(>'x f ,∴函数)(x f 在()2,-∞-上是增函数3.函数)(x f 是奇函数,只需讨论函数在(0,1)上的单调性当10<<x 时,2222)1()1()1()(-'-⋅--⋅'⋅='x x x x x b x f222)1()1(-+-=x x b 若0>b ,则0)(<'x f ,函数)(x f 在(0,1)上是减函数;若0<b ,则0)(>'x f ,函数)(x f 在(0,1)上是增函数.又函数)(x f 是奇函数,而奇函数在对称的两个区间上有相同的单调性.所以当0>b 时,函数)(x f 在(-1,1)上是减函数,当0<b 时,函数)(x f 在(-1,1)上是增函数.说明:分类讨论是重要的数学解题方法.它把数学问题划分成若干个局部问题,在每一个局部问题中,原先的“不确定因素”不再影响问题的解决,当这些局部问题都解决完时,整个问题也就解决了.在判断含参数函数的单调性时,不仅要考虑到参数的取值范围,而且要结合函数的定义域来确定)(x f '的符号,否则会产生错误判断. 分类讨论必须给予足够的重视,真正发挥数学解题思想作为联系知识与能力中的作用,从而提高简化计算能力.利用导数求函数的单调区间例 求下列函数的单调区间:1.32)(24+-=x xx f ; 2.22)(x x x f -=;3.).0()(>+=b xb x x f 分析:为了提高解题的准确性,在利用求导的方法确定函数的单调区间时,也必须先求出函数的定义域,然后再求导判断符号,以避免不该出现的失误.解:1.函数)(x f 的定义域为R ,x x x x x x f )1)(1(44)(4+-=-=' 令0)(>'x f ,得01<<-x 或1>x .∴函数)(x f 的单调递增区间为(-1,0)和),1(+∞; 令0)(<'x f ,得1-<x 或10<<x ,∴函数)(x f 的单调递减区间为)1,(--∞和(0,1).2.函数定义域为.20≤≤x.2122)2()(222x x x x x x x x f --=-'-='令0)(>'x f ,得10<<x .∴函数)(x f 的递增区间为(0,1);令0)(<'x f ,得21<<x ,∴函数)(x f 的单调递减区间为(1,2).3.函数定义域为).)((11)(,022b x b x x x bx f x +-=-='≠ 令0)(>'x f ,得b x >或b x -<.∴函数)(x f 的单调递增区间为),(b --∞和),(+∞b ; 令0)(<'x f ,得b x b <<-且0≠x ,∴函数)(x f 的单调递减区间是)0,(b -和),0(b .说明:依据导数在某一区间内的符号来确定函数的单调区间,体现了形象思维的直观性和运动性.解决这类问题,如果利用函数单调性定义来确定函数的单调区间,运算显得繁琐,区间难以找准.学生易犯的错误是将两个以上各自独立单调递增(或递减)区间写成并集的形式,如将例1函数)(x f 的单调递增区间和递减区间分别写成),1()0,1(+∞- 和)1,0()1,( --∞ 的错误结果.这里我们可以看出,除函数思想方法在本题中的重要作用之外,还要注意转化的思想方法的应用.求解析式并根据单调性确定参数例 已知c x x f +=2)(,且).1()]([2+=x f x f f1.设)]([)(x f f x g =,求)(x g 的解析式;2.设)()()(x f x g x λϕ-=,试问:是否存在实数λ,使)(x ϕ在()1,-∞-内为减函数,且在(-1,0)内是增函数.分析:根据题设条件可以求出)(x ϕ的表达式,对于探索性问题,一般先对结论做肯定存在的假设,然后由此肯定的假设出发,结合已知条件进行推理论证,由推证结果是否出现矛盾来作出判断.解题的过程实质是一种转化的过程,由于函数)(x ϕ是可导函数,因此选择好解题的突破口,要充分利用函数的单调性构造等价的不等式,确定适合条件的参数λ的取值范围,使问题获解. 解:1.由题意得c c x c x f x f f ++=+=222)()()]([,)1()]([.)1()1(2222+=++=+x f x f f c x x f ,∴.1,1,)1()(222222=∴+=+∴++=++c x c x c x c c x∴.1)1()1()]([)(,1)(2222++=+==+=x x f x f f x g x x f2.)2()2()()()(24λλλϕ-+-+=-=x x x f x g x . 若满足条件的λ存在,则.)2(24)(3x xx λϕ-+=' ∵函数)(x ϕ在()1,-∞-内是减函数,∴当1-<x 时,0)(<'x ϕ, 即0)2(243<-+x x λ对于)1,(--∞∈x 恒成立. ∴.44,1,4)2(222-<-∴-<∴->-x x x λ∴4)2(2-≥-λ,解得4≤λ.又函数)(x ϕ在(-1,0)上是增函数,∴当01<<-x 时,0)(>'x ϕ即0)2(243>-+x x λ对于)0,1(-∈x 恒成立, ∴.044,01,4)2(222<<-∴<<--<-xx x λ∴4)2(2-≤-λ,解得4≥λ. 故当4=λ时,)(x ϕ在()1,-∞-上是减函数,在(-1,0)上是增函数,即满足条件的λ存在.说明:函数思维实际上是辩证思维的一种特殊表现形式,它包含着运动、变化,也就存在着量与量之间的相互依赖、相互制约的关系.因此挖掘题目中的隐含条件则是打开解题思路的重要途径,具体到解题的过程,学生很大的思维障碍是迷失方向,不知从何处入手去沟通已知与未知的关系,使分散的条件相对集中,促成问题的解决.不善于应用a x f <)(恒成立a x f <⇔max )]([和a x f >)(恒成立a x f >⇔min )]([,究其原因是对函数的思想方法理解不深.利用导数比较大小例 已知a 、b 为实数,且e a b >>,其中e 为自然对数的底,求证:a b b a >.分析:通过考察函数的单调性证明不等式也是常用的一种方法.根据题目自身的特点,适当的构造函数关系,在建立函数关系时,应尽可能选择求导和判断导数都比较容易的函数,一般地,证明),(),()(b a x x g x f ∈>,可以等价转化为证明0)()()(>-=x g x f x F ,如果0)(>'x F ,则函数)(x F 在),(b a 上是增函数,如果0)(≥a F ,由增函数的定义可知,当),(b a x ∈时,有0)(>x F ,即)()(x g x f >.解:证法一: e a b >> ,∴要证a b b a >,只要证b a a b ln ln >,设)(ln ln )(e b b a a b b f >-=,则b a a b f -='ln )(.e a b >> ,∴1ln >a ,且1<ba ,∴.0)(>'b f∴函数b a a b b f ln ln )(-⋅=在),(+∞e 上是增函数.∴0ln ln )()(=-=>a a a a a f b f ,即0ln ln >-b a a b ,∴.,ln ln a b b a b a a b >∴> 证法二:要证a b b a >,只要证)(ln ln b a e b a a b <<>⋅, 即证b b a a lnln >,设)(ln)(e x x x x f >=,则0ln 1)(2<-='x x x f ,∴函数)(x f 在),(+∞e 上是减函数.又)()(,b f a f b a e >∴<< ,即.,lnlna b b a b b a a >∴>说明:“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.解决这种问题常见的思维误区是不善于构造函数或求导之后得出)()()()(x g x f x g x f >⇒'>'的错误结论.判断函数在给定区间上的单调性例 函数⎪⎭⎫ ⎝⎛+=x y 11log 21在区间),0(+∞上是( )A .增函数,且0>yB .减函数,且0>yC .增函数,且0<yD .减函数,且0<y 分析:此题要解决两个问题:一是要判断函数值y 的大小;二是要判断此函数的单调性.解:解法一:令xu 11+=,且1),,0(>∴+∞∈u x , 则0log 21<=u y ,排除A 、B .由复合函数的性质可知,u 在),0(+∞上为减函数. 又u y 21log =亦为减函数,故⎪⎭⎫ ⎝⎛+=x y 11log 21在 ),0(+∞ 上为增函数,排除D ,选C .解法二:利用导数法0log )1(11log 1112221>+=⎪⎭⎫ ⎝⎛-⋅⋅+='e x x x e x y(),0(+∞∈x ),故y 在),0(+∞上是增函数.由解法一知0<y .所以选C .说明:求函数的值域,是中学教学中的难关.一般可以通过图象观察或利用不等式性质求解,也可以用函数的单调性求出最大、最小值等(包括初等方法和导数法).对于复合函数的单调性问题,简单的复合函数是可以利用复合函数的性质进行判断,但是利用导数法判断一些较复杂的复合函数还是有很大优势的.。
考点:利用导数求函数的单调性、极值、最值知识点1.求函数单调区间的步骤:①确定f(x)的定义域;②求导数y ′;③令y ′>0(y ′<0),解出相应的x 的范围。
当y ′>0时,f(x)在相应区间上是增函数;当y ′<0时,f(x)在相应区间上是减函数2.求极值常按如下步骤:① 确定函数的定义域;② 求导数;③ 求方程/y =0的根及导数不存在的点,这些根或点也称为可能极值点;④通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。
3.设函数f(x)在[a,b]上连续,在(a,b )内可导,求f(x)在[a,b]上的最大(小)值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
4.最值(或极值)点必在下列各种点之中:导数等于零的点、导数不存在的点、端点。
5.求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x );②求方程f ′(x )=0的根 ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查f ′(x )在方程根左右的值的符号,若左正右负,则f (x )在这个根处取得极大值;若左负右正,则f (x )在这个根处取得极小值;若左右不改变符号即都正或都负,则f (x )在这个根处无极值例题1. 函数()ln (0)f x x x x =>的单调递增区间为_______________.2. 讨论下列函数的单调性:(1)x x a a x f --=)((0>a 且1≠a );(2))253(log )(2-+=x x x f a (0>a 且1≠a );3.求下列函数的极值:(1)x x x f 12)(3-=;(2)x ex x f -=2)(;(3).212)(2-+=x x x f练习1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=02.函数y =216x x +的极大值为( ) A.3 B.4 C.2 D.53.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0B.1C.2D.44.y =ln 2x +2ln x +2的极小值为( )A.e -1B.0C.-1D.15.函数y=xsinx+cosx 在下面哪个区间内是增函数( ) A.(,) B.(π,2π) C.(,) D.(2π,3π)6.已知函数y=xf′(x)的图象如下图所示(其中f′(x )是函数f (x )的导函数).下面四个图象中y=f (x )的图象大致是( )7.函数⎪⎭⎫ ⎝⎛+=x y 11log 21在区间),0(+∞上是( ) A .增函数,且0>y B .减函数,且0>yC .增函数,且0<yD .减函数,且0<y8.函数f (x )=x 3-3x 2+7的极大值为___________.9. 求下列函数的单调区间:(1)32)(24+-=x x x f ; (2)22)(x x x f -=; (3)).0()(>+=b xb x x f10.已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .(1)试求常数a 、b 、c 的值;(2)试判断1±=x 是函数的极小值还是极大值,并说明理由.11.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间(2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围.。
利用导数判断函数的单调性的方法利用导数判定函数的单调性,其理论依据如下:设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数。
如果0)(='x f ,则)(x f 为常数。
要用导数判定好函数的单调性除把握以上依据外还须把握好以下两点:导数与函数的单调性的三个关系我们在应用导数判定函数的单调性时一定要搞清以下三个关系,才能准确无误地判定函数的单调性。
以下以增函数为例作简单的分析,前提条件差不多上函数)(x f y =在某个区间内可导。
1.0)(>'x f 与)(x f 为增函数的关系。
由前知,0)(>'x f 能推出)(x f 为增函数,但反之不一定。
如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。
2.0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。
若将0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,现在)(x f 为增函数,就一定有0)(>'x f 。
∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。
3.0)(≥'x f 与)(x f 为增函数的关系。
由前分析,)(x f 为增函数,一定能够推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。
当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。
∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。
解:(I)依题意,对一切x∈R有f(-x)=f(x),即e-xa+∴(a-1解2:f'(x)=x1-a2,f(x)在区间(-∞,1-a2,∵0<a综上,(I)当0<a<1时,所给不等式的解集为:⎨x|0≤x≤2a2x x+a(x>0)x例1设a>0,f(x)=e x利用导数判断函数的单调性的方法利用导数判断函数的单调性,其理论依据如下:设函数y=f(x)在某个区间内可导,如果f'(x)>0,则f(x)为增函数;如果f'(x)<0,则f(x)为减函数。
如果f'(x)=0,则f(x)为常数。
要用导数判断好函数的单调性除掌握以上依据外还须把握好以下两点:一.导数与函数的单调性的三个关系我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。
以下以增函数为例作简单的分析,前提条件都是函数y=f(x)在某个区间内可导。
1.f'(x)>0与f(x)为增函数的关系。
由前知,f'(x)>0能推出f(x)为增函数,但反之不一定。
如函数f(x)=x3在(-∞,+∞)上单调递增,但f'(x)≥0,∴f'(x)>0是f(x)为增函数的充分不必要条件。
2.f'(x)≠0时,f'(x)>0与f(x)为增函数的关系。
a1=+ae x,e-x ae x11a)(e x-e x)=0对一切x∈R成立,由此得到a-a=0,a2=1,又∵a>0,∴a=1。
(II)证明:由f(x)=e x+e-x,得f'(x)=e x-e-x=e-x(e2x-1),当x∈(0,+∞)时,有e-x(e2x-1)>0,此时f'(x)>0。
∴f(x)在(0,+∞)上是增函数。
例2设函数f(x)=x2+1-ax,其中a>0。
(2000年全国、天津卷)(I)解不等式f(x)≤1;(II)证明:当a≥1时,函数f(x)在区间[0,+∞)上是单调函数。