蚁群算法
- 格式:ppt
- 大小:388.00 KB
- 文档页数:15
蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。
该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。
蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。
蚁群算法是群智能理论研究领域的一种主要算法。
1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。
sigmoid蚁群算法
蚁群算法,是优化算法当中的一种。
蚁群算法擅长解决组合优化问题。
蚁群算法能够有效的解决著名的旅行商问题(TSP),不止如此,在其他的一些领域也取得了一定的成效,例如工序排序问题,图着色问题,网络路由问题等等。
接下来便为大家简单介绍蚁群算法的基本思想。
蚁群算法,顾名思义就是根据蚁群觅食行为而得来的一种算法。
单只蚂蚁的觅食行为貌似是杂乱无章的,但是据昆虫学家观察,蚁群在觅食时总能够找到离食物最近的路线,这其中的原因是什么呢?其实,蚂蚁的视力并不是很好,但是他们又是凭借什么区寻找到距离食物的最短路径的呢?经过研究发现,每一只蚂蚁在觅食的过程中,会在沿途释放出一种叫做信息素的物质。
其他蚂蚁会察觉到这种物质,因此,这种物质会影响到其他蚂蚁的觅食行为。
当一些路径上经过的蚂蚁越多时,这条路径上的信息素浓度也就越高,其他蚂蚁选择这条路径的可能性也就越大,从而更增加了这条路径上的信息素浓度。
当然,一条路径上的信息素浓度也会随着时间的流逝而降低。
这种选择过程被称之为蚂蚁的自催化行为,是一种正反馈机制,也可以将整个蚁群认定为一个增强型学习系统。
蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。
这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。
它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。
蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。
由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。
蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。
蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。
在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。
蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。
蚂蚁是自然界中常见的一种生物,在昆虫世界,蚂蚁是一种群居的世袭大家庭,我们称之为蚁群(ant colony)。
蚁群具有高度组织的社会性,彼此间的沟通不仅可以借助触觉、视觉的联系,在大规模的协调行动上可以借助外激素(pheromone)之类的生产化信息介质。
蚁群的觅食行为是最易观察的,每只蚂蚁具有如下的职能:平时在巢穴附近作无规则行走,一旦发现食物,如果独自能搬的就往回搬,否则就回巢搬兵,一路上它会留下外激素的嗅迹,其强度通常与食物的品质和数量成正比;若其他蚂蚁遇到嗅迹,就会循迹前进,但也会有一定的走失率,走失率与嗅迹的强度成反比,从而相互协作,完成复杂的任务。
1991年意大利学者M.Dorigo等人首先提出了蚁群算法(ant colony algorithm),人们开始了对蚁群的研究:相对弱小,功能并不强大的个体是如何完成复杂的工作的,因此在此基础上,蚁群算法从对蚁群行为的研究中产生且逐渐发展起来。
蚁群算法是一种随机搜索算法。
诸多研究证明,蚁群算法具有很强的寻优能力,不仅利用正反馈原理,在一定程度上加快了寻优过程,而且是一种本质并行算法,不同个体之间进行信息交流和传递,从而相互协作,有利于发现更好解。
它具有以下优点[3]:(1)较强的通用性:对基本蚁群算法模型稍加修改,便可以应用于其他问题。
(2)分布式计算:蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现。
(3)易于与其它方法结合:蚁群算法很容易与多种启发式算法结合,以改善算法的性能。
蚁群算法也有一些缺陷:(1)需要较长的搜索时间:由于蚁群中多个个体的运动是随机的,虽然通过信息的交流能够向着最优路径进化,但是当群体规模较大时,很难在短时间内从复杂无章的路径中找出一条较好的路径。
(2)容易出现停滞现象(stagnation behavior):即在搜索进行到一定程度后,所有个体所发现的解完全一样,不能对解空间进一步进行搜索,不利于发现更好的解。
蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。
针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
目录1基本信息1.1 概念1.2 原理1.3 问题2详细说明2.1 范围2.2 环境2.3 觅食规则2.4 移动规则2.5 避障规则2.6 信息素规则3相关研究3.1 引申3.2 蚁群算法的实现3.3 解读搜索引擎算法“蚁群算法”1.基本信息1.1概念各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。
有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。
最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
1.2原理设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
蚁群优化算法的JA V A实现收藏蚁群算法简介蚁群算法是群智能算法的一种,所谓的群智能是一种由无智能或简单智能的个体通过任何形式的聚集协同而表现出智能行为,它为在没有集中控制且不提供全局模型的前提下寻找复杂的分布式问题求解方案提供了基础,比如常见的蚂蚁觅食,大雁南飞等行为。
蚁群算法是模拟自然界中蚂蚁觅食的一种随机搜索算法,由Dorigo等人于1991年在第一届欧洲人工生命会议上提出[1] 。
蚁群算法的生物原理通过观察发现,蚁群在觅食的时候,总能找到一条从蚁巢到食物之间的一条最短的路径。
这个现象引起了生物学家的注意,根据研究,原来是蚂蚁在行进的过程中,会分泌一种化学物质——信息素,而蚂蚁在行进时,总是倾向于选择信息素浓度比较高的路线。
这样,在蚁巢和食物之间假如有多条路径,初始的时候,每条路径上都会有蚂蚁爬过,但是随着时间的推迟,单位时间内最短的那条路上爬过的蚂蚁数量会比较多,释放的信息素就相对来说比较多,那么以后蚂蚁选择的时候会大部分都选择信息素比较多的路径,从而会把最短路径找出来。
蚁群算法正是模拟这种蚁群觅食的原理,构造人工蚂蚁,用来求解许多组合优化问题。
有关蚁群算法的详细信息,可参考[2]——[5]。
蚁群算法的JA V A实现我个人认为利用JA V A编写一些计算密集型的算法不是一个好的选择。
本身一些算法是要要求高效率的,但是我感觉JA V A语言的性能不够,所以编写算法最好用c,其次也可以用c++。
当然,这仅是一家之言,欢迎拍砖。
此处使用JA V A的原因是为了演示算法的框架,给出一种思路,如果需要c++的参考,可以参考,如果需要c的代码,可以上http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html, 这个可以看作是ACO的官方网站了,里面的内容比较多。
算法说明算法以求解TSP问题为例,用来演示ACO的框架。
算法设定了两个类,一个是ACO,用来处理文件信息的读入,信息素的更新,路径的计算等;另一个是ant,即蚂蚁的信息。
23个基本测试函数蚁群算法蚁群算法是一种模拟蚂蚁行为的启发式算法,它通过模拟蚁群寻找食物的行为,来解决各种优化问题。
蚁群算法的核心思想是通过信息交流和反馈机制来寻找问题的最优解。
本文将介绍蚁群算法的基本原理,并以23个基本测试函数为例,展示蚁群算法在解决优化问题中的应用。
1. 算法简介蚁群算法最早由意大利学者Dorigo在1992年提出,其灵感来自于观察蚂蚁在寻找食物时的行为。
蚁群算法将问题抽象成一个图论模型,其中蚂蚁代表解空间中的候选解,信息素则代表蚂蚁之间的信息交流。
蚂蚁根据信息素的浓度和距离选择路径,并在路径上释放信息素,从而影响其他蚂蚁的选择。
通过多次迭代,蚂蚁群体逐渐收敛于最优解。
2. 蚁群算法的基本步骤蚁群算法主要包括初始化、路径选择、信息素更新和收敛判断等步骤。
2.1 初始化在蚁群算法中,需要初始化蚂蚁的位置和信息素的浓度。
蚂蚁的初始位置可以随机选择或者根据问题的特点进行设置。
信息素的初始浓度通常设置为一个较小的常数。
2.2 路径选择在路径选择阶段,蚂蚁根据信息素的浓度和距离选择路径。
通常情况下,信息素浓度较高的路径会有更多的蚂蚁选择,但也存在一定的随机性,以保证算法能够全局搜索。
2.3 信息素更新在信息素更新阶段,蚂蚁根据问题的优化目标更新路径上的信息素。
通常情况下,蚂蚁在路径上释放的信息素与路径的优化程度成正比。
信息素的更新规则可以根据具体问题进行设计。
2.4 收敛判断在每轮迭代之后,需要判断算法是否收敛。
通常情况下,可以通过设定一个停止准则来判断算法是否继续迭代。
常用的停止准则包括迭代次数、目标函数值的变化幅度等。
3. 蚁群算法在优化问题中的应用蚁群算法在解决各种优化问题中具有广泛的应用。
下面以23个基本测试函数为例,展示蚁群算法在不同问题中的应用。
3.1 球面函数球面函数是一个简单的优化问题,目标是找到一个全局最小值。
蚁群算法通过信息素的交流和反馈机制,可以在搜索空间中快速找到最优解。
1. 蚁群算法简介蚁群算法(Ant Clony Optimization,ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。
蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。
经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。
蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。
在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。
图(1)显示了这样一个觅食的过程。
图(1)蚂蚁觅食在图1(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。
这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。
假如在A和E之间突然出现了一个障碍物(图1(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的信息素(pheromone),蚂蚁朝着两个方向行进的概率是相等的。
但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会议一定的速率散发掉。
信息素是蚂蚁之间交流的工具之一。
它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。
很明显,沿着短边的的路径上信息素将会越来越浓(图1(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。
2. TSP问题描述蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。
TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种,是一种NP-hard问题,此类问题用一般的算法是很大得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。