蚁群算法
- 格式:ppt
- 大小:388.00 KB
- 文档页数:15
蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。
该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。
蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。
蚁群算法是群智能理论研究领域的一种主要算法。
1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。
sigmoid蚁群算法
蚁群算法,是优化算法当中的一种。
蚁群算法擅长解决组合优化问题。
蚁群算法能够有效的解决著名的旅行商问题(TSP),不止如此,在其他的一些领域也取得了一定的成效,例如工序排序问题,图着色问题,网络路由问题等等。
接下来便为大家简单介绍蚁群算法的基本思想。
蚁群算法,顾名思义就是根据蚁群觅食行为而得来的一种算法。
单只蚂蚁的觅食行为貌似是杂乱无章的,但是据昆虫学家观察,蚁群在觅食时总能够找到离食物最近的路线,这其中的原因是什么呢?其实,蚂蚁的视力并不是很好,但是他们又是凭借什么区寻找到距离食物的最短路径的呢?经过研究发现,每一只蚂蚁在觅食的过程中,会在沿途释放出一种叫做信息素的物质。
其他蚂蚁会察觉到这种物质,因此,这种物质会影响到其他蚂蚁的觅食行为。
当一些路径上经过的蚂蚁越多时,这条路径上的信息素浓度也就越高,其他蚂蚁选择这条路径的可能性也就越大,从而更增加了这条路径上的信息素浓度。
当然,一条路径上的信息素浓度也会随着时间的流逝而降低。
这种选择过程被称之为蚂蚁的自催化行为,是一种正反馈机制,也可以将整个蚁群认定为一个增强型学习系统。
蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。
这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。
它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。
蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。
由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。
蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。
蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。
在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。
蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。
蚂蚁是自然界中常见的一种生物,在昆虫世界,蚂蚁是一种群居的世袭大家庭,我们称之为蚁群(ant colony)。
蚁群具有高度组织的社会性,彼此间的沟通不仅可以借助触觉、视觉的联系,在大规模的协调行动上可以借助外激素(pheromone)之类的生产化信息介质。
蚁群的觅食行为是最易观察的,每只蚂蚁具有如下的职能:平时在巢穴附近作无规则行走,一旦发现食物,如果独自能搬的就往回搬,否则就回巢搬兵,一路上它会留下外激素的嗅迹,其强度通常与食物的品质和数量成正比;若其他蚂蚁遇到嗅迹,就会循迹前进,但也会有一定的走失率,走失率与嗅迹的强度成反比,从而相互协作,完成复杂的任务。
1991年意大利学者M.Dorigo等人首先提出了蚁群算法(ant colony algorithm),人们开始了对蚁群的研究:相对弱小,功能并不强大的个体是如何完成复杂的工作的,因此在此基础上,蚁群算法从对蚁群行为的研究中产生且逐渐发展起来。
蚁群算法是一种随机搜索算法。
诸多研究证明,蚁群算法具有很强的寻优能力,不仅利用正反馈原理,在一定程度上加快了寻优过程,而且是一种本质并行算法,不同个体之间进行信息交流和传递,从而相互协作,有利于发现更好解。
它具有以下优点[3]:(1)较强的通用性:对基本蚁群算法模型稍加修改,便可以应用于其他问题。
(2)分布式计算:蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现。
(3)易于与其它方法结合:蚁群算法很容易与多种启发式算法结合,以改善算法的性能。
蚁群算法也有一些缺陷:(1)需要较长的搜索时间:由于蚁群中多个个体的运动是随机的,虽然通过信息的交流能够向着最优路径进化,但是当群体规模较大时,很难在短时间内从复杂无章的路径中找出一条较好的路径。
(2)容易出现停滞现象(stagnation behavior):即在搜索进行到一定程度后,所有个体所发现的解完全一样,不能对解空间进一步进行搜索,不利于发现更好的解。