答案:B
题型一 题型二
题型一 极坐标系中点的表示
【例 1】 已知点 M 的极坐标为 5,π3 , 下列给出的四个坐
标中与点������的坐标重合的是( ).
A.
5,-
π 3
B.
5,
4π 3
C.
5,-
2π 3
D.
5,-
5π 3
极径解 相析等:,极与角点相M差重2合π的的极整坐数标倍可.根以据表选示项为,当5k,=2���-���1π时+,π32kπ(+������∈π3 =Z),即
再在射线������������的反向延长线上取点������, 使
|������������| = 2
C.作射线
OP,使∠xOP=
7π 6
,
再在射线������������的反向延长线上取点������,
使
|������������| = 2
D.作射线
OP,使∠xOP=−
π 6
,
再在射线������������上取点������,
题型一 题型二
【变式训练 1】 在极坐标系中,画出点
������
1,π4
, ������
2,32π
, ������
3,-
π 4
, ������
4,94π
.
解:在极坐标系中先作出角π4的终边,再在其上截取|OA|=1,这样
可得到点 A
1,
π 4
.同样可作出点 B
2,
3π 2
,C
3,-
π 4
,D
4,
9π 4
分析:欲确定点的位置,需先确定ρ和θ的值. 解:由点A在极坐标系中的位置知,它的极径为4,极角为0,所以它的 极坐标为A(4,0).同理, 得������ 2,π4 , ������ 3,π2 , ������ 1,56π , ������ 4, π , ������ 6,43π , ������ 5,53π , 而极点O的极坐标为(0,θ),θ∈[0,2π).