第二章 生命函数与生命表理论
- 格式:ppt
- 大小:924.00 KB
- 文档页数:28
保险精算学-笔记-涵盖(利息,⽣命表,寿险精算及实务,⾮寿险,风险理论,内容丰富)第⼀章:利息理论基础第⼀节:利息的度量⼀、利息的定义利息产⽣在资⾦的所有者和使⽤者不统⼀的场合,它的实质是资⾦的使⽤者付给资⾦所有者的租⾦,⽤以补偿所有者在资⾦租借期内不能⽀配该笔资⾦⽽蒙受的损失。
⼆、利息的度量利息可以按照不同的标准来度量,主要的度量⽅式有1、按照计息时刻划分:期末计息:利率期初计息:贴现率2、按照积累⽅式划分:(1)线性积累:单利计息单贴现计息(2)指数积累:复利计息复贴现计息(3)单复利/贴现计息之间的相关关系单利的实质利率逐期递减,复利的实质利率保持恒定。
单贴现的实质利率逐期递增,复贴现的实质利率保持恒定。
时,相同单复利场合,复利计息⽐单利计息产⽣更⼤的积累值。
所以长期业务⼀般复利计息。
时,相同单复利场合,单利计息⽐复利计息产⽣更⼤的积累值。
所以短期业务⼀般单利计息。
3、按照利息转换频率划分:(1)⼀年转换⼀次:实质利率(实质贴现率)(2)⼀年转换次:名义利率(名义贴现率)(3)连续计息(⼀年转换⽆穷次):利息效⼒特别,恒定利息效⼒场合有三、变利息1、什么是变利息2、常见的变利息情况(1)连续变化场合(2)离散变化场合第⼆节:利息问题求解原则⼀、利息问题求解四要素1、原始投资本⾦2、投资时期的长度3、利率及计息⽅式4、本⾦在投资期末的积累值⼆、利息问题求解的原则1、本质任何⼀个有关利息问题的求解本质都是对四要素知三求⼀的问题。
2、⼯具现⾦流图:⼀维坐标图,记录资⾦按时间顺序投⼊或抽出的⽰意图。
3、⽅法建⽴现⾦流分析⽅程(求值⽅程)4、原则在任意时间参照点,求值⽅程等号两边现时值相等。
第三节:年⾦⼀、年⾦的定义与分类1、年⾦的定义:按⼀定的时间间隔⽀付的⼀系列付款称为年⾦。
原始含义是限于⼀年⽀付⼀次的付款,现已推⼴到任意间隔长度的系列付款。
2、年⾦的分类:(1)基本年⾦约束条件:等时间间隔付款付款频率与利息转换频率⼀致每次付款⾦额恒定(2)⼀般年⾦不满⾜基本年⾦三个约束条件的年⾦即为⼀般年⾦。
第二章 生存分布与生命表本章主要研究生存分布与生命函数第一节 生存分布本节主要研究:三个随机变量X 、T 、K 的分布,其中以X 的分布作为最基本的分布。
一、X 的分布X :表示一个人从出生到死亡时间;个人寿命;连续型随机变量。
其分布函数记为()F x ,其密度函数记为()f x 。
于是 ()()F x P X x =≤ (0)x ≥()f x ='()F x =0()()limx F x x F x x∆→+∆−∆;其分子为在x 岁与x x +∆岁间死亡概率(不妨假设0x ∆>),当0x ∆→时,()f x 表示在x 岁这一瞬间的年死亡概率。
于是()F x =0()xf u du ∫12()P x X x <≤=21()()F x F x −=21()x x f u du ∫ ①记()s x =()P X x >=1()F x −为一个新生婴儿活过x 岁的概率。
在统计学中,常用分布函数()F x ;而在精算学中,则更多使用()s x 。
具有如下性质:①(0)1s = ; ②()0s +∞=;③()s x 是递减函数; ④()s x 一般为连续函数。
12()P x X x <≤=21()()F x F x −=12()()s x s x −. ()E X =()xf x dx +∞∫var()T =20(())()x E x f x dx +∞−∫=22()(())E x E x −。
二、T 的分布()T T x = 表示()x 未来能够生存的时间,或称为未来寿命或剩余寿命,连续型r.v 。
()T T x ==X x − 显然 (0)T X = T 的分布函数为 ()G t =(t)P T ≤=(|)P X x t X x −≤> =()()()s x s x t s x −+它表示()x 在未来t 年内的死亡概率。
密度函数为 ()g t ='()G t 表示()x 在x t +岁时的年度死亡概率。
流行病学中的生存分析与生命表计算在流行病学研究中,生存分析和生命表计算是两个重要的统计方法,用于评估人群中发病率和死亡率的模式和趋势。
本文将介绍生存分析和生命表计算的原理和应用,并探讨其在流行病学研究中的重要性。
生存分析是一种研究个体从某个特定时间点到达某个特定事件的时间的统计方法。
在流行病学中,我们通常关心的特定事件可以是死亡、罹患某种疾病或其他特定的健康事件。
生存分析的目的是评估这些特定事件发生的概率和时间,并探索相关的影响因素。
在生存分析中,一个重要的概念是生存函数(Survival Function),它描述了个体在特定时间点之前生存下来的概率。
生存函数通常用Kaplan-Meier曲线来表示,它能够显示出随时间的推移,个体生存下来的比例。
通过比较不同人群的生存曲线,我们可以评估不同因素对生存的影响。
除了生存函数,另一个常用的统计量是累积风险(Cumulative Risk),它表示在某个时间点之前发生某个特定事件的概率。
累积风险通常用来比较不同人群在特定时间点之前罹患某种疾病的风险。
生命表是一种用于评估人群中死亡率和生存率的方法。
生命表主要包括年龄特定死亡率(Age-specific Death Rate)和年龄特定生存率(Age-specific Survival Rate)。
年龄特定死亡率表示在特定年龄段内,平均每单位人口中死亡的人数。
而年龄特定生存率则表示在特定年龄段内生存下来的人数占总人口的比例。
生命表计算可以帮助我们了解不同年龄段的人群死亡率和预期寿命。
通过比较不同群体或不同地区的生命表,可以评估不同因素对寿命的影响,并制定相关的健康政策。
生存分析和生命表计算在流行病学研究中具有广泛的应用。
在疾病流行病学研究中,生存分析可以帮助我们评估疾病的发展和预后,并了解不同因素对疾病生存率的影响。
在干预措施评估中,生存分析可以帮助我们评估干预措施对生存时间的影响,并比较不同干预组的效果。
生命表函数及计算通过生命表可以得到任意年龄的人在任何期限内的生存概率、死亡概率等相关数据。
以下介绍生命表中揭示的那些栏目所代表的函数。
1、年龄区间[x,x+1][x,x+1]表示x到x+1岁的年龄区间,除最后一个年龄区间(如:89以上)为开区间以外,其余每一个区间都有两个确定的年龄值来定义。
通常,最后一个年龄区间的起点为ω,半开区间[ω,+∞]。
2、生存人数l x设正好活到某一确切年龄x岁的生存人数以l x表示生命表的基础是生存人数,它表示在一封闭区域一定数量的人口集团随着时间的推移因死亡而逐渐减少的人口生存状态。
生存人数l x表示正好活到某一确切整数年龄x岁的人数。
在人的生命表中,作为起点的出生人数l0称为生命表的基数,研究中可以任意取值,但为方便,一般设为100 000人。
3、死亡人数d xd x为年龄区间[x,x+1]内死去的人口数。
dx是生命表上年龄区间[x,x+1]内的死亡数,不同于实际人口死亡数。
根据定义可知l x+1=l x-d x x=0,1,……ω (7.23)4、死亡概率q xq x表示存活到确切年龄x岁的人在到达x+1岁前死亡的概率。
以x至x+1的死亡人数d z占x岁存活人数l x的比例表示。
q x=d z/l x, x=0,1,……ω (7.24) q x这一指标是计算生命表的基础,在已知q x后,就可以依生命表基数l0由公式(7.1)和(7.2)计算出各年龄的存活人数l x和死亡人数d z。
l x+1=(1-q x)*l x , d z+1= q x*l x5、生存人年数L xx岁的人平均生存人年数L x是指年龄区间[x,x+1]的所有人在该区间内的存活年数,即活到确切年龄x岁的人群l z在到达x+1岁前平均存活的人年数。
人年是表示人均存活的符合单位,一人年表示一个人存活了一年。
把生存人数l x看作是在区间[t,t+1]内连续变化的函数,以此为基础的生存人年数L x的计算公式为:L x=1tx ttl dt++⎰ x=0,1……ω-1 (7.25)在死亡均匀分布(UDD)假设下,即我们假设l x曲线从x到x+1间是条直线那么,L x的计算公式可以写为:L x =(l x +l x+1)/2又根据公式(7.23)得:L x =(l x -d x +l x )/2=l x -d x /2 (7.26)注意到死亡均匀假设与l x 从0到ω是线性的假设不同,它仅在每一年年龄上假设是线性的,因此是l x 的比较精确的描述。
生命表计算公式一、生命表基本概念。
1. 定义。
- 生命表是描述种群死亡过程及存活情况的一种有用工具。
它反映了在特定条件下,一个初始数量为一定值的种群,随着年龄增长,其存活数量、死亡数量等的变化情况。
二、生命表的主要函数及计算公式。
(一)存活函数l(x)1. 定义。
- l(x)表示年龄为x时的存活个体数与初始个体数(通常设初始个体数为l(0))的比例。
2. 计算公式。
- l(x)=(N(x))/(N(0)),其中N(x)是年龄为x时存活的个体数,N(0)是初始个体数。
例如,若初始有100个个体,到年龄x = 5时还有80个个体存活,则l(5)=(80)/(100) = 0.8。
(二)死亡概率函数q(x)1. 定义。
- q(x)表示年龄为x的个体在到达年龄x+ 1之前死亡的概率。
2. 计算公式。
- q(x)=(d(x))/(l(x)),其中d(x)=l(x)-l(x + 1),即年龄x到x+1之间死亡的个体数与年龄为x时存活个体数的比例。
例如,若l(5)=0.8,l(6)=0.7,则d(5)=l(5)-l(6)=0.8 - 0.7=0.1,q(5)=(d(5))/(l(5))=(0.1)/(0.8)=0.125。
(三)死亡率函数m(x)1. 定义。
- m(x)表示在年龄x时的死亡率,它是瞬间死亡率的一种度量。
2. 计算公式。
- m(x)=(d(x))/(L(x)),这里L(x)是年龄x到x + 1之间存活个体的平均存活数。
一种近似计算L(x)的方法是L(x)=(l(x)+l(x + 1))/(2)。
例如,若l(5)=0.8,l(6)=0.7,则L(5)=(0.8 + 0.7)/(2)=0.75,若d(5)=0.1,则m(5)=(d(5))/(L(5))=(0.1)/(0.75)=(2)/(15)≈0.133。
(四)平均余寿函数e(x)1. 定义。
- e(x)表示年龄为x的个体的平均剩余寿命。
2. 计算公式。
第⼆章⽣命表函数与⽣命表构造第⼆章⽣命表函数与⽣命表构造第⼀节⽣命表函数⼀、⽣存函数1、定义:2、概率意义:新⽣⼉能活到的概率3、与分布函数的关系:4、与密度函数的关系:⼆、剩余寿命1、定义:已经活到x岁的⼈(简记),还能继续存活的时间,称为剩余寿命,记作T(x)。
2、剩余寿命的分布函数5、:,它的概率意义为:将在未来的年内去世的概率,简记3、剩余寿命的⽣存函数:,它的概率意义为:能活过岁的概率,简记特别:(1)(2)(3)(4):将在岁与岁之间去世的概率4、整值剩余寿命(1)定义:未来存活的完整年数,简记(2)概率函数:5、剩余寿命的期望与⽅差(1)期望剩余寿命:剩余寿命的期望值(均值),简记(2)剩余寿命的⽅差:6、整值剩余寿命的期望与⽅差(1)期望整值剩余寿命:整值剩余寿命的期望值(均值),简记(2)整值剩余寿命的⽅差:2三、死亡效⼒1、定义:的⼈瞬时死亡率,记作2、死亡效⼒与⽣存函数的关系3、死亡效⼒与密度函数的关系4、死亡效⼒表⽰剩余寿命的密度函数记为剩余寿命的分布函数,为的密度函数,则第⼆节⽣命表的构造⼀、有关寿命分布的参数模型1、de Moivre模型(1729)2、Gompertz模型(1825)3、Makeham模型(1860)4、Weibull模型(1939)⼆、⽣命表的起源1、参数模型的缺点(1)⾄今为⽌找不到⾮常合适的寿命分布拟合模型。
这四个常⽤模型的拟合效果不令⼈满意。
(2)使⽤这些参数模型推测未来的寿命状况会产⽣很⼤的误差(3)寿险中通常不使⽤参数模型拟合寿命分布,⽽是使⽤⾮参数⽅法确定的⽣命表拟合⼈类寿命的分布。
(4)在⾮寿险领域,常⽤参数模型拟合物体寿命的分布。
2、⽣命表的起源(1)⽣命表的定义根据已往⼀定时期内各种年龄的死亡统计资料编制成的由每个年龄死亡率所组成的汇总表.(2)⽣命表的发展历史1662年,Jone Graunt,根据伦敦瘟疫时期的洗礼和死亡名单,写过《⽣命表的⾃然和政治观察》。