生命表函数
- 格式:ppt
- 大小:179.00 KB
- 文档页数:16
生命表函数及计算通过生命表可以得到任意年龄的人在任何期限内的生存概率、死亡概率等相关数据。
以下介绍生命表中揭示的那些栏目所代表的函数。
1、年龄区间[x,x+1][x,x+1]表示x到x+1岁的年龄区间,除最后一个年龄区间(如:89以上)为开区间以外,其余每一个区间都有两个确定的年龄值来定义。
通常,最后一个年龄区间的起点为ω,半开区间[ω,+∞]。
2、生存人数l x设正好活到某一确切年龄x岁的生存人数以l x表示生命表的基础是生存人数,它表示在一封闭区域一定数量的人口集团随着时间的推移因死亡而逐渐减少的人口生存状态。
生存人数l x表示正好活到某一确切整数年龄x岁的人数。
在人的生命表中,作为起点的出生人数l0称为生命表的基数,研究中可以任意取值,但为方便,一般设为100 000人。
3、死亡人数d xd x为年龄区间[x,x+1]内死去的人口数。
dx是生命表上年龄区间[x,x+1]内的死亡数,不同于实际人口死亡数。
根据定义可知l x+1=l x-d x x=0,1,……ω (7.23)4、死亡概率q xq x表示存活到确切年龄x岁的人在到达x+1岁前死亡的概率。
以x至x+1的死亡人数d z占x岁存活人数l x的比例表示。
q x=d z/l x, x=0,1,……ω (7.24) q x这一指标是计算生命表的基础,在已知q x后,就可以依生命表基数l0由公式(7.1)和(7.2)计算出各年龄的存活人数l x和死亡人数d z。
l x+1=(1-q x)*l x , d z+1= q x*l x5、生存人年数L xx岁的人平均生存人年数L x是指年龄区间[x,x+1]的所有人在该区间内的存活年数,即活到确切年龄x岁的人群l z在到达x+1岁前平均存活的人年数。
人年是表示人均存活的符合单位,一人年表示一个人存活了一年。
把生存人数l x看作是在区间[t,t+1]内连续变化的函数,以此为基础的生存人年数L x的计算公式为:L x=1tx ttl dt++⎰ x=0,1……ω-1 (7.25)在死亡均匀分布(UDD)假设下,即我们假设l x曲线从x到x+1间是条直线那么,L x的计算公式可以写为:L x =(l x +l x+1)/2又根据公式(7.23)得:L x =(l x -d x +l x )/2=l x -d x /2 (7.26)注意到死亡均匀假设与l x 从0到ω是线性的假设不同,它仅在每一年年龄上假设是线性的,因此是l x 的比较精确的描述。
《保险精算学》笔记:生命表函数与生命表构造第一节生命表函数一、生存函数1、定义:2、概率意义:新生儿能活到的概率3、与分布函数的关系:4、与密度函数的关系:二、剩余寿命1、定义:已经活到x岁的人(简记),还能继续存活的时间,称为剩余寿命,记作T(x)。
2、剩余寿命的分布函数5、:,它的概率意义为:将在未来的年去世的概率,简记3、剩余寿命的生存函数:,它的概率意义为:能活过岁的概率,简记特别:(1)(2)(3)(4):将在岁与岁之间去世的概率4、整值剩余寿命(1)定义:未来存活的完整年数,简记(2)概率函数:5、剩余寿命的期望与方差(1)期望剩余寿命:剩余寿命的期望值(均值),简记(2)剩余寿命的方差:6、整值剩余寿命的期望与方差(1)期望整值剩余寿命:整值剩余寿命的期望值(均值),简记(2)整值剩余寿命的方差:2三、死亡效力1、定义:的人瞬时死亡率,记作2、死亡效力与生存函数的关系3、死亡效力与密度函数的关系4、死亡效力表示剩余寿命的密度函数记为剩余寿命的分布函数,为的密度函数,则第二节生命表的构造一、有关寿命分布的参数模型1、de Moivre模型(1729)2、Gompertz模型(1825)3、Makeham模型(1860)4、Weibull模型(1939)二、生命表的起源1、参数模型的缺点(1)至今为止找不到非常合适的寿命分布拟合模型。
这四个常用模型的拟合效果不令人满意。
(2)使用这些参数模型推测未来的寿命状况会产生很大的误差(3)寿险常不使用参数模型拟合寿命分布,而是使用非参数方法确定的生命表拟合人类寿命的分布。
(4)在非寿险领域,常用参数模型拟合物体寿命的分布。
2、生命表的起源(1)生命表的定义根据已往一定时期各种年龄的死亡统计资料编制成的由每个年龄死亡率所组成的汇总表.(2)生命表的发展历史1662年,Jone Graunt,根据伦敦瘟疫时期的洗礼和死亡,写过《生命表的自然和政治观察》。
第二章生命表函数与生命表构造第一节生命表函数一、生存函数1、定义:2、概率意义:新生儿能活到的概率3、与分布函数的关系:4、与密度函数的关系:二、剩余寿命1、定义:已经活到x岁的人(简记),还能继续存活的时间,称为剩余寿命,记作T(x)。
2、剩余寿命的分布函数5、:,它的概率意义为:将在未来的年内去世的概率,简记3、剩余寿命的生存函数:,它的概率意义为:能活过岁的概率,简记特别:(1)(2)(3)(4):将在岁与岁之间去世的概率4、整值剩余寿命(1)定义:未来存活的完整年数,简记(2)概率函数:5、剩余寿命的期望与方差(1)期望剩余寿命:剩余寿命的期望值(均值),简记(2)剩余寿命的方差:6、整值剩余寿命的期望与方差(1)期望整值剩余寿命:整值剩余寿命的期望值(均值),简记(2)整值剩余寿命的方差:2三、死亡效力1、定义:的人瞬时死亡率,记作2、死亡效力与生存函数的关系3、死亡效力与密度函数的关系4、死亡效力表示剩余寿命的密度函数记为剩余寿命的分布函数,为的密度函数,则第二节生命表的构造一、有关寿命分布的参数模型1、de Moivre模型(1729)2、Gompertz模型(1825)3、Makeham模型(1860)4、Weibull模型(1939)二、生命表的起源1、参数模型的缺点(1)至今为止找不到非常合适的寿命分布拟合模型。
这四个常用模型的拟合效果不令人满意。
(2)使用这些参数模型推测未来的寿命状况会产生很大的误差(3)寿险中通常不使用参数模型拟合寿命分布,而是使用非参数方法确定的生命表拟合人类寿命的分布。
(4)在非寿险领域,常用参数模型拟合物体寿命的分布。
2、生命表的起源(1)生命表的定义根据已往一定时期内各种年龄的死亡统计资料编制成的由每个年龄死亡率所组成的汇总表.(2)生命表的发展历史1662年,Jone Graunt,根据伦敦瘟疫时期的洗礼和死亡名单,写过《生命表的自然和政治观察》。
生命表计算公式一、生命表基本概念。
1. 定义。
- 生命表是描述种群死亡过程及存活情况的一种有用工具。
它反映了在特定条件下,一个初始数量为一定值的种群,随着年龄增长,其存活数量、死亡数量等的变化情况。
二、生命表的主要函数及计算公式。
(一)存活函数l(x)1. 定义。
- l(x)表示年龄为x时的存活个体数与初始个体数(通常设初始个体数为l(0))的比例。
2. 计算公式。
- l(x)=(N(x))/(N(0)),其中N(x)是年龄为x时存活的个体数,N(0)是初始个体数。
例如,若初始有100个个体,到年龄x = 5时还有80个个体存活,则l(5)=(80)/(100) = 0.8。
(二)死亡概率函数q(x)1. 定义。
- q(x)表示年龄为x的个体在到达年龄x+ 1之前死亡的概率。
2. 计算公式。
- q(x)=(d(x))/(l(x)),其中d(x)=l(x)-l(x + 1),即年龄x到x+1之间死亡的个体数与年龄为x时存活个体数的比例。
例如,若l(5)=0.8,l(6)=0.7,则d(5)=l(5)-l(6)=0.8 - 0.7=0.1,q(5)=(d(5))/(l(5))=(0.1)/(0.8)=0.125。
(三)死亡率函数m(x)1. 定义。
- m(x)表示在年龄x时的死亡率,它是瞬间死亡率的一种度量。
2. 计算公式。
- m(x)=(d(x))/(L(x)),这里L(x)是年龄x到x + 1之间存活个体的平均存活数。
一种近似计算L(x)的方法是L(x)=(l(x)+l(x + 1))/(2)。
例如,若l(5)=0.8,l(6)=0.7,则L(5)=(0.8 + 0.7)/(2)=0.75,若d(5)=0.1,则m(5)=(d(5))/(L(5))=(0.1)/(0.75)=(2)/(15)≈0.133。
(四)平均余寿函数e(x)1. 定义。
- e(x)表示年龄为x的个体的平均剩余寿命。
2. 计算公式。
第⼆章⽣命表函数与⽣命表构造第⼆章⽣命表函数与⽣命表构造第⼀节⽣命表函数⼀、⽣存函数1、定义:2、概率意义:新⽣⼉能活到的概率3、与分布函数的关系:4、与密度函数的关系:⼆、剩余寿命1、定义:已经活到x岁的⼈(简记),还能继续存活的时间,称为剩余寿命,记作T(x)。
2、剩余寿命的分布函数5、:,它的概率意义为:将在未来的年内去世的概率,简记3、剩余寿命的⽣存函数:,它的概率意义为:能活过岁的概率,简记特别:(1)(2)(3)(4):将在岁与岁之间去世的概率4、整值剩余寿命(1)定义:未来存活的完整年数,简记(2)概率函数:5、剩余寿命的期望与⽅差(1)期望剩余寿命:剩余寿命的期望值(均值),简记(2)剩余寿命的⽅差:6、整值剩余寿命的期望与⽅差(1)期望整值剩余寿命:整值剩余寿命的期望值(均值),简记(2)整值剩余寿命的⽅差:2三、死亡效⼒1、定义:的⼈瞬时死亡率,记作2、死亡效⼒与⽣存函数的关系3、死亡效⼒与密度函数的关系4、死亡效⼒表⽰剩余寿命的密度函数记为剩余寿命的分布函数,为的密度函数,则第⼆节⽣命表的构造⼀、有关寿命分布的参数模型1、de Moivre模型(1729)2、Gompertz模型(1825)3、Makeham模型(1860)4、Weibull模型(1939)⼆、⽣命表的起源1、参数模型的缺点(1)⾄今为⽌找不到⾮常合适的寿命分布拟合模型。
这四个常⽤模型的拟合效果不令⼈满意。
(2)使⽤这些参数模型推测未来的寿命状况会产⽣很⼤的误差(3)寿险中通常不使⽤参数模型拟合寿命分布,⽽是使⽤⾮参数⽅法确定的⽣命表拟合⼈类寿命的分布。
(4)在⾮寿险领域,常⽤参数模型拟合物体寿命的分布。
2、⽣命表的起源(1)⽣命表的定义根据已往⼀定时期内各种年龄的死亡统计资料编制成的由每个年龄死亡率所组成的汇总表.(2)⽣命表的发展历史1662年,Jone Graunt,根据伦敦瘟疫时期的洗礼和死亡名单,写过《⽣命表的⾃然和政治观察》。