第五章矩阵分析基础
- 格式:ppt
- 大小:344.00 KB
- 文档页数:2
线性代数在深度学习中的应用研究第一章简介线性代数作为一门数学基础课,是现代数学的一个重要分支,线性代数的基本思想和方法在很多自然科学和工程学科中都有广泛的应用。
深度学习是机器学习的一种方法,是通过构建神经网络实现对数据的学习和处理。
本文将分析线性代数在深度学习中的应用研究。
第二章神经网络的数学基础神经网络是一个输入输出关系的模型,用于解决分类、回归、聚类等问题。
在神经网络中,每个节点的输入是所连接节点的输出,这种关系可以由矩阵乘法和非线性函数实现。
因此,矩阵乘法是神经网络的核心操作,而线性代数的基础知识对于理解矩阵乘法和神经网络的结构至关重要。
第三章线性代数在深度学习中的应用3.1 矩阵乘法矩阵乘法是神经网络中最基础和最重要的运算之一。
在神经网络的训练过程中,我们需要将输入数据通过神经网络前向传递、反向传递,并更新网络的权重。
矩阵乘法就是实现这些操作的基础。
3.2 矩阵分解矩阵分解是将一个矩阵拆分成多个矩阵的乘积的过程。
矩阵分解在深度学习中有广泛的应用,如奇异值分解、QR分解等。
其中,奇异值分解可以用于降维和数据压缩,QR分解可以用于减少矩阵求逆所需的计算量。
3.3 矩阵求逆矩阵的逆是实现神经网络训练中反向传递时必要的操作。
矩阵逆的求解是一个比较耗时的过程,而如果数据集很大,这个过程会变得非常复杂。
因此,研究如何高效地求解矩阵逆是深度学习中的一个重要问题。
3.4 特征值和特征向量特征值和特征向量是矩阵分析中的基础概念,可用于对数据进行降维、聚类和分类等操作。
在深度学习中,特征值和特征向量可以用于对神经网络的权重进行分析和优化。
第四章案例分析4.1 手写数字识别手写数字识别是计算机视觉中一个重要的问题。
在深度学习中,使用卷积神经网络结合线性代数知识可以实现对手写数字的快速识别。
4.2 小麦病害检测小麦病害检测是农业中的一个重要问题。
利用深度学习技术实现对小麦图像的分类和识别,在现代农业中有着广泛的应用。
P25⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∴+-=-=+-=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-==-=-=∈∈∀+=-+-=--+=+-+=+∈∀11-11-11-00011-11-11-000),,(),,()()(0110101111011011100110011101)()3(0100,0010,10012)()()()()(,)()()()()(,)1.(1421121121121121122121121221121121121111211211212211212121212121该基下的对应的矩阵为同理:变换的像分别求上一组基的线性以取这样的一组基这是一个三维空间,可可以写为)对于空间(的线性变换是根据定义可知,设设E E E E E E T E E E T E E E T E E E T E E E a a a a W W W T X T B X X B BX X B X T FW X X T X T B X X B B X X B B X B X X B X B BX X X X B X X T WX X T T T T TT TT TTT T T T λλλλλλ()()()()()()()()()()()()()()123123123123-1123123123123123123123123-1123-1123115.,,,,,,,,101110-121,,=,,,,,=,,,,,,,,,,,,,,=,T A T B A P P T T P T P AP P AP B P APηηηηηηεεεεεεεεεηηηηηηεεεεεεηηηηηηηηηεεεεεεηη==⎛⎫⎪= ⎪ ⎪⎝⎭=⎡⎤⎣⎦=⎡⎤⎣⎦===解:由题意知:其中,设则则由()()()23-1123123-11-1,=,,,,-110100010100010=100010=110010=1101-1100110100110101010101001110110110101-12111P P B P AP ηηηηεεε-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得到-111132⎛⎫ ⎪ ⎪ ⎪⎝⎭1.16(1)证明:()()()()()()()221223131212122T f t T f t x x x x t t x x t t +=+++++++⎡⎤⎡⎤⎣⎦⎣⎦ Q ()()()22123231312T x x t x t x x x x t x x t ⎡⎤++=+++++⎣⎦()()2123011,,1011,,110Tx x x t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦∴()()22121213112232T f t f t T x x t x t x x t x t ⎡⎤+=+++++⎡⎤⎣⎦⎣⎦()()2212123122T x x t t x t t ⎡⎤=++++⎣⎦()()221231212,,2,,TT x x x t t t t ⎡⎤=++⎢⎥⎣⎦()()221231212011,,1012,,110Tx x x t t t t ⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦()()()()()2223131212122x x x x t t x x t t =+++++++∴()()12T f t f t +=⎡⎤⎣⎦()()12T f t T f t +⎡⎤⎡⎤⎣⎦⎣⎦ ()()2123T f t T x x t x t λλλλ=++⎡⎤⎣⎦()()2123,,,,T T x x x t t λλλ⎡⎤=⎢⎥⎣⎦()()2123011,,101,,110Tx x x t t λλλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()()()2231312x x x x t x x t λλλ=+++++()T f t λ=⎡⎤⎣⎦ ∴T 是[]3F x 的线性变换 (2)解: ()()2123T f t T xx tx t=++⎡⎤⎣⎦ ()()()21231x T x T t x T t =++()()()()2212311T f t x t t x t x t =+++++⎡⎤⎣⎦∴()21T t t =+;()21T t t =+;()21T t t =+∴()()220111,,1011,,110T t t t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦∴T 在基21,,t t 下的矩阵A 为011101110⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(3)解:()()211112111E A λλλλλλ---=--=-+--1232;1λλλ===-()112=1,1,1Tλξ=时,可以求得特征向量()()2323==1,1,0=1,0,1TTλλξξ=---1时,可以求得特征向量,故111=110101P ⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦()()21231,,t t P ∂∂∂=令,,()()2221111,,1101011,1,1t t t t t t ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦=++--则T 在基1∂=21t t ++,2∂=1t -,3∂=21t -下的矩阵为对角矩阵.P45第二章 内积空间练习题1.解:(1)Q ()11221x y x y αβ,=++,∴()11221x y x y λαβλλ,=++。
矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。
该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。
本文主要介绍该书第四版中的课后练习题及其答案。
提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。
其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。
内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。
本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。
第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。
本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。
第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。
本章习题主要涉及矩阵运算的基本操作和应用。
第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。
本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。
第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。
本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。
结语本文介绍了矩阵分析引论第四版课后练习题及其答案。
对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。
本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。
同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。
一、定义设V 是一个非空集合, F 为数域.上述的两种运算满足以下八条运算规律,那 么 就称为数域 F 上的线性空间.[ V, F, “+”, “.”, 8 ]判别线性空间的方法:一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间.R[X]n 是次数不超过n 的多项式,构成了向量空间,其基是[1,X,X 2,……, X n ]。
P[X]n 是次数不超过n-1的多项式,构成了向量空间,其基是[1,X,X 2,……,X n-1]。
Q[X]n 是次数不超过n 的多项式,其中an 不等于0,不构成了向量空间,。
Ax=0的解空间,称为矩阵A 的核(零)空间,记N (A )设A 为实数(或复数)m*n 矩阵,x 为n 维列向量,则m 维列向量集合V={y ∈R m (C m )|y=Ax,x ∈R n (C n ),A ∈R m*n (C m*n)}构成实(或复)数域R (或C )上的线性空间,称为A 的列空间或A 的值域,记R (A )。
线性相关与无关略所有二阶实矩阵组成的集合 ,对于矩阵的加法和数量乘法,构成实数域 上的一个线性空间.对于 中的矩阵例 1.1.11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,000122211211E E E E ,4321224213122111⎪⎪⎭⎫⎝⎛=+++k k k k E k E k E k E k 有,0000 224213122111⎪⎪⎭⎫⎝⎛==+++O E k E k E k E k 因此 03321====⇔k k k k .,,,22211211线性无关即E E E E()(),,,,,,, 2121P n n αααβββ =基变换公式矩阵P 称为由基n ααα,,,21到基n βββ,,,21 的过渡矩阵.坐标变换公式 ,'''2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x P x x x 例1.2.6略P11设V l ,V 2是线性空间V 的两个子空间, 可以验证: 21V V 构成V 的线性子空间.称为 21V V 为V l 与 V 2 的交空间.可以验证: 21V V + 构成V 的线性子空间.称21V V +为 V l 与 V 2 的和空间例1.3.5◆{}{}2122112121,span ,,span ,1,3,5,1,1,3,5,4,1,31,1,131,2ββααββαα==-=-=--==V V T TT T )()(),(),,(试求;(1)V l +V 2的基与维数;(2) 21V V 的基与维数● [解] (1)由定理3知{}212121,,,span ββαα=+V V 121,,βαα是极大无关组.故它是V 1+V 2的基,维数=3,于是且,即)设(21212V V V V ∈∈∈ααα 24132211ββαααk k k k +=+=把2121,,,ββαα的坐标代入上式,解之得4342132,35,0k k k k k -===于是. 35,5,35,35214的向量表示为V V k T⎪⎭⎫ ⎝⎛--=α其维数=l线性映射:设V1,V2是数域F 上的两个线性空间,映射T :V1->V2,如果对于任何两个向量a1,a2∈V1和任何数K∈F,都有T (a1+a2)=T(a1)+T(a2);T (Ka1)=KT(a1)便称为映射。
第五章 等(Isoparametric Elements)在前面的章节中我们已经认识了三角形单元和矩形单元。
这两种单元的边均为直边,用直边单元离散曲边的求解域势必要用更多的单元数才能较准确地描述实际边界。
本章将要介绍的等参数单元是目前应用最广的一类单元,可用这类单元更精确的描述不规则的边界。
这类单元的出现不仅系统的解决了构造协调位移单元的问题,而且自然坐标系的描述方法也广泛为其他类型的单元所采用。
等参数单元在构造形函数时首先定义一个规则的母体单元(参考单元),在母体单元上构造形函数,再通过等参数变换将实际单元与母体单元联系起来。
变换涉及两个方面:几何图形的变换(坐标变换)和位移场函数的变换,由于两种变换采用了相同的函数关系(形函数)和同一组结点参数,故称其为等参数变换。
§5-1四结点四边形等参数单元1、母体单元 自然坐标和形函数母体单元ê :边长为2的正方形,自然坐标系ξ,η 示于图5-1。
取四个角点为结点,在单元内的排序为1、2、3、4。
仿照矩形单元,可定义出四个形函数显然有如下特点:(i )是ξ,η的双线性函数 (ii )(iii)2、实际单元与母体单元之间的坐标变换(1) 坐标变换设xy 平面上的实际单元e 由母体单元经过变换F 得到,即 且规定结点(ξi ,ηi )与结点(x i , y i )对应(i =1~4)。
这样的变换不只一个,利用(5-1-1)定义的形函数即可写出这种变换中的一个1图5-1 ())4~1()1(141),(=++=i N i i i ηηξξηξ),(ηξi N ⎩⎨⎧=≠=i j i i N ij i 当 当 =10),(δηξ),(ηξi N 1)1)(1(41)1)(1(41)1)(1(41)1)(1(41),(41≡+-++++-++--=∑=ηξηξηξηξηξi i N e e F →: (5-1-2) (5-1-1) ii i i i i y N y x N x ⋅=⋅=∑∑==4141),(),(ηξηξ(5-1-3)(5-1-3)所定义的变换有如下特点:x , y 是ξ,η的双线性函数。
《矩阵论》教学大纲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《矩阵论》课程教学大纲一、课程性质与目标(一)课程性质《矩阵论》是数学专业的选修课,是学习经典数学的基础,又是一门最具有实用价值的数学理论。
它不仅是数学的一个重要的分支,而且业已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。
(二)课程目标通过本课程的学习,使学生掌握矩阵论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质,了解近代矩阵论中十分活跃的若干分支,为今后在应用数学,计算数学专业的进一步学习和研究打下扎实的基础。
二、课程内容与教学(一)课程内容1、课程内容选编的基本原则把握理论、技能相结合的基本原则。
2、课程基本内容本课程主要介绍了线性空间、线性映射、酉空间、欧氏空间、若当标准型、矩阵的分解、矩阵的分析、矩阵函数和广义逆矩阵等基本内容。
(二)课程教学通过本课程中基本概念和基本定理的阐述和论证,培养高年级本科生的抽象思维与逻辑推理能力,提高高年级本科生的数学素养。
三、课程实施与评价(一)学时、学分本课程总学时为54学时。
学生修完本课程全部内容,成绩合格,可获3学分。
(二)教学基本条件1、教师教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。
2、教学设备配置与教学内容相关的图书、期刊、音像资料等。
(三)课程评价1、对学生能力的评价逻辑推理能力,包括逻辑思维的合理性和严密性。
2、采取教师评价为主的评价方法。
3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。
课程结束时评出成绩,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。
四、课程基本要求第一章线性空间和线性变换基本内容:线性空间线性变换基本要求:(1)理解线性空间有关内容。
(2)掌握线性变换及其矩阵表示。
第二章内积空间基本内容:欧氏空间、酉空间、正交基、正交变换基本要求:理解内积空间的有关性质掌握正交投影了解酉变换第三章矩阵的对角化、若当标准型基本内容:矩阵对角化、埃尔米特二次型、若当标准型基本要求:掌握矩阵对角化了解埃尔米特二次型理解若当标准型第四章矩阵的分解基本内容:矩阵的分解、矩阵的谱分解矩阵奇异值分解基本要求:(1)掌握矩阵的三角分解与满秩分解。
考研数学知识点总结在考研的所有科目中,数学可以算得上是拉分差距最明显的科目了。
每年成绩出来,数学接近满分的同学很多,未满及格线的同学也是一抓一大把。
那么接下来给大家分享一些关于,希望对大家有所帮助。
考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
所以同学们在前期复习的时候一定要把微积分的基础打扎实;线性代数再难,毕竟内容不多。
而且矩阵、向量、线性方程组、特征根与特征值、二次型本质思想都是一致的。
用来用去的基本工具就是对矩阵做初等变换,求线性方程组解的结构,线代难是难在每个部分的基本思想都是一样的,但却是不同的概念。
第五章矩阵分析(改)第五章矩阵分析本章将介绍矩阵微积分的⼀些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识.§5.1 向量与矩阵的范数从计算数学的⾓度看,在研究计算⽅法的收敛性和稳定性问题时,范数起到了⼗分重要的作⽤.⼀、向量的范数定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的⼀个实值函数,如果该函数关系还满⾜如下条件:1)⾮负性对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有x =0;2)齐次性对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三⾓不等式对任意V y x ∈,,有y x y x +≤+,则称此函数x (有时为强调函数关系⽽表⽰为?)为V 上的⼀种向量范数.例1 对n C 中向量()T n x x x x ,,,21 =,定义222212nx x x x+++=则2x 为n C 上的⼀种向量范数[i x 表⽰复数i x 的模].证⾸先,2n x C 是上的实值函数,并且满⾜1)⾮负性当0x ≠时,0x >;当0x =时,0x =; 2)齐次性对任意k C ∈及n x C ∈,有22||||||kx k x ==;3)三⾓不等式对任意复向量1212(,,,),(,,,)T T n n x x x x y y y y ==,有222221122||||||||()n n x y x y x y x y +=++++++2221122()()()n n x y x y x y ≤++++++22111||2||||||nnni i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ不等式)222222222||||2||||||||||||(||||||||),x x y y x y ≤++=+因此 222||||||||||||x y x y +≤+所以 2||||x 确为n C 上的⼀种向量范数例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义112||||||||||n x x x x =+++,1max i i nxx ∞≤≤=,则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数.证仅对后者进⾏证明. 1)⾮负性当0x ≠时,max 0i ixx ∞=>,⼜显然有00∞=;2)齐次性对任意向量()T n x x x x ,,,21 =及复数k ,max max ;i i iikxkx k x k x ∞∞===3)三⾓不等式对任意向量1212(,,,),(,,,),T T n n x x x x y y y y ==()i i ii i iy x y x yx +≤+=+∞max maxi ii iy x max max +≤ =∞∞+y x .综上可知∞x 确为向量范数.上两例中的∞x x x ,,21是常⽤的三种向量范数.⼀般地,对于任何不⼩于1的正数p ,向量()T n x x x x ,,,21 =的函数pni p i px x11??=∑= 也构成向量范数,称为向量的p -范数.注(1)当1p =时,1;pxx =(2)当2p =时,2x 为2-范数,它是⾣空间范数;当i x 为实数时,12221()ni i x x ==∑为欧⽒空间范数;由p -范数的存在,可知向量的范数有⽆穷多种,⽽且,向量的范数并不仅限于p -范数.在验证向量的范数定义中,三⾓不等式的过程中常涉及到两个著名的不等式,即:1、H?lder 不等式设正实数,p q 满⾜111,p q+=则对任意的,,n x y C ∈有11111()()nnnpq pqi ii i i i i x yx y ===≤∑∑∑2、Minkowski 不等式对任意实数1p ≥,及,,n x y C ∈有(111111()()()nnnpp ppppi i i i i i i x y x y ===+≤+∑∑∑).例3 设()T n 1,,1,1 =为n 维向量,则1,,21===∞xn x n x各种范数值差距很⼤.但是,各种范数之间却存在着内在的制约关系,称为范数的等价性.定理1 设βα??,为有限维线性空间V 的任意两种向量范数(它们不限于p -范数),则存在正的常数12,C C ,使对⼀切向量x ,恒有βαβx C x xC 21≤≤ (1)证如果范数x α和x β都与⼀固定范数譬如2-范数2x 满⾜式(1)的关系,则这两种范数之间也存在式(1)的关系,这是因为若存在正常数12,C C ''和12,C C '''',使 1222122,C x x C x C xx C x αββ''≤≤''''≤≤成⽴,则显然有1122||||||||||||C C x x C C x βαβ''''''≤≤ 令111222,C C C C C C ''''''==,则得式(1),因此只要对2β=证明或(1)成⽴即可.设V 是n 维的,它的⼀个基是12,,,n x x x ,于是V 中的任意向量x 可表⽰为1122n n x x x x ξξξ=+++从⽽,1122n n x x x x ααξξξ=+++可视为n 个变量12,,,n ξξξ的函数,记为12(,,,)n x α?ξξξ=,易证12(,,,)n ?ξξξ是连续函数,事实上,若令1122nn x x x x V ξξξ''''=+++∈,则 12(,,,)nx α?ξξξ''''=. 1212(,,,)(,,,)n n x x x x αααξξξ?ξξξ'''''-=-≤- 11111()()nn n nn n x x x x αααξξξξξξξξ''''=-++-≤-++-. 由于ix α(1,2,,)i n =是常数,因此i ξ'与i ξ充分接近时,12(,,,)nξξξ'''就与12(,,,)n ?ξξξ充分接近,所以12(,,,)n ?ξξξ是连续函数.所以在有界闭集{1212(,,,)1n S ξξξξξξ=+++=上,函数12(,,,)n ?ξξξ可达到最⼤值2C 及最⼩值1C .因此在S 中,i ξ不能全为零,所以10C >.记向量1212222nn y x x x xxxξξξ=+++,则其坐标分量满⾜22212122221nx x xxxξξξ+因此,y S ∈.从⽽有 11122220,,n C yC xx x αξξξ<≤=≤ ? ???. 但2,xy x =故 122x C C x α'≤≤. 即 12222C x x C x ≤≤.⼆、矩阵的范数定义 2 设V 是数域F 上所有n m ?矩阵的集合,A 是定义在V 上的⼀个实值函数,如果该函数关系还满⾜如下条件:对V 中任意矩阵A 、B 及F 中任意常数k 总有1)⾮负性 0≥A 并且仅当0=A 时,才有0=A ; 2)齐次性 A kkA =;3)三⾓不等式 B A B A +≤+;则称()?A是V 上的⼀种矩阵范数.例4 对n m C ?(或n m R ?)上的矩阵A ()ij a =定义∑∑===mi nj ij M a A111,∑∑===m i nj ijM aA1122,11max ij M i m j nA a ∞≤≤≤≤=,则∞M M M ,,21都是n m C ?(或n m R ?)上的矩阵范数.实⽤中涉及较多的是⽅阵的范数,即m n =的情形.定义 3 设F 是数域,?是n n F ?上的⽅阵范数.如果对任意的,n n A B F ?∈,总有AB A B ≤?,则说⽅阵范数?具有乘法相容性.注意:在某些教科书上,往往把乘法相容性直接纳⼊⽅阵范数的定义中作为第4个条件,在读书时,只要注意到各⾃定义的内涵就可以了.例 5 对n n C ?上的矩阵][A ij a =定义ij nj i a n A ≤≤?=,1max ,则?是⼀种矩阵范数,并且具备乘法相容性.证⾮负性与齐次性显然成⽴,另两条证明如下:三⾓不等式ij ij b a n B A +?=+max()max max ij ij n a b ≤+ B A +=;乘法相容性≤?=∑∑==n k kj ik nk kj ik b a n b a n AB 11max max()()B A b n a n ij ij =?≤max max ,证得A 为矩阵范数且具有乘法相容性.并不是所有的⽅阵范数都具有乘法相容性.例如对于22?R 上的⽅阵范数.M ∞就不具备相容性条件.此时ij j i M a A2,1m ax ≤≤=∞.取 1110,0111A B== ? ?????,∞M M BA ,⽽ 2M M M ABA B∞∞∞=>.定义4 如果n 阶矩阵A 的范数A 与n 维向量x 的范数x ,使对任意n 阶矩阵A 及任意n 维向量x 均有x A Ax ≤,则称矩阵范数A 与向量范数x是相容的.定理2 设x 是某种向量范数,对n 阶矩阵A 定义AxxAx A x x 1max max=≠==(2)则A 为⽅阵范数,称为由向量范数x 导出的矩阵范数,⽽且它具有乘法相容性并且与向量范数x 相容.证⾸先可证,由(2)式定义的函数关系||||A 满⾜与向量范数||||x 的相容性.对于任意n 阶矩阵A 及n 维向量x ,当0x ≠时,有0||||||||max ||||||||||||y Ax Ay A x y ≠≤=,即 ||||||||||||;Ax A x ≤(3)⽽当0x =时,||||0||||||||Ax A x ==,于是总有(3)式成⽴.容易验证||||A 满⾜范数定义中的⾮负性、齐次性及三⾓不等式三个条件,因⽽A 是⼀种⽅阵范数.并且,对任意n 阶矩阵,A B ,利⽤(2)式和(3)式可得maxmaxmaxx x x A BxABx Bx AB A A B xxx即说矩阵范数A 具备乘法相容性.⼀般地,把由向量p -范数p x 导出的矩阵范数记作p A .下⾯看常⽤的三种矩阵范数:例6 证明:对n 阶复矩阵[]i j A a =,有 1)11max nij j ni Aa ∞≤≤==∑,称为A 的列和范数.2)11max nij j nj Aa ∞≤≤==∑,称为A 的⾏和范数.证 1)设111max nnijikj ni i w a a≤≤===∑∑.若A 按列分块为12(,,,)n A ααα=则111max k j j nw αα≤≤==.任意n 维向量12(,,)T n x x x x =,有112211221111112111()max .n n n nn jj nAx x x x x x x x x x x w ααααααα≤≤+++≤+++≤+++≤=于是,对任意⾮零向量x 有11Ax w x ≤. 以下证明存在⾮零向量k e 使11k kAe w e =.事实上,设k e 是第k 个分量为1⽽其余分量全为0的向量,则1k e =1,且1k ik i Ae a w =∑n=1=,即11k kAe w e =.2)的证明与1)相仿,留给读者去完成. 例7 证明对n 阶复矩阵A ,有21max i i nA σ≤≤=,这⾥()n i i ,,2,1 =σ是A 的奇异值,称此范数为A 的谱范数.证设H A A 的全部特征根为12,,n λλλ不妨设11max i i nλλ≤≤=.于是11max i i nσσ≤≤==.因为H A A 为H -矩阵,故有⾣矩阵U ,使得,,H H U A AV diag λλλ=Λ=12n (,).如设12(,,,)n U u u u =则i u 是H A A 相应于特征根i λ的单位特征向量,即有,H i i i A A u u λ= 21iu =.对任意满⾜2||||1x =的复向量12(,,,)T n x x x x = ,有22||||()()H H Ax Ax Ax x ==H令H y U x =,则222222||||||||||||1H y U x x ===,说明y 亦为单位向量.若设12(,,,)T n y y y y =,则2221||||||1nii y y ===∑于是 22211||||||nHi i i Ax y y y λλ==Λ=≤∑.即有12Ax σ≤.由x 的任意性,便得21221max x A Ax σ==≤特别取1x u =,则有211111112H H H Au u A Au u u λλ===,即112Au σ=.这说明2Ax 在单位球⾯{}21,n x x x C =∈上可取到最⼤值1σ,从⽽证明了21221max x A Ax σ===各种矩阵范数之间也具有范数的等价性定理 3 设,a A A β是任意两种矩阵范数则有正实数12,,C C 使对⼀切矩阵A 恒有12a C A A C A ββ≤≤§5.2 向量与矩阵序列的收敛性在这⼀节⾥,我们将把数列极限的概念,扩展到向量序列与矩阵序列上去.可数多个向量(矩阵)按顺序成⼀列,就成为⼀个向量(矩阵)序列,()12(,,,)k k k Tk n x x x x =,1,2,3,k=是⼀个n 维向量序列,记为{}k x ,诸k x 的相应分量则形成数列{}k i x .定义5 设有向量序列()()()12{}:(,,,)k k k Tk k n x x x x x =.如果对1,2,i n =,数列(){}k i x 均收敛且有()lim k i i k x x →∞=,则说向量序列{}k x 收敛.如记12(,,,)T n x x x x =,则称x 为向量序列{}k x 的极限,记为lim k k x x →∞=,或简记为k x x →.如果向量序列{}k x 不收敛,则称为发散.类似于数列的收敛性质,读者不难证明向量序列的收敛性具有如下性质.设{},{}k k x y 是n C 中两个向量序列,,a b 是复常数,n ,m A C ?∈如果lim ,lim k k k k x x y y →∞→∞==,则1lim();2lim .k k k k k ax by ax by Ax Ax →∞→∞>+=+>=定理 4 对向量序列{}k x ,x x k =∞→k lim 的充分必要条件是0lim =-∞→x x k k ,其中?是任意⼀种向量范数.证明1)先对向量范数i ni x x=1max 证明定理成⽴.有i k i k k k x x x x =?=∞→∞→)(lim lim ,n i ,...,2,1=;,0lim )(=-?∞→i k i k x x n i ,...,2,1=;0max lim )(1=-?≤≤∞→i k i ni k x x ;0lim =-?∞∞→xx k k .2)由向量范数等价性,对任⼀种向量范数?,有正实数21,b b ,使∞∞-≤-≤-x x b x x xx b k k k 21.令∞→k 取极限即知lim 0lim 0k k k k x x x x∞→∞→∞-=?-=.于是定理对任⼀种向量范数都成⽴.根据上述定义,向量序列有极限的根本之处在于各分量形成的数列都有极限.由于m n C ?中矩阵可以看作⼀个mn 维向量,其收敛性可以和mn C 中的向量⼀样考虑.因此,我们可以⽤矩阵各个元素序列的同时收敛来规定矩阵序列的收敛性.定义 6 设有矩阵序列{}n m k ij k k a A A ?=][:)(,如果对任何,(1,1)i j i m j n ≤≤≤≤,均有ij k ij k a a =∞→)(lim 则说矩阵序列{}k A 收敛,如令n m ij a A ?=][,⼜称A 为{}k A 的极限.记为,lim A A k k =∞→或A A k →.矩阵序列不收敛时称为发散.→lim ,则()aA A a k k k =∞→lim .特别,当a 为常数时,()k k k k A a aA ∞→∞→=lim lim .2) 若A A k k =∞→lim ,B B k k =∞→lim ,则()B A B A k k k ±=±∞→lim .3) 若A A k k =∞→lim ,B B k k =∞→lim ,则()AB B A k k k =∞→lim .4) 若A A k k =∞→lim 且诸k A 及A 均可逆,则{}1-k A 收敛,并且11lim --∞→=A A k k .。