第五章 矩阵分析基础1
- 格式:ppt
- 大小:795.00 KB
- 文档页数:27
第五章 矩阵分析本章将介绍矩阵微积分的一些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,首先简要介绍向量与矩阵范数的有关知识.§5.1 向量与矩阵的范数从计算数学的角度看,在研究计算方法的收敛性和稳定性问题时,范数起到了十分重要的作用.一、向量的范数定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件1)非负性 对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有x =0;2)齐次性 对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三角不等式 对任意V y x ∈,,有y x y x +≤+,则称此函数x (有时为强调函数关系而表示为⋅) 为V 上的一种向量范数.例1 对n C 中向量()T n x x x x ,,,21 =,定义222212nx x x x+++==H x x ,则2x 为n C 上的一种向量范数[i x 表示复数i x 的模],称为2-范数.证 首先,2n x C 是上的实值函数,并且满足1)非负性 当0x ≠时,0x >;当0x =时,0x =; 2)齐次性 对任意k C ∈及n x C ∈,有2221222||||||||n kx kx kx kx k x =+++= ;3)三角不等式 对任意复向量1212(,,,),(,,,)T T n n x x x x y y y y == ,有222221122||||||||n n x y x y x y x y +=++++++2221122()()()n n x y x y x y ≤++++++22111||2||||||nnni i i i i i i x x y y ====++∑∑∑ (由Cauchy-ВуНЯКОВСКИЙ不等式)222222222||||2||||||||||||(||||||||),x x y y x y ≤++=+因此 222||||||||||||x y x y +≤+. 所以2||||x 确为n C 上的一种向量范数. 例2 对n C [或n R ]上向量12(,,,)T n x x x x = 定义 112||||||||||n x x x x =+++ , 1m a x i i nxx ∞≤≤=,则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数.证 仅对后者进行证明. 1)非负性 当0x ≠时,max 0i ixx ∞=>,又显然有00∞=;2)齐次性 对任意向量()T n x x x x ,,,21 =及复数k , m a x m a x ;i i iikxkx kx k x∞∞===3)三角不等式 对任意向量1212(,,,),(,,,),T T n n x x x x y y y y ==()i i ii i iy x y x yx +≤+=+∞max maxi ii iy x m a x m a x+≤ =∞∞+y x .综上可知∞x 确为向量范数.上两例中的∞x x x ,,21是常用的三种向量范数.一般地,对于任何不小于1的正数p ,向量()T n x x x x ,,,21 =的函数pni p i px x11⎪⎭⎫ ⎝⎛=∑= 也构成向量范数,称为向量的p -范数.注:(1)当1p =时,1pxx =;(2)当2p =时,2x 为2-范数,它是酉空间范数;当i x 为实数时,12221()ni i x x ==∑为欧氏空间范数.由p -范数的存在,可知向量的范数有无穷多种,而且向量的范数并不仅限于p -范数.在验证向量的范数定义中,三角不等式的过程中常涉及到两个著名的不等式,即1、Hölder 不等式 设正实数,p q 满足111,p q+=则对任意的,,n x y C ∈有 11111()()nnnp q pqi ii i i i i x yx y ===≤∑∑∑.2、Minkowski 不等式 对任意实数1p ≥,及,,n x y C ∈有111111()()()nnnpp ppppi i i i i i i x y x y ===+≤+∑∑∑.例3 设()Tx 1,,1,1 =为n 维向量,则1,,21===∞xn x n x .各种范数值差距很大.但是,各种范数之间却存在着内在的制约关系,称为范数的等价性.定理1 设βα⋅⋅,为有限维线性空间V 的任意两种向量范数(它们不限于p -范数),则存在正的常数12,C C ,使对一切向量x ,恒有βαβx C xxC 21≤≤. (1)证 如果范数x α和x β都与一固定范数,譬如2-范数2x 满足式(1)的关系,则这两种范数之间也存在式(1)的关系,这是因为若存在正常数12,C C ''和12,C C '''',使 1222122,C x x C x C xx C x αββ''≤≤''''≤≤成立,则显然有1122||||||||||||C C x x C C x βαβ''''''≤≤. 令111222,C C C C C C ''''''==,则得式(1),因此只要对2β=证明式(1)成立即可.设V 是n 维的,它的一个基是12,,,n x x x ,于是V 中的任意向量x 可表示为1122n n x x x x ξξξ=+++ .从而,1122n n x x x x ααξξξ=+++ 可视为n 个变量12,,,n ξξξ 的函数,记为12(,,,)n x αϕξξξ= ,易证12(,,,)n ϕξξξ 是连续函数,事实上,若令1122n n x x x x V ξξξ''''=+++∈ ,则 12(,,,)n x αϕξξξ''''= . 1212(,,,)(,,,)n n x x x x αααϕξξξϕξξξ'''''-=-≤-11111()()nn n nn n x x x x αααξξξξξξξξ''''=-++-≤-++- . 由于ix α(1,2,,)i n = 是常数,因此i ξ'与i ξ充分接近时,12(,,,)n ϕξξξ''' 就与12(,,,)n ϕξξξ 充分接近,所以12(,,,)n ϕξξξ 是连续函数.所以在有界闭集{}2221212(,,,)1n S ξξξξξξ=+++= 上,函数12(,,,)n ϕξξξ 可达到最大值2C 及最小值1C .因为在S 中,i ξ不能全为零,所以10C >.记向量1212222nn y x x x xxxξξξ=+++,则其坐标分量满足222122221nxxxξξξ+++= ,因此,y S ∈.从而有11122220,,n C yC x x x αξξξϕ⎛⎫<≤=≤ ⎪ ⎪⎝⎭.但2,xy x =故122x C C x α≤≤.即 1222C x x C x α≤≤.二、矩阵的范数定义2 设V 是数域F 上所有n m ⨯矩阵的集合,A 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件:对V 中任意矩阵A 、B 及F 中任意常数k 总有1)非负性 0≥A ,并且仅当0=A 时,才有0=A ;2)齐次性 A k kA =;3)三角不等式 B A B A +≤+, 则称()⋅A是V 上的一种矩阵范数.例4 对n m C ⨯(或n m R ⨯)上的矩阵()ij A a =定义∑∑===m i nj ij M a A111,∑∑===mi nj ijM a A1122,11max ij M i m j nAa ∞≤≤≤≤=,则∞⋅⋅⋅M M M ,,21都是n m C ⨯(或n m R ⨯)上的矩阵范数.实用中涉及较多的是方阵的范数,即m n =的情形.定义 3 设F 是数域,⋅是n n F ⨯上的方阵范数.如果对任意的,n n A B F ⨯∈,总有AB A B ≤⋅,则说方阵范数⋅具有乘法相容性.注意 在某些教科书上,往往把乘法相容性直接纳入方阵范数的定义中作为第4个条件,在读书时,只要注意到各自定义的内涵就可以了.例5 对n n C ⨯上的矩阵][ij a A =,定义ij nj i a n A ≤≤⋅=,1max ,则⋅是一种矩阵范数,并且具备乘法相容性.证 非负性与齐次性显然成立,另两条证明如下. 三角不等式ij ij b a n B A +⋅=+max()m a x m a x i j i j n a b ≤+B A +=; 乘法相容性⎪⎭⎫⎝⎛⋅≤⋅=∑∑==n k kj ik nk kj ik b a n b a n AB 11max max()()B A b n a n ij ij =⋅≤max max , 证得A 为矩阵范数且具有乘法相容性.并不是所有的方阵范数都具有乘法相容性.例如对于22⨯R 上的方阵范数.M ∞就不具备相容性条件.此时ij j i M a A2,1max ≤≤=∞.取1110,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则有1==∞∞M M BA,而2M M M ABAB∞∞∞=>.定义4 如果n 阶矩阵A 的范数A 与n 维向量x 的范数x ,使对任意n 阶矩阵A 及任意n 维向量x 均有x AAx ≤,则称矩阵范数A 与向量范数x 是相容的.定理2 设x 是某种向量范数,对n 阶矩阵A 定义Ax xAx A x x 1max max=≠== (2)则A 为方阵范数,称为由向量范数x 导出的矩阵范数,而且它具有乘法相容性并且与向量范数x 相容.证 首先可证,由(2)式定义的函数关系||||A 满足与向量范数||||x 的相容性.对于任意n 阶矩阵A 及n 维向量x ,当0x ≠时,有0||||||||max ||||||||||||y Ax Ay A x y ≠≤=, 即 ||||||||||||;Ax A x ≤ (3) 而当0x =时,||||0||||||||Ax A x ==,于是总有(3)式成立.容易验证||||A 满足范数定义中的非负性、齐次性及三角不等式三个条件,因而A 是一种方阵范数.并且,对任意n 阶矩阵,A B ,利用(2)式和(3)式可得00maxmax max x x x A Bx ABx Bx AB A A B x x x≠≠≠=≤==.即说矩阵范数A 具备乘法相容性.一般地,把由向量p -范数p x 导出的矩阵范数记作p A .下面看常用的三种矩阵范数例6 证明对n 阶复矩阵[]i j A a =,有 1)111max nij j ni A a ≤≤==∑,称为A 的列和范数.2)11max nij i nj A a ∞≤≤==∑,称为A 的行和范数.证 1)设111max n nij ik j ni i w a a ≤≤====∑∑.若A 按列分块为12(,,,)n A ααα=则111max k j j nw αα≤≤==.对任意n 维向量12(,,)T n x x x x = ,有112211221111112111()max .n n n nn jj nAx x x x x x x x x x x w ααααααα≤≤+++≤+++≤+++≤于是,对任意非零向量x 有11Ax w x ≤. 以下证明存在非零向量k e 使11k kAe w e =.事实上,设k e 是第k 个分量为1而其余分量全为0的向量,则1k e =1,且n=11k ik i Ae a w ==∑,即11k kAe w e =.2)的证明与1)相仿,留给读者去完成. 例7 证明对n 阶复矩阵A ,有21max i i nA σ≤≤=,这里()n i i ,,2,1 =σ是A 的奇异值,称此范数为A 的谱范数.证 设H A A 的全部特征根为12,,n λλλ .不妨设11max i i nλλ≤≤=.于是111max i i nσλσ≤≤==.因为H A A 为H -矩阵,故有酉矩阵U ,使得12n (,),,H H U A AU diag λλλ=Λ= .如设12(,,,)n U u u u = 则i u 是H A A 相应于特征根i λ的单位特征向量,即有,H i i i A A u u λ= 21iu =.对任意满足2||||1x =的复向量12(,,,)T n x x x x = ,有22||||()()H HAx Ax Ax x ==H U U x Λ.令H y U x =,则222222||||||||||||1H y U x x ===,说明y 亦为单位向量.若设12(,,,)T n y y y y = ,则2221||||||1nii y y ===∑,于是22211||||||n Hi i i Ax y y y λλ==Λ=≤∑.即有12Ax σ≤.由x 的任意性,便得21221max x A Ax σ==≤ .特别取1x u =,则有211111112H H H Au u A Au u u λλ===,即112Au σ=.这说明2Ax 在单位球面{}21,n x x x C =∈上可取到最大值1σ,从而证明了21221max x A Ax σ===.各种矩阵范数之间也具有范数的等价性定理3 设,a A A β是任意两种矩阵范数,则有正实数12,,C C 使对一切矩阵A 恒有12a C AA C A ββ≤≤.§5.2 向量与矩阵序列的收敛性在这一节里,我们将把数列极限的概念,扩展到向量序列与矩阵序列上去.可数多个向量(矩阵)按顺序成一列,就成为一个向量(矩阵)序列.例如()()(12(,,,)k k k T k n x x x x = ,1,2,3,k = 是一个n 维向量序列,记为{}k x ,诸k x 的相应分量则形成数列{}k i x .定义5 设有向量序列()()()12{}:(,,,)k k k Tk k n x x x x x = .如果对1,2,,i n = , 数列(){}k i x 均收敛且有()lim k i i k x x →∞=,则说向量序列{}k x 收敛.如记12(,,,)T n x x x x = ,则称x 为向量序列{}k x 的极限,记为lim k k x x →∞=,或简记为k x x →.如果向量序列{}k x 不收敛,则称为发散.类似于数列的收敛性质,读者不难证明向量序列的收敛具有如下性质.设{},{}k k x y 是n C 中两个向量序列,,a b 是复常数,n ,m A C ⨯∈如果l i m ,l i m k k k k x x y y →∞→∞==,则1lim();2lim .k k k k k ax by ax by Ax Ax →∞→∞>+=+>=定理4 对向量序列{}k x ,x x k =∞→k lim 的充分必要条件是0lim =-∞→x x k k ,其中⋅是任意一种向量范数.证 1)先对向量范数i ni x x≤≤∞=1max 证明定理成立.i k i k k k x x x x =⇔=∞→∞→)(lim lim ,n i ,...,2,1=;,0lim )(=-⇔∞→i k i k x x n i ,...,2,1=;0max lim )(1=-⇔≤≤∞→i k i ni k x x ;0lim =-⇔∞∞→xx k k .2)由向量范数等价性,对任一种向量范数⋅,有正实数21,b b ,使∞∞-≤-≤-x x b x x x x b k k k 21.令∞→k 取极限即知lim 0lim 0k k k k x x x x∞→∞→∞-=⇔-=.于是定理对任一种向量范数都成立.根据上述定义,向量序列有极限的根本之处在于各分量形成的数列都有极限.由于m n C ⨯中矩阵可以看作一个mn 维向量,其收敛性可以和mn C 中的向量一样考虑.因此,我们可以用矩阵各个元素序列的同时收敛来规定矩阵序列的收敛性.定义6 设有矩阵序列{}n m k ij k k a A A ⨯=][:)(,如果对任何,(1,i j i m ≤≤1j ≤)n ≤均有ij k ij k a a =∞→)(lim , 则说矩阵序列{}k A 收敛,如令n m ij a A ⨯=][,又称A 为{}k A 的极限.记为,lim A A k k =∞→或A A k →.矩阵序列不收敛时称为发散.讨论矩阵序列极限的性质,以下设所涉及的矩阵为n 阶矩阵. 1) 若A A k k =∞→lim ,{}k a 为数列且a a k k =∞→lim ,则()aA A a k k k =∞→lim .特别,当a 为常数时,()k k k k A a aA ∞→∞→=lim lim .2) 若A A k k =∞→lim ,B B k k =∞→lim ,则()B A B A k k k ±=±∞→lim .3) 若A A k k =∞→lim ,B B k k =∞→lim ,则()AB B A k k k =∞→lim .4) 若A A k k =∞→lim 且诸k A 及A 均可逆,则{}1-k A 收敛,并且11lim --∞→=A A k k .容易证明性质1)-3)成立,对性质4)注意到行列式k A 值定义的和式无非是k A 中元素()(,1,2,,)k ij a i j n = 的乘法与加法之组合,再由lim k →∞(),k ij ij a a =即可知lim k k A A →∞=.用()k ij A 表示k A 中(,)i j 元素的代数余子式,用ij A 表示A 中(,i j )元素的代数余子式,便有()lim k ij ij k A A →∞=.进而 **lim k k A A →∞=.这里*k A 是k A 的伴随矩阵,*A 是A 的伴随矩阵.又*1kkk A A A -=, 所以*11lim kk A A A A--→∞==. 定理 5 对于矩阵序列{}k A ,lim k k A A →∞=的充分必要条件是对任何一种矩阵范数⋅,有lim 0k k A A →∞-=.定理5的证明与定理4类似,由于矩阵范数的等价性,只需证明对矩阵范数,max ij i jA a =定理成立,其方法也与定理4的证明一致,这里从略.以下主要介绍范数在特征值估计方面的应用.定义7 设n n A C ⨯∈,1,,,,j n λλλ 为A 的n 个特征值,称()max j jA ρλ=为A 的谱半径.有了谱半径的概念,可以对矩阵范数作如下的初步估计. 定理6 设n n A C ⨯∈,则对n n C ⨯上的任一矩阵范数⋅,皆有()A A ρ≤.证 设λ是A 的特征值,x 为A 的属于特征值λ的特征向量,故0x ≠,所以0x ≠.另设v ⋅是n C 上与矩阵范数⋅相容的向量范数,由Ax x λ=,应有v v Ax x λ=,而v v Ax A x ≤,于是有v v x A x λ≤,同除0v x ≠,有A λ≤.故max jA λ≤,于是()A A ρ≤.定理7 设n n A C ⨯∈,lim 0k k A →∞=的充分必要条件是()1A ρ<.证 对n n A C ⨯∈,由第三章定理15知,存在n 阶的逆矩阵P 使得112(,,,)s P AP J diag J J J -== ,其中10110i ii ii i i n n J λλλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪⎪⎝⎭, 则112(,,)k k k k k s P A P J diag J J J -== .因此lim 0lim 0lim 0(1,2,,)k k k i k k k A J J i s →∞→∞→∞=⇔=⇔== .而(1)11()()()()2(1)()()1()2()()i n k i k i k i k i i k i k i ki k i k i k i f f f f n f f J f f f λλλλλλλλλ-⎛⎫''' ⎪- ⎪' ⎪ ⎪⎪= ⎪'' ⎪ ⎪' ⎪⎪⎝⎭!!!,其中()k k f λλ=,因为对任一多项式(),g λ当k →∞时,()01k i i g λλ→⇔<.而1(1,2,,)()1i i s A λρ<=⇔< .由定理6和定理7即得如下结果.定理8 设n n A C ⨯∈,如果存在n n C ⨯上的一种相容矩阵范数.使1A <,则lim k →∞0k A =.定理9 设λ是n 阶矩阵A 的任一特征根,那么对任一种矩阵范数⋅,都有A λ≤.证 设,A a =则0a ≥,对任意给定的0ε>,令AB a ε=+.于是,若设A 的全部特征根为12,,,,n λλλ 则B 的全部特征根恰是12,,,na a a λλλεεε+++ .又11aB A a a εε==<++.由定理8知0k B →,再由定理6知1,1,2,,,ii n a λε<=+ 即,1,2,,.i a i n λε<+= 由ε的任意性,令0ε→取极限,便有,1,2,,.i a i n λ≤= 即知对任一特征根λ,有a λ≤.§5.3 矩阵的导数本节讨论三种导数:矩阵对变量的导数、函数对矩阵的导数、矩阵对矩阵的导数.一、函数矩阵对变量的导数如果矩阵中诸元素都是某实变量x 的函数,则称这种矩阵为函数矩阵.它的一般形式是()⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a x A mn m m n n , 其中()()1,2,,;1,2,,ij a x i m j n == 都是实变量x 的函数.定义8 设函数矩阵()[()]ij m n A x a x ⨯=,如果对一切正整数,i j ,1i m ≤≤1j n ≤≤,均有()0lim ij ij x x a x b →=,则说当0x x →时函数矩阵()A x 有极限,n m ij b B ⨯=][叫做()A x 的极限,记为()0lim x x A x B →=.该定义的实质是如果()A x 的所有各元素()ij a x 在0x 处都有极限,则说()A x 在0x 处有极限.如果()A x 的所有各元素()ij a x 在0x 处连续,即00lim ()()ij ij x x a x a x →=,(1,2,,;1,i m jn == ,则称()A x 在0x x =处连续,且记0lim ()()x x A x A x →=.如果()A x 在某区间[,]a b 上处处连续,则说()A x 在[,]a b 上连续.容易验证下列等式是成立的: 设()()0lim ,lim x x x x A x A B x B →→==,则(1)0lim(()())x x A x B x A B →±=±;(2)()0lim ()x x kA x kA →=;(3)()0lim ()()x x A x B x AB →=.定义9 对于函数矩阵()n m ij x a x A ⨯=)]([,如果所有元素ij a ()x (1,2,i =,;1,2,,)m j n = 在某点x 处[或在某区间上]均可导,则称()x A 在x 处[或在某区间上]可导.导数[或导函数]记为()dA x dx ,简记为()x A '.并规定 ()()()()()()()()()()()111212122212n n m m mn a x a x a x a x a x a x d A x A x dxa x a x a x '''⎛⎫ ⎪''' ⎪'== ⎪ ⎪ ⎪'''⎝⎭, 其中()ija x '表示()x a ij 对x 的一阶导数. 矩阵对变量的导数运算具有如下一些性质1°若函数矩阵()()x B x A ,都可导,则它们的和亦可导,并且()()[]()()x B dxd x A dx d x B x A dx d+=+. 2°若()x A 可导,()f x 是x 的可导函数,则()x f ()x A 可导,且()()[]()()()()x A dx d x f x A x f dx d x A x f dx d +⎥⎦⎤⎢⎣⎡=, 特别地,当()x f 为常数k 时,有()[]()x A dxd k x kA dx d=. 3°若()x A 可导,则()x A T 可导,并且()()TT dx x dA x A dx d ⎪⎭⎫ ⎝⎛=. 4°若()x A ,()x B 可导且二者可乘,则()x A ()x B 亦可导,且()()[]()()()()x B dx d x A x B x A dx d x B x A dx d +⎥⎦⎤⎢⎣⎡=⋅. 推论 若()x A 可导,Q P ,为数字矩阵,则()[]()x A dxd P x PA dx d=, ()[]()Q x A dx d Q x A dx d ⎥⎦⎤⎢⎣⎡=. 5° 若()x A 为可逆的可导函数矩阵,则()x A 1-亦可导,且()[]()()()x A dxx dA x A x A dx d 111----=. 证 因为1()(),A x A x E -=所以111()()[()()]()()0d dA x dA x A x A x A x A x dx dx dx---=+=. 于是111()()()()dA x dA x A x A x dx dx---=-. 函数矩阵的导数本身也是一个函数矩阵,它可以再进行求导运算,下面我们给出函数矩阵对变量的高阶导数22()()()d A x d dA x dx dx dx =, 3232()()()d A x d d A x dx dx dx =,1()()()k k kd A x d d A x dx dx dx-=. 例1 设)(x A 为n 阶可导函数矩阵,求()x A 2的一、二阶导数. 解()()()[]()()()()x A x A x A x A x A x A dxdx A dx d '+'==2 [注意一般 2()2()()d A x A x A x dx'≠]()()()()()[]x A x A x A x A dx dx A dxd '+'=222()()()[]()()x A x A x A x A x A ''+'+''=22.例2 设()()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x x n21,其中()t x i 均为t 的可导函数,n n ij a A ⨯=][为n 阶实对称矩阵,求二次型Ax x T 对t 的导数.解 []()x A x x A x Ax x Ax x dtd T T T T'+'+'=.又A 为数字矩阵,故0='A ,又x A x T '为t 的函数.而有()()()Ax x x A x x A x x A x T T TT T T '='='='.所以()x A x Ax x dxd T T'=2. 二、函数对矩阵的导数定义10 设n m ij x X ⨯=][为多元实变量矩阵,()()1111,,,,,,n m mn f X f x x x x =是以X 中诸元素为变量的多元函数,并且偏导数ijx f∂∂()1,2,,;1,2,,i m j n == 都存在,则定义函数)(X f 对矩阵X 的导数为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=mn m m nn x f x f x f x f x f x f x f x f x f dX df212222111211. 特别,当X 为向量()Tn x x x x ,,,21 =时,函数()n x x x f ,,,21 对x 之导数为()x f x f x f x f dx df Tn ∇=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂=,,,21 . 例3 设[]()∑∑==⨯==m i nj ij nm ijx X f x X 112,,求dXdf . 解2,1,2,,;1,2,,ij ijfx i m j n x ∂===∂ .X x x x x x x x x x dX df mn m m n n 2222222222212222111211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=.例4 设1122,n n a x a x a x a x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1122()T n n f x a x a x a x a x ==+++ ,则12n a a df a dx a ⎛⎫⎪ ⎪== ⎪⎪⎝⎭. 三、矩阵对矩阵的导数定义11 设矩阵n m kl a A ⨯=][中每一个元素kl a 都是矩阵q p ij b B ⨯=][中各元素(1,2,...,;1,2,...,)ij b i p j q ==的函数,当A 对B 中各元素都可导时,则称矩阵A 对矩阵B 可导,且规定A 对B 的导数为111212122212q q p p pq A A A b b b A A A dA b b b dB A A A b b b ∂∂∂⎛⎫ ⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂= ⎪⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭, 其中111122212212n ij ij ij n ijij ij ij m m mn ijijij a a a b b b a a a A b b b b a a a b b b ∂∂∂⎛⎫⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂∂= ⎪∂⎪ ⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭,dBdA是一个nq mp ⨯矩阵.例5 设n m ij a A ⨯=][,求dAdA 解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=mn m m n n mn m m n n E E E E E E E E E a A a A a A a A a A a A a A a A a A dA dA212222111211212222111211. 这里),(j i E ij 是元素都是1,其余元素都是0的n m ⨯矩阵.例6 设()n x x x x ,,,21 =,()Tn y y y y ,,,21 =,其中()n i i x x x f y ,,,21 =,()m i ,,2,1 =.如果()1,2,,;1,2,i jy i m j n x ∂==∂ 都存在,则y 对x 可导且⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂=n mm m n n n x y x y x y x y x y x yx y x y x y x y x y x y dx dy21222121211121,,. 例7 设12(,,,)n x x x x = ,求Tdx dx.解 111122221212n T n nn n n x x x x x x x x x dx x x x E dxx x x x x x ∂∂∂⎛⎫ ⎪∂∂∂ ⎪⎪∂∂∂ ⎪∂∂∂== ⎪ ⎪ ⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭. 以下我们考虑向量对向量的导数.设12(,,),n x x x x = 12n y y y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中12(,)(1,2,,).i i n y f x x x i m == 如果(1,2,,;1,2)ijy i m j n x ∂==∂ 都存在,则y 对x 可导,且 11112222121212(,,,)n n nm m m n y y y x x x y y y dy y y yx x x dx x x x y y y x x x ∂∂∂⎡⎤⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥∂∂∂==⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂⎣⎦(1) 在一些书上,往往对行向量和列向量不加区别,而规定任何一个m 维向量y 对另一个n 维向量x 的导数都以上面(1)式最后的矩阵形式来表达,这主要是为了应用的方便.例8 设数量函数()n x x x f y ,,,21 =的所有二阶偏导数都存在,记()Tn x x x x ,,,21 =,求梯度()dy f x dx ∇=,及海森[Hessian]矩阵22()d yH x dx=.解 12(),,,Tn dy y y y f x dx x x x ⎛⎫∂∂∂∇== ⎪∂∂∂⎝⎭. 222211212222221222222212()n n n n n yy y x x x x x yy y d y d dy H x x x x x x dx dx dx y y y x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂⎪ ⎪∂∂∂⎪⎛⎫===∂∂∂∂∂ ⎪ ⎪⎝⎭⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭. 当y 的所有二阶偏导数都连续时,Hessian 矩阵为n 阶对称矩阵.§5.4 矩阵的微分与积分定义12 当函数矩阵()[()]ij m n A x a x ⨯=可导时,其微分111212122212[]n n ij m nm m mn da da da da da da dA da da da da ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦,其中()ij ij da a x dx '=. (1) 矩阵的微分实质上就是各个元素分别微分,因此,相应于每一个导数运算性质都可以得到一个关于微分的相应性质,例如();d A B dA dB +=+ ()();d AB dA B AdB =+();d kA kdA =(k 为常数);()()()d fA df A f dA =+ (()f f x =为可微函数) 都是正确的.如果矩阵A 中每个元素都是以矩阵B 中诸元素为变量的多元函数,则称矩阵A 是矩阵B 的函数,记为()A B .此时矩阵A 作为一个多元函数矩阵,它的全微分仍可按(1)式定义,只不过其中元素ij da 应该换成全微分,即11p qij ij kl k l kla da db b ==∂=∂∑∑,这里,p q 分别是矩阵B 的行数和列数.定义13 若函数矩阵()(())ij m n A x a x ⨯=的所有各元素()(1,2,,;ij a x i m = 1,2,,)j n = 都在[,]a b 上可积,则称()A x 在[,]a b 上可积,且111212122212()()()()()()()()()()nn m m mn bbb a x dx a x dx a x dx a a a bbba x dx a x dx a x dxb A x dx aa a ab b b a x dx a x dx a x dx a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.函数矩阵的定积分有如下简单性质(1)()()b bkA x dx k A x dx a a=⎰⎰, k R ∈(2)[]()()()()bb b A x B x dx A x dx B x dx a a a+=+⎰⎰⎰, 函数矩阵的不定积分也有类似的情况.例1 设sin cos ()cos sin x x A x x x -⎛⎫= ⎪⎝⎭,求()0x A x dx ⎰及2()0x d A x dx dx ⎰.解 s i n(c o s )001c o s s i n ()0sin 1cos cos sin 00xx xdx x dx x x x A x dx x x x x xdx xdx ⎛⎫- ⎪--⎛⎫⎪== ⎪ ⎪-⎝⎭ ⎪⎝⎭⎰⎰⎰⎰⎰. 因为若以()ij a x 表示()A x 中各元素(,1,2)i j =,则有22()2()0ij ij x d a x dx xa x dx =⎰. 所以有222222sin cos ()2()20cos sin x x x d A x dx xA x x dx xx ⎛⎫-== ⎪⎝⎭⎰. 习 题 五1、设nn n n ij Ca A ⨯⨯∈=)(,令12211()n nij Fi j Aa ===∑∑,则F A 为方阵范数,证明:F A 是一种与向量的2-范数2x 相容的方阵范数.称它为方阵A 的Frobenius 范数,简称F-范数.2、设V 是n 维(复的或实的)线性空间,n e e e ,,,21 是V 的一组基,则对任意的V x ∈,x 有唯一表示式n n e x e x e x x +++= 2211,规定 2112)(∑==ni i Ex x.证明:E x 是V 中元素的一种范数.3、对下列矩阵A ,求21,A A 及∞A .1)⎪⎪⎭⎫ ⎝⎛-=0123A 2)⎪⎪⎭⎫ ⎝⎛--+i i i i 114、证明:对n 阶矩阵][ij a A =,有∑=≤≤∞=nj ij ni a A 11max .5、考察下列向量序列}{k x 的敛散性: 1)Tk k x )21,1(=; 2)Tki ki i k ix )1,0,21(11∑∑===.6、设⎪⎪⎭⎫⎝⎛-+=)1(2121)(2x x x x A 计算)(),(1x A dxd x A dx d -. 7、计算矩阵对矩阵的导数dAdx. 1)⎪⎪⎭⎫⎝⎛=32121x x x e A x x ,),,(321x x x x =;2)22212123334242,sin(3)x x x x e x x A x x x x x ⎛⎫+⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 8、设==⨯)(,][A f a A n n ij 迹A .试求dAdf . 9、设∑∑==+==ni ni i iTn x x ix x f x x x x 121221)(,),,,( .试求梯度dxdfx f =∇)(及海森矩阵22)(dx fd x H =.10、已知函数矩阵⎪⎪⎪⎭⎫ ⎝⎛=-00302)(222x e ex xe e x A x xx x ,试求⎰10)(dx x A 和⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d .。
矩阵论五矩阵分析矩阵论作为数学中的一个重要分支,研究的是矩阵的性质、运算和应用。
在实际应用中,矩阵论广泛应用于线性代数、计算机科学、物理学、经济学等领域,起到了重要的作用。
本文将介绍矩阵分析这一矩阵论的重要内容。
矩阵分析是矩阵论中的一个重要分支,它研究的是矩阵的各种性质和内在结构。
矩阵分析包括矩阵的行列式、特征值、特征向量、正交变换、相似矩阵等概念和定理。
首先,矩阵的行列式是一个非常重要的概念。
行列式是一个把方阵映射到实数的函数,用于判断矩阵是否可逆、求解线性方程组等问题。
行列式的计算可以通过对矩阵进行列展开、代数余子式等方法来进行。
同时,行列式还具有一系列重要的性质,如行列式的线性性、行列式的性质、Cramer法则等,这些性质为行列式的计算和应用提供了便利。
其次,矩阵的特征值和特征向量也是矩阵分析的重要内容。
特征值和特征向量描述了矩阵在线性变换下的性质,是矩阵的本征特性。
通过求解特征方程,可以得到矩阵的特征值,通过求解对应的特征向量,可以得到矩阵的特征向量。
特征值和特征向量在很多应用中起着重要的作用,如在物理学中用于描述物理量在变换下的特性,亦或者在图像处理中用于图像压缩和分解等。
此外,矩阵的正交变换也是矩阵分析中的一个重要概念。
正交变换是指保持向量长度和夹角不变的线性变换,可以通过一个正交矩阵来实现。
正交变换在几何学中起到了非常重要的作用,如在三维空间中的旋转变换、投影变换等。
正交矩阵具有很多重要的性质,如正交矩阵的逆等于其转置、正交矩阵的行列式为1或-1等。
最后,相似矩阵也是矩阵分析中的一个重要概念。
相似矩阵是指可以通过一个可逆矩阵相似变换得到的矩阵。
相似矩阵具有相同的特征值,特征向量和行列式。
相似矩阵在矩阵的相似性和等价性判断、矩阵的对角化等问题中起到了重要的作用。
总之,矩阵分析作为矩阵论的重要分支,研究的是矩阵的各种性质和内在结构,是矩阵论的重要内容之一、矩阵分析包括矩阵的行列式、特征值、特征向量、正交变换和相似矩阵等概念和定理。
矩阵分析知识点总结一、矩阵的基本概念1.1 矩阵的定义矩阵是由数个数排成的矩形阵列。
矩阵可以用大写字母表示。
1.2 矩阵的基本要素- 元素:矩阵中的每一个数称为矩阵的元素。
- 维数:矩阵的行数和列数称为矩阵的维数。
行和列的个数分别称为行数和列数。
1.3 矩阵的类型- 方阵:行数等于列数的矩阵称为方阵。
- 零矩阵:所有元素都是 0 的矩阵称为零矩阵。
- 对角矩阵:除了主对角线上的元素外,其它元素都是 0 的矩阵称为对角矩阵。
1.4 矩阵的表示- 横标法:按行标的顺序把元素排列成一串数,两个 4× 3 的矩阵可以表示为 12 个数。
- 纵标法:按纵标的顺序把元素排列成一串数。
1.5 矩阵的运算- 矩阵的加法- 矩阵的数乘- 矩阵的乘法1.6 矩阵的转置- 行变列,列变行,得到的新矩阵称为原矩阵的转置。
- 性质: (AT)T = A1.7 矩阵的逆- 若矩阵 A 有逆矩阵 A-1, 则 A × A-1 = A-1 × A = E- 矩阵 A 有逆矩阵的充分必要条件是 A 是可逆的。
- 克拉默法则:若一个 n 阶矩阵可逆,且 Ax = b,则 x = A-1b1.8 矩阵的秩- 行最简形矩阵都是行等价的。
其秩等于不为零的行数。
- 同样列最简形矩阵都是列等价的。
其秩等于不为零的列数。
- 行秩等于列秩。
1.9 矩阵的特征值和特征向量- 特征值:如果数λ和非零向量 x ,使得Ax = λx 成立,则称λ 是矩阵 A 的特征值。
非零向量x 称为特征值λ 对应的特征向量。
- 矩阵 A 所有特征值的集合称为 A 的谱。
- 若λ1,λ2,···,λn 互不相同,相应的特征向量组 x1,x2,···,xn 线性无关,则它们构成一组 A 的特征向量基。
1.10 矩阵的奇异值- 奇异值:对于矩阵A(λ1, λ2, ···, λn),λ1,λ2,···,λn称为矩阵 A 的奇异值。
矩阵分析矩阵分析是数学中一门重要的分支,主要研究矩阵及其运算规律、性质和应用。
矩阵分析被广泛应用于各个领域,如物理学、经济学、工程学、信息科学、生物学等,成为现代科技和工程中不可或缺的一部分。
一、矩阵介绍矩阵是一种数学对象,由m行n列的元素数排列成一个矩形阵列。
一般用大写字母A、B、C等表示矩阵,而用小写字母a、b、c等表示元素。
如下所示:A = [a11 a12 (1)a21 a22 (2)… … …am1 am2 … amn]其中,a11、a12、a21和a22等都是矩阵A的元素,其中第i行第j列的元素表示为aij,i表示行数,j表示列数。
二、矩阵的运算矩阵的运算包括加、减、乘和求逆,下面分别介绍。
1、加法令A、B是两个矩阵,则矩阵的加法定义为相加其对应的元素。
例如,如果A和B都是两行两列的矩阵,则A + B的结果为:A +B = [a11+b11 a12+b12a21+b21 a22+b22]2、减法矩阵的减法也是按照对应元素相减的规则。
例如,如果A和B都是两行两列的矩阵,则A - B的结果为:A -B = [a11-b11 a12-b12a21-b21 a22-b22]3、乘法矩阵乘法是指将一个矩阵的行乘以另外一个矩阵的列的结果所组成的矩阵。
例如,如果A是m行n列的矩阵,B是n行p列的矩阵,则它们的乘积C是m行p列的矩阵,C中第i行第j列的元素可以表示为:Cij = Σk=1,2,…n aikbkj其中,Σ表示求和符号,k表示矩阵A和B相乘的公共维度,即行数或列数。
4、求逆如果矩阵A是非奇异矩阵,即其行列式不为0,则可以求出其逆矩阵A-1,使得A×A-1=I,其中I为单位矩阵。
求逆矩阵的公式如下:A-1 = 1/|A| adj(A)其中,|A|表示A的行列式,adj(A)表示A的伴随矩阵。
三、矩阵的性质矩阵有很多基本的性质,其中包括:1、矩阵的行和列数可以不相等;2、矩阵可以相加和相乘,但不可以相减和相除;3、矩阵加法和乘法有结合律、分配律和交换律;4、矩阵乘法不满足交换律,即AB≠BA。
前言 1、自我介绍2、矩阵分析理论是在线性代数的基础上推广的3、矩阵分析理论的组成:四部分:基础知识(包括书上的前三章内容)难点:约当标准形与移项式矩阵矩阵分析(第四章:矩阵函数及其应用) 矩阵特征值的估算(第五章) 非负矩阵(第六章)第一部:矩阵分析理论的基础知识§1 线性空间与度量空间一、线性空间:1.数域:Df 1:若复数的一个非空集合P 含有非零的数,且其中任意两数的和、差、积商(除数不为0)仍在这个集合中,则称数集P 为一个数域eg 1:Q (有理数),R (实数),C (复数),Z (整数),N (自然数)中哪些是数域?哪些不是数域?2.线性空间—设P 是一个数域,V 是一个非空集合,若满足:<1> 可加性—指在V 上定义了一个二元运算(加法)即:V ∈∀βα, 经该运算总存在唯一的元素V ∈γ与之对应,称γ为α与β的和,记βαγ+= 并满足:① αββα+=+② )()(γβαγβα++=++ ③ 零元素—=有θαθααθ+∈∀∈∃Vt s V .④ αβαβθβααβ-+∈∀∈∃=记的负元素为=有对V V<2> 数积:(数乘运算)—在P 与V 之间定义了另一种运算。
即V P k ∈∈∀α,经该运算后所得结果,仍为V 中一个唯一确定的元素。
存在唯一确定的元素V ∈δ与之对应,称δ为k 与α的乘积。
记为αδk = 并满足:①αα=⋅1② P l k ∈∀, αα)()(kl l k = ③ P l k ∈∀, αααl k l k +=+)( ④ γβα∈∀, βαβαk k k +=+)(则称V 为数域P 上的线性空间(向量空间)记为)...(∙+P V 习惯上V 中的元素—向量, θ—零向量, 负元素—负向量结论:可以证明,线性空间中的零向量是唯一的,负元素也是唯一的,且有:θα=⋅0 θθ=⋅k αα-=⋅-)1( )(βαβα-+=-eg2:}{阶矩阵是n m A A V ⨯= P —实数域R按照矩阵的加法和数与矩阵的乘法,就构成实数域R 上的线性空间,记为:n m R ⨯ 同样,若V 为n 维向量,则可构成R 上的n 维向量空间n R —线性空间。