大气热力学基础
- 格式:ppt
- 大小:1.84 MB
- 文档页数:123
热力学基础、动力学基础、化学平衡知识要点—大众化学补充一、热力学基础(研究化学反映方向、程度(进行的可能性),反映涉及的能量) 对于化学反映:其中B ν为物质B 的化学计量数。
反映物的化学计量数为负,产物的化学计量数位正。
反映进度: 单位为mol.反映进度必需对应的化学计量方程式。
热和功1.2.1热---系统与环境之间由于存在温差而传递的能量。
系统吸热:Q >0; 系统放热:Q <0。
功---系统与环境之间除热之外以其它形式传递的能量;系统对环境做功,W <0(失功);环境对系统做功,W >0(得功)。
功的分类:体积功(膨胀功)、非体积功(如表面功、电功)。
1.2.2热力学第必然律: 焓: 1.3.1反映的标准摩尔焓变:r △,一个反映的焓变必需对应的化学计量方程式。
标准状态:气体:T ,p =100kPa ;液、固体:T ,1个大气压下,纯物质;溶液:溶质B ,b B =1mol·kg -1,,C B =1mol·L -1,1.3.2 f H △(B,相态,T ),单位是kJ·mol -1:在温度T 下,由参考状态单质生成物质B(νB =+1)的标准摩尔焓变,称为物质B 的标准摩尔生成焓。
参考态单质的标准摩尔生成焓为零。
1.3.3 c △相态,T ),单位是kJ·mol -1:在温度T 下, 物质B (νB = -1)完全氧化成指定产物时的标准摩尔焓变,称为物质B 的标准摩尔燃烧焓。
燃烧产物和O2的标准摩尔燃烧焓均为零。
1.3.4 Hess 盖斯定律:化学反映无论是一步完成仍是分几步完成,其反映焓变老是相同的对于化学反映:a A + b B → y Y + z Zr △T ) = ∑νBf H △:焓变=生成物的生成焓之和—反映物的生成焓之和;r △T ) =- ∑νB焓变=反映物的燃烧焓之和—生成物的燃烧焓之和; 自发转变:在没有外界(即没有非体积功)作用下,系统自身发生转变的进程。
大气物理学复习资料第一部分名词解释第一章大气概述1、干洁大气:通常把除水汽以外的纯净大气称为干结大气,也称干空气。
2、气溶胶:大气中悬浮着的各种固体和液体粒子。
3、气团:水平方向上物理属性比较均匀的巨大空气块。
4、气团变性:当气团移到新的下垫面时,它的性质会逐渐发生变化,在新的物理过程中获得新的性质。
5、锋:冷暖性质不同的两种气团相对运动时,在其交界面处出现一个气象要素(温度、湿度、风向、风速等)发生剧烈改变的过渡带称为锋。
6、冷锋:锋面在移动过程中,冷气团起主导作用,推动锋面向暖气团一侧移动。
7、暖锋:锋面在移动过程中,暖气团起主导作用,推动锋面向冷气团一侧移动。
8、准静止锋:冷暖气团势力相当,锋面很少移动,有时冷气团占主导地位,有时暖气团占主导地位,使锋面处于来回摆动状态。
9、锢囚锋:当三种冷暖性质不同的气团(如暖气团、较冷气团、更冷气团)相遇时,可以产生两个锋面,前面是暖锋,后面是冷锋,如果冷锋移动速度快,追上前方的暖锋,或两条冷锋迎面相遇,并逐渐合并起来,使地面完全被冷气团所占据,原来的暖气团被迫抬离地面,锢囚到高空,这种由两条锋相遇合并所形成的锋称为锢囚锋。
10、气温垂直递减率:在垂直方向上每变化100米,气温的变化值,并以温度随高度的升高而降低为正值。
11、气温T:表示空气冷热程度的物理量。
12、混合比r:一定体积空气中,所含水汽质量和干空气质量之比。
r=m v/m d13、比湿q:一定体积空气中,所含水汽质量与湿空气质量之比。
q=m v/(m v+m d)14、水汽压e:大气中水汽的分压强称为水气压。
15、饱和水汽压e s:某一温度下,空气中的水汽达到饱和时所具有的水汽压。
16、水汽密度(即绝对湿度)ρv:单位体积湿空气中含有的水汽质量。
17、相对湿度U w:在一定的温度和压强下,水汽和饱和水汽的摩尔分数之比称为水面的相对湿度。
18、露点t d:湿空气中水汽含量和气压不变的条件下,气温降到对水面而言达到饱和时的温度。
大气物理学笔记一、大气的组成与结构。
1. 大气组成。
- 干洁大气:主要由氮气(约占78%)、氧气(约占21%)、氩气(约占0.93%)等组成。
这些气体在大气中的比例相对稳定,对大气的物理和化学性质有着重要影响。
- 水汽:是大气中含量变化最大的成分,其含量在0 - 4%之间。
水汽是天气现象形成的重要因素,如云、雨、雾等的形成都离不开水汽。
- 气溶胶:包括固体和液体微粒,如灰尘、烟雾、海盐等。
气溶胶对太阳辐射有散射和吸收作用,还可以作为云凝结核影响云的形成和降水过程。
2. 大气结构。
- 对流层。
- 高度:低纬度地区平均为17 - 18千米,中纬度地区平均为10 - 12千米,高纬度地区平均为8 - 9千米。
- 特点:气温随高度递减,平均递减率约为6.5℃/千米;空气具有强烈的对流运动,这是由于地面受热不均引起的;集中了大气质量的约3/4和几乎全部的水汽和杂质,天气现象复杂多变。
- 平流层。
- 高度:从对流层顶到约50千米的高度。
- 特点:气温随高度增加而升高,这是因为平流层中有臭氧层,臭氧吸收太阳紫外线辐射而使气温升高;空气以平流运动为主,气流平稳,有利于飞机飞行。
- 中间层。
- 高度:从平流层顶到约85千米的高度。
- 特点:气温随高度递减,再次出现随高度降低的情况;空气具有强烈的垂直对流运动。
- 热层。
- 高度:从中间层顶到约500千米的高度。
- 特点:气温随高度迅速增加,这是由于该层中的原子氧吸收太阳短波辐射而使气温升高;该层空气处于高度电离状态,存在大量的离子和电子,也被称为电离层,对无线电通信有重要影响。
- 散逸层。
- 高度:500千米以上。
- 特点:大气极其稀薄,分子间距离很大,一些高速运动的粒子可以挣脱地球引力的束缚而散逸到宇宙空间。
二、大气静力学。
1. 大气压力。
- 定义:大气对单位面积表面的压力。
其单位为帕斯卡(Pa),1标准大气压 = 1013.25 hPa。
- 垂直分布:大气压力随高度增加而减小,在近地面大气压力较大,随着高度升高,大气柱的质量减小,压力也随之降低。
12、3、4、实际大气不是绝热的,空气运动时,能够通过湍流交换、辐射和分子热传导等与周围环境大气交换热量5、对于运动着的空气,特别是做垂直运动时,由于气压随高度变化很快,气体温度短期内就发生很大变化,热量交换对空气温度的影响远小于由空气压缩或膨胀所造成的影响,此时可忽略热交换作用,假设气块是绝热的。
6、在一些情况下,不可认作绝热。
如:近地层大气,湍流交换强,气块从地面获得热量;平流层中,气块主要受辐射过程控制;当过程进行的时间较长,热量交换的累积效应不可忽略7、干绝热递减率:0.98℃/100m .实际工作取18、状态曲线:气块在作垂直运动时,其温度随高度的变化曲线称为状态曲线干绝热线:干绝热过程的状态曲线称为干绝热线湿绝热线:湿绝热过程的状态曲线称为湿绝热线层结曲线:环境空气温度随高度的分布曲线称为层结曲线。
由于干绝热过程中位温和熵守恒的性质,干绝热线又称为等位温线或等熵线。
它表示干空气或未饱和湿空气在绝热升降过程中的状态变化曲线。
9、比湿q为单位质量湿空气内的水汽质量,常用单位为g/kg 在数值上比湿≈混合比1.饱和水汽压 es只和温度有关,饱和混合比 ws 和饱和比湿 qs都只与气压和温度有关,与空气中的水汽含量无关。
2.抬升凝结高度指未饱和湿空气绝热抬升至相对于平纯水面饱和时所达到的高度。
在此高度上,气块的温度等于露点温度3.温度不发生变化,物质发生相变时吸收或放出的热量称为“潜热4.假绝热过程:气块上升过程是湿绝热过程,下沉时为干绝热过程,因此当气块下降到原来起始高度时,温度比原来的高5.热上升到水汽全部凝结降落后,再沿着干绝热线下降到1000 hPa 时所具有的温度称为假相当位温θse(欧美国家称为相当位温θe)6.因为假相当位温θse在湿绝热过程中守恒,因此湿绝热线也称为假相当位温线.7.气块法有如下假定:绝热、准静态、静力平衡8.气象中所指的对流是指由于浮力作用导致的垂直方向的热量传输。
大气物理学(大三)第六章 大气热力学基础一、热力学基本规律1、空气状态的变化和大气中所进行的各种热力过程都遵循热力学的一般规律,所以热力学方法及结果被广泛地用来研究大气,称为大气热力学。
2、开放系和封闭系(1) 开放系:一个与外界交换质量的系统(2) 封闭系:和外界互不交换质量的系统(3) 独立系:与外界隔绝的系统,即不交换质量也不交换能量的系统。
3、准静态过程和准静力条件(1)准静态过程: 系统在变态过程中的每一步都处于平衡状态(2) 准静力条件:P ≡Pe 系统内部压强p 全等于外界压强Pe4、气块(微团)模型气块(微团)模型是指宏观上足够小而微观上含有大量分子的空气团,其内部可包含水汽、液态水或固态水。
气块(微团)模型就是从大气中取一体微小的空气块,作为对实际空气块的近似。
5、气象上常用的热力学第一定律形式【比定压热容cp 和比定容热容cv 的关系cp= cv+R ,(R 比气体常数)】6、热力学第二定律讨论的是过程的自然方向和热力平衡的简明判据,它是通过态函数来完成的。
7、理解熵、焓(从平衡态x0开始而终止于另一个平衡态x 的过程,将朝着使系统与外界的总熵增加的方向进行;等焓过程: 绝热和等压;物理意义:在等压过程中,系统焓的增加值等于它所吸收的热量)8、大气能量的基本形式:(1)内能;(2)势能;(3)动能;(4)潜热能9、大气能量的组合形式(1)显热能:单位质量空气的显热能就是比焓。
(2)温湿能:单位质量空气的温湿能是显热能和潜热能之和。
(3)静力能: 对单位质量的干(湿)空气,干(湿)静力能:(4)全势能: 势能和内能之和称全势能10、大气总能量干空气的总能量: 湿空气的总能量: 二、大气中的干绝热过程1、系统(如一气块)与外界无热量交换(δQ=0)的过程,称为绝热过程。
286.0000)()(p p p p T T d ==κ(对未饱和湿空气κ= κd=R/Cp=0.286计算大气的干绝热过程) 例:如干空气的初态为p=1000hpa ,T0=300K ,当它绝热膨胀,气压分别降到900hpa 和800hpa 时温度分别为多少?2、干绝热减温率定义:未饱和湿空气块温度随高度的变化率的负值为干绝热减温率γv ,单位°/100mdp ρ1-dT c =αdp -dT c =δQ p p 2p k d V 21+gz +T c =E +Φ+U =E Lq +V 21+gz +T c =Lq +E +Φ+U =E 2p k m m C m k km K c g o pdd 100/1100/98.0/8.9≈===γ3、位温θ定义: 把空气块干绝热膨胀或压缩到标准气压(常取1000hpa )时应有的温度称位温。
第二篇气体分子运动和热力学基础热学是研究与热现象有关的物质运动规律的科学。
表示物体冷热程度的物理量是温度,把与温度有关的物理性质及状态的变化称为热现象,热现象是物质中大量分子无规则运动的集体表现。
物体是由大量分子、原子组成的,这些微观粒子的不停的、无规则的运动称为分子热运动。
热学发展简史18世纪初,资本主义发展的初期,社会生产已有很大发展,生产中遇到的热现象增多了,因而提供不少关于热现象的知识,当时生产上需要动力,因而产生了利用热来获得机械功的企图,这样一来,开始了对热现象进行比较广泛的研究。
1714年,华伦海脱改良了水银温度计并制定了华氏温标,热学的研究从此走上实验科学的道路。
18世纪中期,瓦特制成了蒸汽机,人们多年来想利用热来获得机械功的愿望实现了。
随着蒸汽机在生产上被广泛地利用,提高效率便成为首要任务,同时也促使人们对热的本质进行深入的研究。
关于热的本质问题,有两种对立的学说:热质说——热是一种元素,它可以透入任何物体中,不生不灭,较热物体含较多的热质。
热是物质运动的一种表现,热是一种能量,能够与机械能互相转化。
热力学第一定律确立了热和机械功相互转化的数量关系,热力学第二定律告诉人们如何提高热机效率,热力学的两个基本定律都是从研究热和功的相互转化问题总结出来的,然而,热力学理论的应用远远地超出了这一问题的范围。
在热力学发展的同时,即19世纪中期,分子运动论也开始飞速地发展,为了改进热机的设计,对热机的工作物质——气体——的性质进行了广泛的研究,气体动理论便是围绕着气体性质的研究发展起来的。
克劳修斯首先从分子运动论的观点导出了玻意耳定律。
麦克斯韦最初应用统计概念研究分子的运动,得到了分子运动的速度分布定律。
玻耳兹曼认识到统计概念有原则性的意义,他给热力学第二定律以统计解释。
后来,吉布斯进一步发展了麦克斯韦和玻耳兹曼的理论,建立了系统的统计法,统计物理学至此发展成为完整的理论。
热学的研究方法:1.宏观法Macroscopic method最基本的实验规律 逻辑推理(运用数学)——称为热力学优点:具有高度的可靠性和普遍性。
热力学与制冷基础知识一、常用物理量及其概念要理解制冷原理需要一些基础的物理知识。
在本节中,我们将讲解一些常用物理量并举一些简单的应用例子。
所涉及到的内容不能代替物理课程,但足够我们用了。
对于有较好的物理学基础的人来说,这一节可以作为复习,甚至可以省略。
(一)质量、力和重量物体的质量是它所包含的物质的量。
国际单位用千克。
力是一个物体施加于另一个物体的推力或拉力。
力的国际单位为牛顿。
物体的重量是地球引力施加在物体上的力。
也就是说,重量是一种力而不是质量。
然而,在生活中,重量常用来表示物体的质量,因此质量和重量常发生混淆。
但是,当我们用千克力为单位表示重量时,在数值上与质量是相同的,因此在计算中应该不会发生错误。
在任何情况下,问题的本质通常会显示出究竟我们考虑的是质量还是重量。
(二)密度、比容和比重密度(d )是某种物质单位体积的质量(m ),比容(v )是密度的倒数。
即:V m d =mV v = 式中V 为体积。
物质的密度和比容会随着温度和压力的变化而变化,尤其是液体和气体。
液体的比重定义为它的密度与相同体积的4℃的水的密度的比值。
4℃的水的密度为1000kg/m 3,所以比重为 1000d d d r w ==式中d :物质的密度,kg/m 3; d w 是4℃的水的密度,kg/m 3。
质量、密度和比容都是物质的物理特性。
对于制冷过程来说还有其它一些重要的物理性质的量,即:压力、温度、焓和比热。
(三)压力、绝对压力、表压、真空压力、液柱压力和水汽分压压力定义为施加在单位面积上的力。
用公式的形式来表达就是: AF p ==面积力 如果力的单位为牛顿,面积的单位用平方米,则压力的单位为牛/米2(N/m 2)。
在国际单位制中,压力的单位为帕斯卡(Pa ),1帕斯卡(Pa )=1牛/米2(N/m 2)。
然而在制冷工作中还经常会用到许多其它的压力单位,如毫米汞柱、巴(bar )和大气压,附录中列出了这些单位之间的相互转化。