数控加工中心-椭圆刀具轨迹
- 格式:ppt
- 大小:127.50 KB
- 文档页数:14
刀路轨迹操作方法
刀路轨迹操作方法是指在进行刀具路径规划时,如何操作来设计合适的刀具路径。
以下是一些常见的刀路轨迹操作方法:
1. 切尽量多的整体形状:尽量将刀具路径设计成切削整个形状,减少不必要的停顿。
这样可以提高加工效率和表面质量。
2. 控制切割方向:在进行多次切削时,最好保持切割方向一致,这样可以降低切割时的振动和切削力。
3. 多边缘同时切削:对于具有直线边缘的几何形状,可以同时切削多个边缘,提高加工效率。
4. 选择合适的进给方向:根据加工形状的几何特征和机床加工方向,选择合适的进给方向。
这样可以提高切削稳定性和刀具寿命。
5. 避免悬空切削:尽量避免在加工过程中产生悬空切削,这样可以减少振动和工件变形的风险。
6. 使用合适的切削策略:根据加工工件的材料、形状和要求,选择合适的切削策略,如粗加工、精加工、优化切割等。
7. 控制过切量:过切量是指刀具在每个切削路径上向内多切削一定量,以确保边缘清晰和加工精度。
过切量的大小取决于刀具尺寸和加工要求。
总的来说,刀路轨迹操作方法的核心是在提高加工效率和保证加工质量之间寻找平衡,根据具体加工要求和实际情况来设计合适的刀具路径。
CNC机床加工中的刀具路径优化与碰撞避免CNC(Computer Numerical Control)机床是一种通过计算机程序控制的自动化机械设备,广泛应用于零件加工和生产制造等领域。
在CNC机床加工过程中,刀具路径的优化和碰撞的避免是至关重要的。
本文将探讨CNC机床加工中刀具路径的优化方法以及碰撞避免的关键技术。
一、刀具路径优化刀具路径的优化可以提高加工效率、降低刀具磨损,并实现高质量零件加工。
以下是几种常见的刀具路径优化方法:1. 高效切削路径规划:通过对工件进行全局分析,确定刀具的最佳进给路径和切削顺序,以减少刀具在切削过程中的空走和重复行程。
2. 锯齿刀具路径:将刀具路径设计为锯齿状,以实现切削过程中的连续切削,减少切削载荷和切削振动,提高加工效率和表面质量。
3. 刀具路径合理分段:根据零件的几何形状和工件材料的特性,将刀具路径合理划分为多个小段,并根据工艺要求进行切削参数的调整,以减少切割负载和提高切削效果。
4. 刀具轨迹平滑化:通过平滑化刀具轨迹,减少刀具在切削过程中的快速加速和减速,降低振动和切割力,从而延长刀具寿命和提高加工质量。
二、碰撞避免技术碰撞是在CNC机床加工过程中必须避免的问题,因为碰撞可能造成刀具损坏、工件破坏甚至机床故障。
以下是一些常见的碰撞避免技术:1. 碰撞检测:利用专门的软件或机床控制系统,实时监测工件、刀具和机床各部件之间的位置关系,及时判断是否存在碰撞风险,并采取相应的措施避免碰撞。
2. 碰撞后退功能:在检测到潜在碰撞风险时,机床控制系统应具备自动后退功能,使刀具或工件远离碰撞位置,从而避免碰撞事件的发生。
3. 基于物理模型的碰撞避免:通过建立机床和工件的三维物理模型,并基于模型进行刀具路径规划和碰撞检测,以确保刀具和工件之间的安全间隙,从而避免碰撞的发生。
4. 碰撞力矩监测:通过安装力矩传感器来监测刀具和工件之间的力矩变化,一旦检测到异常情况,即可及时停机或调整切削参数,避免进一步的碰撞事故。
CNC机床加工中的刀具运动轨迹优化与控制在CNC(Computer Numerical Control)机床加工过程中,刀具的运动轨迹对于产品质量和加工效率具有重要影响。
为了实现高精度的切削加工,优化和控制刀具的运动轨迹显得尤为重要。
本文将讨论CNC 机床加工中的刀具运动轨迹优化与控制的相关内容。
一、刀具运动轨迹的意义刀具运动轨迹是指刀具在加工过程中的移动路径。
优化刀具运动轨迹有助于改善加工精度、提高生产效率,同时还能减少加工时间和材料的浪费。
通过合理规划和控制刀具的运动轨迹,可以避免加工过程中的冲突和碰撞,保证加工的准确性和安全性。
二、刀具运动轨迹优化的方法1. 切削轨迹优化切削轨迹是指刀具在切削加工过程中的运动路径。
通过优化切削轨迹,可以减少刀具在加工过程中的停留时间,提高切削效率。
常用的切削轨迹优化方法包括直线刀路、圆弧刀路和复杂曲线刀路等。
根据具体的加工要求和机床的特性,选择合适的切削轨迹优化方法进行加工。
2. 轨迹规划优化刀具的轨迹规划是指在给定的加工空间中,规划刀具的移动路径。
在轨迹规划优化中,可以采用最优路径算法,如最短路径算法和最优速度规划算法,确定刀具的最佳移动路径。
同时,还需要考虑加工过程中的约束条件,如刀具尺寸、加工精度和切削力等,以确保加工的质量和效率。
三、刀具运动轨迹的控制刀具运动轨迹的控制是指通过CNC系统对刀具的路径和速度进行控制。
在CNC机床中,刀具运动由伺服系统控制,通过控制刀具的速度和位置,实现刀具的运动控制。
刀具的运动轨迹控制需要考虑刀具的精确定位和平滑运动的要求,以保证加工的准确性和表面质量。
1. 速度控制速度控制是刀具运动轨迹控制中的重要内容之一。
通过控制刀具的速度,可以实现加工速度的调节和加工路径的规划。
在CNC机床中,常用的速度控制方法包括比例控制、位置控制和路径规划控制等。
通过控制刀具的速度,可以实现切削加工的高效率和高精度。
2. 位置控制位置控制是刀具运动轨迹控制中的关键环节之一。
宏程序在轮廓倒圆角编程中的应用(常州铁道高等职业技术学校江苏,常州 213011)赵太平摘要:本文通过在立式加工中心上倒圆角加工的原理和过程的分析,确定了倒圆角编程要解决的关键问题,并结合实例分析了应用宏程序编制倒圆角编程的方法。
关键词:倒圆角;编程;宏程序圆角是零件轮廓常见的结构部分之一,在立式加工中心上采用立铣刀来加工零件轮廓径,使刀具沿其中心轨迹运动,正确加工出工件轮廓。
采用这种方法来编制倒圆角的加工程序,立铣刀切削刀尖在高度方向每下降一个深度,将要按如图2俯视图所示的一条刀具切削轨迹的实际尺寸编制一段程序,一方面为了保证圆角部分的加工精度,圆角园弧将被划分成很多等份,程序将会很烦琐,另一方面如果工件侧面轮廓复杂的话,每条刀具切削轨迹节点坐标计算量将很大,使编程工作量大大增加,甚至手工编程无法完成。
如图3所示每条刀具切削轨迹好象是把工件侧面轮廓不断等距偏移形成的。
每条刀具中心轨迹与对应的刀具切削轨迹存在一定距离的偏差,在实际加工时,机床控制刀具走的是加工出就是工件侧面轮廓,若按照同样的工件侧面轮廓的尺寸编程,但在半径补偿寄存器中输入值为(r -△),刀具实际半径不变,实际加工时,刀具中心轨迹会向内偏移△,加工出的实际轮廓就是把工件侧面轮廓小△。
可以看出,按照同样的工件侧面轮廓的尺寸编程,通过改变补偿寄存器中的半径补偿值,就可以得到不同的刀具切削轨迹。
对于具备刀具半径补偿量可变量赋值的数控系统(如FANUC-0i 系统),倒圆角加工可以按照工件侧面轮廓的尺寸编程,立铣刀切削刀尖在不同高度位置时的提供不同的半径补偿(r -△)图4凸圆角刀具切削刀尖到上表面的距离h和刀具中心线到工件侧面轮廓距离L计算分别见公式1和公式2,凹圆角刀具切削刀尖到上表面的距离h和刀具中心线到工件侧面轮廓距离L计算分别见公式3和公式4,h = R-R×cosα--------------------------------------------(式1)L = r-R+R×sinα-----------------------------------------(式2)h1= R×sinα-----------------------------------------------(式3)L1= r-R×cosα--------------------------------------------(式4)(其中:R-圆角半径,r-刀具半径,α-角度变量)通过上述分析可以看出,在加工过程中刀具切削刀尖到上表面的距离h(h1)和刀具四、小结轮廓的倒圆角加工,一般先完成其基本轮廓的加工,然后在其轮廓的基础上采用宏程序进行编程加工,对于具备刀具半径补偿值可变量赋值的数控系统,倒圆角编程加工将更加方便。
加工中心用铣刀铣圆为什么会出现椭圆跟锥度加工中心用铣刀铣圆为什么会出现椭圆跟锥度机床精度不高,如果公差要求高的话铣圆铣好后放点余量用绞刀绞一下加工中心用宏程序铣椭圆如何将逆铣改为顺铣椭圆孔:角度变量为0度递增至360度,椭圆台:角度变量为360度递减至0度。
加工中心用铣刀执行G02走圆---[请教]是不是每台机床都是这样,这个间隙在机床验收时是不是也有要求的,一般新机床能够在什么样的范围?查看原帖>>加工中心在用立铣刀加工整圆时到最后为什么会有接刀台刀具磨损,最好不要加工到成品尺寸。
换把新刀把余量加工了。
加工t2纯铜,加工中心用什么铣刀?1、T2纯铜粘度大,加工时切屑粘接在前刀面上不宜脱落,所以紫铜的被认为是难加工材料。
2、一般选用大前角、大螺旋角的刀具加工。
3、硬质合金的刀具由于其脆性较大,前角不宜做出太大。
4、一般采用高速钢刀具来切削紫铜铜材料。
刀具材料牌号可选W18Cr4V或W6Mo5Ci4V2等,刀具齿数不宜过多,容屑槽要尽量圆滑宽阔,前后面都要用油石打磨光滑。
使用时及时修磨刀具,保持刀具锋利。
5、使用大流量的冷却液,以降低工件热量。
切削时尽量选用大的进给量,切削速度不宜太高,具体数据可以根据现场工艺条件试验。
6、精铣时要特别注意刀具的锋利,主刀刃用钝后会使工件加工面受到极大地压力产生更多的热量,容易在前刀面形成积屑瘤,造成粗糙度升高。
甚至破坏尺寸的稳定。
加工中心为什么会出现ALM报警了,看报警编号,查说明书。
数控铣加工中心椭圆程序长干的角度加工中心怎么装卡锥柄铣刀有专门的锥柄刀柄去买就行了,就是后面有坚固螺钉的那种,都是莫氏的.加工中心铣内圆锥23度你刀具都是23°的啦为什么还要编宏程序呢?23°的刀子直接扎进去就行啦! 8.1的深度又不深~精加工深度留0.1MM就行啦!CNC加工中心刀库为什么会出现松刀故障CNC加工中心刀库松刀故障的原因:1,气压不足; 2,松刀按钮接触不良或线路断路;3,松刀按钮PLC输入地址点烧坏或者无信号源(+24V); 4,松刀继电器不动作;5,松刀电磁阀损坏; 6,打刀量不足; 7,打刀缸油杯缺油; 8,打刀缸故障; CNC加工中心刀库松刀故障对策;1,检查气压待气压达到6公斤正负1公斤即可; 2,更换开关或检查线路;3,更换I/O板上PLC输入口或检查PLC输入信号源,修改PLC程式;4,检查PLC输出信号有/无,PLC输出口有无烧坏,修改PLC程式;5,电磁阀线圈烧坏更换之,电磁阀阀体漏气、活塞不动作,则更换阀体; 6,调整打刀量至松刀顺畅; 7,添加打刀缸油杯中的液压油;8,打刀缸内部螺丝松动、漏气,则要将螺丝重新拧紧,更换缸体中的密封圈,若无法修复则更换打刀缸;。
雕刻机刀具路径轨迹算法雕刻机刀具路径轨迹算法是指在雕刻机进行雕刻操作时,通过计算和规划刀具的运动路径,使刀具能够按照预定的轨迹进行移动,从而实现所需的雕刻效果。
本文将介绍雕刻机刀具路径轨迹算法的原理和常用的实现方法。
一、雕刻机刀具路径轨迹算法的原理在雕刻机的刀具路径轨迹算法中,主要涉及到以下几个关键点:刀具移动的速度、刀具的运动方式、刀具的切削方向和刀具的切削深度。
1. 刀具移动的速度刀具移动的速度对于雕刻机的切削效果和雕刻速度有着重要的影响。
一般来说,刀具移动速度越快,雕刻速度越快,但同时也会影响雕刻的精度。
因此,在刀具路径轨迹算法中需要根据雕刻要求和设备性能来确定刀具的移动速度。
2. 刀具的运动方式刀具的运动方式通常有两种:直线运动和曲线运动。
在刀具路径轨迹算法中,需要根据雕刻的要求和设计来确定刀具的运动方式。
对于直线雕刻,可以采用直线插补算法来计算刀具的移动轨迹;对于曲线雕刻,可以采用圆弧插补算法来计算刀具的移动轨迹。
3. 刀具的切削方向刀具的切削方向决定了雕刻的效果和切削力的大小。
在刀具路径轨迹算法中,需要根据雕刻要求和材料特性来确定刀具的切削方向。
常见的切削方向有:顺时针切削、逆时针切削和双向切削。
根据切削方向的不同,刀具的路径轨迹也会有所差异。
4. 刀具的切削深度刀具的切削深度决定了雕刻的深度和切削力的大小。
在刀具路径轨迹算法中,需要根据雕刻要求和材料特性来确定刀具的切削深度。
切削深度可以通过控制刀具的下降速度和切削轨迹的设计来实现。
在实际应用中,有多种算法可以用来计算和规划雕刻机刀具的路径轨迹。
下面介绍几种常用的算法:1. 直线插补算法直线插补算法是一种简单而常用的刀具路径规划算法。
该算法通过计算直线的起点和终点坐标,并结合刀具的移动速度和切削深度,确定刀具的移动轨迹和切削速度。
2. 圆弧插补算法圆弧插补算法是一种用于计算和规划刀具路径的常用算法。
该算法通过计算圆弧的起点、终点和半径,并结合刀具的移动速度和切削深度,确定刀具的移动轨迹和切削速度。
刀具轨迹(Tool Path)
刀具轨迹(Tool Path),切削刀具上规定点所走过的轨迹。
此规定点通常为刀具加工中在空间的位置点。
曲面加工的刀具轨迹生成是实现曲面数控加工的关键环节。
它是通过零件几何模型,根据所选用的加工机床、刀具、走刀方式以及加工余量等工艺方法进行刀位计算并生成加工运动轨迹。
刀具轨迹的生成能力直接决定数控编程系统的功能及所生成加工程序的质量。
高质量的数控加工程序除应保证编程精度和避免干涉外,同时应满足通用性好、加工时间短、编程效率高、代码量小等。
刀具轨迹,在CNC雕刻行业中,是必不可少的东西,生成轨迹的软件是一个由专业公司开发的雕刻软件,或也可以是个人开发的小型雕刻程序,比如说国内很出名的JDpaint(精雕软件),国外的AlphaCAM。
生成的刀具轨迹再由CNC雕刻机,雕刻出不同的模具或其它东西。