中考总复习相似三角形导学案
- 格式:doc
- 大小:404.00 KB
- 文档页数:8
《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的周长比、面积比与相似比之间的关系。
3、能运用相似三角形的性质解决简单的实际问题。
二、学习重点1、相似三角形的性质的理解和应用。
2、相似三角形周长比、面积比与相似比的关系。
三、学习难点相似三角形性质的综合应用,以及在实际问题中的灵活运用。
四、知识回顾1、什么是相似三角形?相似三角形是指对应角相等,对应边成比例的三角形。
2、如何判定两个三角形相似?(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =____,∠F =____。
解:因为△ABC∽△DEF,所以∠D =∠A = 50°,∠F = 180°∠D ∠E = 180° 50° 70°= 60°(二)相似三角形的周长比等于相似比例 2:若△ABC∽△A'B'C',相似比为 2:3,△ABC 的周长为 12,则△A'B'C'的周长为____。
解:因为相似三角形的周长比等于相似比,所以△ABC 的周长:△A'B'C'的周长= 2:3。
设△A'B'C'的周长为 x,则 12:x = 2:3,解得x = 18。
(三)相似三角形的面积比等于相似比的平方例 3:两个相似三角形的相似比为 1:4,它们的面积比为____。
解:因为相似三角形的面积比等于相似比的平方,所以面积比为1²:4²= 1:16。
六、课堂练习1、已知△ABC∽△A'B'C',相似比为 3:5,AB = 9,则 A'B' =____。
《2722相似三角形的性质》教案导学案教案:相似三角形的性质教学目标:1.了解相似三角形的性质;2.学会判断两个三角形是否相似;3.掌握相似三角形的判定方法。
教学重点:1.相似三角形的定义;2.相似三角形的判定方法。
教学难点:1.不同情况下相似三角形的判定方法;2.解决实际问题时如何应用相似三角形的性质。
教学准备:1.投影仪、教学PPT;2.相似三角形的例题和练习题。
教学过程:Step 1 引入新知识(10分钟)通过引入一个实际问题来引起学生的兴趣,例如:山顶的高度无法直接测量,如何利用相似三角形的性质估计山的高度?Step 2 相似三角形的定义和性质(20分钟)1.在投影仪上展示相似三角形的定义和性质的PPT,让学生了解相似三角形的基本概念。
2.通过例题和练习题,巩固学生对相似三角形的理解和应用。
Step 3 相似三角形的判定方法(30分钟)1.通过投影仪展示相似三角形的判定方法的PPT,并分别讲解三边对应相等、三角比相等、两角对应相等的判定方法。
2.通过例题和练习题,让学生熟练掌握相似三角形的判定方法。
Step 4 应用相似三角形解决实际问题(30分钟)1.通过一个实际问题的例子,引导学生应用相似三角形的性质解决问题。
2.组织学生进行小组讨论,让学生尝试自己解决一个实际问题,并在小组之间进行分享和讨论。
Step 5 检查与评价(10分钟)1.通过小组讨论和分享,检查学生对相似三角形的理解和应用;2.布置作业,要求学生在家完成相关的练习题。
导学案:相似三角形的性质导学目标:1.了解相似三角形的定义;2.熟悉相似三角形的判定方法;3.掌握相似三角形的性质。
导学过程:Step 1 相似三角形的定义(10分钟)1.请自学《2722相似三角形的性质》导学资料中的第1页,了解相似三角形的定义。
2.在思考的基础上,与同桌讨论并总结出相似三角形的定义。
Step 2 相似三角形的判定方法(10分钟)1.请自学《2722相似三角形的性质》导学资料中的第2页,了解相似三角形的判定方法。
相似三角形的判定导学案【课前延伸】1、全等三角形的性质:全等三角形的对应边、对应角。
全等三角形的判定方法:、、、。
(用字母表市即可)2、相似三角形的性质:相似三角形的对应边、对应角。
【学习目标】1、通过画图、测量,了解两角对应相等两三角形相似三角形的判定方法。
2、会灵活选取条件,证明两三角形相似。
3、会利用三角形相似解决简单的实际问题。
4、进一步培养学生的逻辑推理能力,能简练地写出证明过程。
【课内探究】实验与探究:画一个三角形,使三个角分别为60°,45°,75°。
①同桌分别量出两个三角形三边的长度;②同桌画的这两个三角形相似吗?换另三个角试试?小组总结:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_______。
小组讨论:两三角形相似一定要三个角相等吗?将你小组讨论的结果填写在下面:并说明理由。
知识应用一:例:如图所示,D,E分别是△ABC边AB,AC上的点,DE//BC。
(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由;(3)写出成比例的线段。
知识应用二:例:在阳光下,为了测量学校水塔的高度,小亮走进水塔的影子里,使自己的影子刚好被水塔的影子遮住,已知小亮的身高BC=1.6米,此时,他的影子的长AC=1米,他距水塔底部E处11.5米,水塔的顶部为点D,你能由此算出水塔的高度DE 吗?小组总结:通过以上两个例题的解答,你们发现利用相似三角形可以:练习:1.有一个锐角对应相等的两个直角三角形是否相似?为什么?画图说明。
2.一个角相等的两个等腰三角形是否相似?为什么?画图说明。
【课堂小结】小组谈谈本节课的收获和疑惑【课堂检测】1、图1中DE∥FG∥BC,找出图中所有的相似三角形。
2、图2中AB∥CD∥EF,找出图中所有的相似三角形。
3、在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°,∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么?4、找出图中所有的相似三角形你能写出对应边的比例式和相等的角吗? 图35、如图3,已知△ABC中D为AC的中点,AB=5,AC=7,∠AED=∠C,则ED=【课后提升】基础题:习题8.5A组1、2题能力题:习题8.5A组3题【课堂检测】1、图1中DE∥FG∥BC,找出图中所有的相似三角形。
新苏科版九年级数学下册第六章《相似三角形复习》导学案一、知识要点:1、相似三角形的定义:对应角相等,对应边成比例的三角形叫做相似三角形;应注意:△ABC ∽△C B A '''与△C B A '''∽△ABC 的相似比互为倒数,当k=1时,两个三角形全等。
2、预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似,这是今后证明三角形相似的重要依据。
3、三角形相似的判定定理:定理1:两角对应相等,两三角形相似;定理2:两边对应成比例且夹角相等,两三角形相似; 定理3:三边对应成比例,两三角形相似。
推论1:斜边和直角边对应成比例,两直角三角形相似; 推论2:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 4、黄金分割、位似图形、中心投影和平行投影、实际应用。
二、典型例题: (一)、求线段长或线段比例1 雨后初晴,一学生在运动场上玩耍,从他前面2m 远一块小积水处,他看到了旗杆的倒影,如果旗杆底端到积水处的距离为40 m ,该生眼睛的高度是1.5 m ,那么旗杆的高度是______.例2 如图2所示,在△ABC 中,AD 是BC 边上的中线,F 是AD 上一点,CF 的延长线交AB 于点E ,若AF : FD =1:3,则AE :EB =___________;若AF :FD =1:n(n>0),则AE :EB =________.解析 过D 作DG ∥AB 交CE 于G .由于D 是BC 的中点,可知DG 是BCE 的中位线,解:(二)、求周长与面积或周长与面积比例3 如图,已知:△ABC 中,AB=5,BC=3,AC=4,PQ//AB ,P 点在AC 上(与点A 、C 不重合),Q 点在BC 上. (1)当△PQC 的面积与四边形PABQ 的面积相等时,求CP 的长;(2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长;例 4 如图3所示,在□ABCD 中,E 为DC 边的中点,AE 交BD 于D .若S △DOE =9 cm 2,则S △AOB 等于( )(A)18 cm 2 (B)27 cm 2 (C)36 cm 2 (D)45 cm 2(三)、证明比例线段例5 如图4所示,已知正方形ABCD 中,O 是AC 与BD 的交点, ∠DAC 的平分线AP 于点P ,∠BDC 的平分线DQ 交AC 于点Q ,求证:BD APCD BQ=. (四)、实际应用举例例6 如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷,经过了解,教学楼、水塔的高分别是20 m 和30 m ,它们之间的距离为30 m ,小张身高为1.6 m ,小张要想看到水塔,他与教学楼之间的距离至少应有多少米?三、易混淆概念1、比例线段的相关概念在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项, d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
3.3.1相似三角形的判定(一)【学习目标】(1) 会用符号“∽”表示相似三角形如△ABC ∽ △A′B′C′; (2) 知道当△ABC 与△A′B′C′的相似比为k 时,△A′B′C′与△ABC 的相似比为1k .(3) 掌握两边对应成比例,夹角相等的两个三角形相似的判定方法。
【学习重点】理解掌握三边对应成比例的两个三角形相似的判定方法及应用.【学习难点】 运用三边对应成比例的两个三角形相似判定三角形相似. 一、知识回顾平行于三角形一边与其它两边(或其延长线)相交,所截得的对应线段_________。
1、如图:MN//BC,则: ①AM AN =______=______. ②AM AB =______=______. 2、如图,DE//BC ,则: ①ADAB =______=______. ②BDAB=______. 3、把一个△ABC 放大后得到△A′B′C′,那么△ABC 与△A′B′C′有什么关系?①放大后AB 边对应______,BC 边对应______,AC 边对应ABCM NC BA A′B′C′______,∠A 对应______,∠B 对应______,∠C 对应______. ②对应边有什么关系?对应角有什么关系? 二 合作探究阅读教材P “说一说”,思考下列问题:1、什么叫作相似三角形?如何表示相似三角形? 在△ABC 与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且AB A ′B ′=BC B ′C ′=AC A ′C ′=k .我们就说△ABC 与△A′B′C′相似,记作:△ABC ∽△A′B′C′,对应边的比AB A ′B ′=BC B ′C ′=ACA ′C ′=k 叫△ABC 与△A′B′C′的相似比.【注意】①△A′B′C′与△ABC②两个相似三角形的相似比具有顺序性。
根据相似三角形的定义,不难得到相似三角形性质:△ABC ∽△A′B′C′══>⎩⎨⎧∠A=_____、∠B=_____、∠C=____.AB A ′B ′=BC B ′C ′=AC A ′C ′2、【问题】如果k=1,这两个三角形有怎样的关系?3、【问题】已知:如图,DE//BC.求证:△AD E ∽△ABC.∵D E ∥BC∴∠B=∠ADE, ∠C=∠AEDAD AB =AE AC =DEBC;又:∠A=∠A∴△ADE ∽△ABC (相似三角形定义) 【归纳总结】相似三角形判定预备定理:平行于三角形一边的直线截其他两边(或两边延长线),所得的三角形与原三角形_________.∵D E ∥BC ∴△ABC ∽△ADE【注意】平行截相似的三种基本图形。
4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。
6.5相似三角形的性质(2)学习目标1.运用类比的思想方法,通过实践探索得出:相似三角形对应线段(高、中线、角平分线)的比等于相似比;2.会运用相似三角形对应高的比与相似比的性质解决有关问题.学习过程一:“学”——自主学习复习回顾:如图,△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比是2:3,则△ABC 与△A’B’C’的面积比是多少?你的依据是什么?回顾“相似三角形的面积比等于相似比的平方”这个结论的探究过程,你有什么发现?合作探究:活动一:如图,△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比是k ,AD 、A ′D ′是对应高.A A ′B ′ BC C ′D CB AD ’ A ′ C ′B ′D' A' B' C' D A B C D' A' B' C' D A B C结论:相似三角形对应高的比等于___________.活动二、相似三角形对应中线的比、对应角平分线的比与相似比的关系。
结论:相似三角形对应中线的比、对应角平分线的比等于 。
二:“思”——乐学精思例1、 如图,AF 是△ABC 的高,点D 、E 分别在AB 、AC 上,且DE ∥BC ,DE 交AF 于点G 。
设DE=6,BC=10,GF=5,求点A 到DE 、BC 的距离。
三:“练”——巩固反馈自主训练1.两个相似三角形的相似比为2:3,它们的对应角平分线之比为_______,周长之比为_______,面积之比为________2.若两个相似三角形面积之比为16:9,则它们的对高之比为_____,对应中线之比为_____3.如图,△ABC ∽△DBA ,D 为BC 上一点,E 、F 分别是AC 、AD 的中点,且AB =ABA'B'C' 32cm 20cmO28cm,BC=36cm,则BE:BF=________4、如图,D、E分别在AC、AB上,∠ADE=∠B,AF⊥BC,AG⊥DE,垂足分别是F、G,若AD=3,AB=5,求:(1)AGAF的值.(2)△ADE与△ABC的周长的比,面积的比.5、如图:与小孔O相距32cm处有一支长30cm燃烧的蜡烛AB,经小孔,在与小孔相距20cm的屏幕上成像,求像A'B'的长度。
3月16日-相似三角形的性质及其应用-导学案一:知识梳理相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形知识点1:性质定理1:相似三角形对应角相等,对应边成比例。
知识点2:性质定理2:相似三角形对应线段(高线、中线、角平分线)的比等于相似比。
实战训练一:1. 两个相似三角形的对应边之比是1:2,那么它们的对应中线之比是1:2 。
2. 两个相似三角形的对应高之比是1:4,那么它们的对应中线之比是1:4 。
3. 两个相似三角形的对应角的平分线的长分别是3cm和5cm,那么它们的相似比是3:5 ,对应高的比是3:5 。
知识点3:性质定理3:相似三角形的周长比等于相似比。
实战训练二:1. 两个相似三角形的相似比是1:2,其中较小三角形的周长为6cm,则较大三角形的周长为12cm 。
2. 如果△ABC ∽△DEF,且△ABC的三边长分别为3、4、5,△DEF的最短边长为6,那么△DEF的周长为24 。
3. 如果两个相似三角形的周长比是2:3,其中小三角形一角的角平分线长是6cm,那么大三角形对应角平分线长是9cm 。
知识点4:性质定理4:相似相似三角形面积的比等于相似比的平方。
实战训练三:1. 若△ABC ∽△A’B’C’且相似比为1:2,则△ABC 与△A’B’C’面积之比为1:4 。
2. 两个相似三角形的面积之比是4: 9,则这两个三角形相似比是2:3 。
3. 判断:两个三角形的面积之比是4: 9,则这两个三角形的周长之比是2:3。
(×)二:典例分析例1:如图,已知△ACE△△BDE,AC=6,BD=3,AB=12,CD=18,求AE和DE的长。
解:∵△ACE∽△BDE∴ACBD =AEBE即63=AE12−AE解得AE=8△ ACBD =CEDE即63=18−DEDE解得DE=6相似三角形的应用——测量不能到达顶端的物体高度例2: 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A、B、Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高为6m 。
《相似三角形的周长与面积》导学案一、教学目标知识与技能1.理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
2.能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。
过程与方法1.经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.在探索实践中培养学生分析问题、解决问题的能力。
情感态度与价值观1. 在获得知识的过程中培养学习的自信心,知道数学来源于生活有服务于生活。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、重点难点重点理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难点相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.三、学情分析相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。
学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。
小结:1.本节学习的数学知识:(1)相似三角形(或多边形)长的比等于相似比.(2)相似三角形(或多边形)的面积比等于相似比的平方(3)相似三角形对应高的比、对应中线的比、对应角的平分线的比五、设计思路本节课开始让学生回顾旧内容,再根据提出的问题,让学生对相似三角形的周长、高、中线、角平分线、面积之间的关系进行猜测,然后从理论上,对学生的猜测逐一进行证明。
从两相似三角形周长和面积两方面进行探索,让学生在探索中得出结论,在探索中培养学生初步的发现能力和概括能力。
27.2.3 相似三角形的周长与面积一、自主探究问题一:相似三角形、相似多边形的周长之间的关系 1、已知:△ABC ∽△A'B'C',相似比为k ,求证:'''ABC A B C C k C =V V2、猜想:相似多边形的周长之间有什么关系?3、根据以上两个问题你会得到什么结论?问题二:相似三角形对应高、面积之间的关系1、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:''A D kA D=2、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:'''2ABC A B C S k S =V V .B 'C ''CB 'C ''3、已知:四边形ABCD 相似于四边形A'B'C'D',相似比为k ,它们的面积比是多少?4、根据以上讨论,归纳结论.问题三; 相似三角形对应中线、角的平分线之间的关系已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是中线,则''A D A D的值是多少?若AD ,''A D 分别是角平分线呢?由此你会得到什么结论?二、尝试应用1、(2010福建泉州市惠安县)两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A.9:1B. 3:4C.9:4D.3:16 2、(2010重庆市)已知△ABC 与△DEF 相似且对应中线的比为2:3,则△ABC 与△DEF 的周长比为_____________.3、如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,△ABC 的周长是24,面积是48,求△DEF 的周长和面积.D CB ADC 'D'CE FA 'B 'C 'D '三、补偿提高1、(2010重庆潼南县)△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为.2、(2009年宜宾)若一个图形的面积为2,那么将它与成中心对称的图形放大为原来的两倍后的图形面积为()A.8B. 6C.4D.23、(2009年安顺)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:A.0个B.1个C.2个D3个4、如图,有一块三角形铁片ABC,已知最长边BC=12cm,高AD=8cm要把它加工成一个矩形铁片,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,且矩形的长是宽的2倍,问加工成的铁片的面积是多少?。
27.2.2 相似三角形的性质【教学目标】1.理解相似三角形的性质;(重点)2.会利用相似三角形的性质解决简单的问题.(难点)【教学过程】一、情境导入两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图中,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中AD、A′D′分别为BC、B′C′边上的高,那么AD、A′D′之间有什么关系?二、合作探究探究点一:相似三角形的性质【类型一】利用相似比求三角形的周长和面积如图所示,平行四边形ABCD中,E是BC边上一点,且BE=EC,BD、AE 相交于F点.(1)求△BEF与△AFD的周长之比;(2)若S△BEF=6cm2,求S△AFD.解析:利用相似三角形的对应边的比可以得到周长和面积之比,然后再进一步求解.解:(1)∵在平行四边形ABCD中,AD∥BC,且AD=BC,∴△BEF∽△AFD.又∵BE=12BC,∴BEAD=BFDF=EFAF=12,∴△BEF与△AFD的周长之比为BE+BF+EFAD+DF+AF=12;(2)由(1)可知△BEF∽△DAF,且相似比为12,∴S△BEFS△AFD=(12)2,∴S△AFD=4S△BEF=4×6=24cm2.方法总结:理解相似三角形的周长比等于相似比,面积比等于相似比的平方是解决问题的关键.【类型二】利用相似三角形的周长或面积比求相似比若△ABC∽△A′B′C′,其面积比为1∶2,则△ABC与△A′B′C′的相似比为( )A.1∶2 B.2∶2C.1∶4 D.2∶1解析:∵△ABC∽△A′B′C′,其面积比为1∶2,∴△ABC与△A′B′C′的相似比为1∶2=2∶2.故选B.方法总结:解决问题的关键是掌握相似三角形的面积比等于相似比的平方.【类型三】利用相似三角形的性质和判定进行计算如图所示,在锐角三角形ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别为18和8,DE=3,求AC边上的高.解析:求AC边上的高,先将高线作出,由△ABC的面积为18,求出AC的长,即可求出AC边上的高.解:过点B作BF⊥AC,垂足为点F.∵AD⊥BC, CE⊥AB,∴Rt△ADB∽Rt△CEB,∴BDBE=ABCB,即BDAB=BECB,且∠ABC=∠DBE,∴△EBD∽△CBA, ∴S△BEDS△BCA=(DEAC)2=818.又∵DE=3,∴AC=4.5.∵S△ABC=12AC·BF=18, ∴BF=8.方法总结:解决此类问题,可利用相似三角形周长的比等于相似比、面积比等于相似比的平方来解答.【类型四】利用相似三角形线段的比等于相似比解决问题如图所示,PN∥BC,AD⊥BC交PN于E,交BC于D.(1)若AP∶PB=1∶2,S△ABC=18,求S△APN;(2)若S △APN ∶S 四边形PBCN =1∶2,求AEAD的值.解析:(1)由相似三角形面积比等于对应边的平方比即可求解;(2)由△APN 与四边形PBCN 的面积比可得△APN 与△ABC 的面积比,进而可得其对应边的比.解:(1)因为PN ∥BC ,所以∠APN =∠B ,∠ANP =∠C ,△APN ∽△ABC ,所以S △APN S △ABC =(AP AB )2.因为AP ∶PB =1∶2,所以AP ∶AB =1∶3.又因为S △ABC =18,所以S △APNS △ABC =(13)2=19,所以S △APN =2; (2)因为PN ∥BC ,所以∠APE =∠B ,∠AEP =∠ADB ,所以△APE ∽△ABD ,所以AP AB =AE AD ,S △APN S △ABC =(AP AB )2=(AE AD )2.因为S △APN ∶S 四边形PBCN =1∶2,所以S △APN S △ABC =13=(AE AD)2,所以AE AD =13=33.方法总结:利用相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.【类型五】 利用相似三角形的性质解决动点问题如图,已知△ABC 中,AB =5,BC =3,AC =4,PQ ∥AB ,P 点在AC 上(与A 、C 不重合),Q 点在BC 上.(1)当△PQC 的面积是四边形PABQ 面积的13时,求CP 的长;(2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长. 解析:(1)由于PQ ∥AB ,故△PQC ∽△ABC ,当△PQC 的面积是四边形PABQ面积的13时,△CPQ 与△CAB 的面积比为1∶4,根据相似三角形的面积比等于相似比的平方,可求出CP 的长;(2)由于△PQC ∽△ABC ,根据相似三角形的性质,可用CP 表示出PQ 和CQ 的长,进而可表示出AP 、BQ 的长.根据△CPQ 和四边形PABQ 的周长相等,可将相关的各边相加,即可求出CP 的长.解:(1)∵PQ ∥AB ,∴△PQC ∽△ABC ,∵S △PQC =13S 四边形PABQ ,∴S △PQC ∶S △ABC =1∶4,∵14=12,∴CP =12CA =2; (2)∵△PQC ∽△ABC ,∴CP CA =CQ CB =PQ AB ,∴CP 4=CQ 3,∴CQ =34CP .同理可知PQ =54CP ,∴C △PCQ =CP +PQ +CQ =CP +54CP +34CP =3CP ,C 四边形PABQ =PA +AB +BQ +PQ =(4-CP )+AB +(3-CQ )+PQ =4-CP +5+3-34CP +54CP =12-12CP ,∴12-12CP =3CP ,∴72CP =12,∴CP =247.方法总结:由相似三角形得出线段的比例关系,再根据线段的比例关系解决面积、线段的问题是解题的关键.三、板书设计1.相似三角形的对应角相等,对应边的比相等;2.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;3.相似三角形的面积的比等于相似比的平方. 【教学反思】本节教学过程中,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等.同学们讨论非常激烈,本节课堂教学取得了明显的效果.27.2.2 相似三角形的性质教学目标:知识与技能1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。
相似三角形
基础知识点
一、比例的基本性质: 1.若
d
c
b a =,那么b
c a
d =,即:比例的内向之积等于外向之积; 反之也成立:即若bc ad =,那么d
c
b a =;
思考:由bc ad =还可以推出那么些比例等式呢?
2.合比性质:若
d c b a =,那么d d
c b b a ±=
± 3.等比性质:若()0≠+++===n d b n m d c b a ΛΛ,则b
a
n d b m c a =++++++ΛΛ.
例题:若c b a 、、满足k b
a c
c a b c b a =+=+=+,则=k .(.利用等比性质求.......).
二、线段的比、成比例线段、黄金分割
1.线段的比: ;
这里应该注意的问题是:⑴ ;
⑵ . 2.比例线段: . 3.黄金分割: . 三、相似三角形:
姓名 班级 组别 组内评价 教师评价 修改评价
2
1.概念:三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 2.相似三角形的性质
⑴相似三角形的对应边_________,对应角________. ⑵相似三角形的对应边的比叫做________,一般用k 表示.
⑶相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________. 3.相似三角形的判定方法
⑴基本定理: . 如图:若DE∥BC(A 型和X 型)则_______________________________________.
⑵两个角对应 的两个三角形__________.
⑶两边对应成_________且 相等的两个三角形相似. ⑷三边对应成比例的两个三角形___________.
⑸两个直角三角形的判定: . ※※思考:若CD 为Rt△ABC 斜边上的高(双直角图形) 则 ∽ ⇒ AC 2
=____________,
∽ ⇒CD 2
=_____________,
∽ ⇒BC 2
=__ __________.
4.证明三角形相似的的方法与技巧
⑴条件中若有平行线,则有两种思路:①直接利用基本定理;②利用平行线找相等的角. ⑵条件中若有一对等角,也有两种思路:①找另外一对等角;②找此角所在边对应成比例. ⑶条件中若有两边对应成比例,则找其夹角相等.
⑷条件中若有一对直角,也有两种思路:①找另外一对等角;②找出直角边、斜边对应成比例.
⑸条件中若有等腰关系,有三种思路:①找顶角相等;②找一对底角相等;③找底和腰对应成比例; 四、相似多边形:
1.定义: .
2.相似多边形的性质:
⑴ ; ⑵ . 五、位似图形:
1.定义: .
2.位似图形的性质:
⑴ ; ⑵ . 3.位似图形的作用: .
解题指导
【例1】已知
43=b a ,=-b a
b 【 】 A. 34 B. 4
1
- C. 41 D. 31
及时练习:
1.如图,乐器上的一根弦80AB =cm ,两个端点A 、B 固定在乐器板面上,支撑点C 是靠近点B 黄金分割点,支撑点D 是靠近点A 的黄金分割点,则AC = cm ,DC = cm .
2. (2000•山西)请阅读下面材料,并回答所提出的问题.
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.
A D C
B
4
已知:如图,△ABC 中,AD 是角平分线. 求证:
AC
AB
DC BD =
分析:要证
AC
AB
DC BD =
,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似. 现在B 、D 、C 在一直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比.在比例式 AC
AB
DC BD =
中,AC 恰是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD ,交BA 的延长线于E ,从而得 到BD 、DC 、AB 的第四比例项AE ,这样,证明 AC
AB
DC BD =
,就可以转化成证AE=AC . 证明:过C 作CE ∥DA ,交BA 的延长线于E .
CE ∥DA ⇒ AE AC E E =⇒∠=∠⇒⎪⎭
⎪
⎬⎫∠∠∠⎪⎩⎪⎨⎧=∠=∠=∠323121
AC BA DC BD AC
AE AE BA DC BD DA CE =⇒
⎪⎭
⎪
⎬⎫
==⇒∥ (1)上述证明过程中,用到了哪些定理?(写对两个定理即可)
(2)在上述分析、证明过程中,主要用到了下列三种数学思想的哪一种? 选出一个填在后面的括号内. [ ]
①数形结合思想; ②转化思想; ③分类讨论思想. (3)用三角形内角平分线性质定理解答问题:
已知:如图,△ABC 中,AD 是角平分线,AB=5cm ,AC=4cm ,BC=7cm .求BD 的长.
【例2】下列四个三角形中,与左图中的三角形相似的是 【 】
【例3】(2010•衡阳)如图6,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延
长线于点F,BG⊥AE,垂足为G,BG=
2
4,则ΔCEF的周长为【
】
A.8
B.9.5
C.10
D.11.5
例题4
【例4】如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于.
【例5】花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高(精确到0.1米).
【例6】如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B、C 重合),过P点作PE交DC于E,使得∠APE=∠B.
A.B.C.D.
姓名 班级 组别 组内评价 教师评价 修改评价
6
(1)求等腰梯形的腰长; (2)证明:△ABP ∽△PCE ;
(3)在底边BC 上是否存在一点P ,使得DE :EC=5:3?如果存在,求出BP 的长;如果不存在,请说
明理由.
【例7】如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面
积比是 ( )
A.3:4
B.5:8
C.9:16
D.1:2
【例8】如图,ABC △与A B C '''△是位似图形, 且位似比是1:2,若AB =2cm ,则A B ''= cm , 并在图中画出位似中心O .
【例9】如图(十四),不等长的两对角线AC 、BD 相交于O 点, 且将四边形ABCD 分成甲、乙、丙、丁四个三角形。
若OA :OC =OB :OD =1:2,则此四个三角形的关系,
C
D
例题7
′
A B
C A
B C
′ ′
例题8
甲
O
C
D
B
A
乙
丙
丁
下列叙述何者正确?【】
(A) 甲丙相似,乙丁相似
(B) 甲丙相似,乙丁不相似
(C) 甲丙不相似,乙丁相似
(D) 甲丙不相似,乙丁不相似。
【例10】如图,在梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于F,BE的延长线交CD的延长线于G.(1)求证:
BC
AE
GB
EG
=;(2)若GE=2,BF=3,求线段EF的长.
【例10】如图,在平面直角坐标系中,直线
1
2
3
y x
=-+交x轴于点P,交y轴于点A,抛物线2
1
2
y x bx c
=-++的图象过点(1,0)
E-,并与直线相交于A、B两点.
⑴求抛物线的解析式(关系式);
姓名 班级 组别 组内评价 教师评价 修改评价
8
⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;
⑶ 除点C 外,在坐标轴上是否存在点M ,使得MAB ∆是直角三角形?若存在,请求出点M 的坐
标,若不存在,请说明理由.。