高二数学新人教版选修A版选修44课件:第1章坐标系1.2极坐标系
- 格式:ppt
- 大小:3.24 MB
- 文档页数:32
更上一层楼基础·巩固1点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.(2,4π) B.(2,43π)C.(2,45π)D.(2,47π)思路解析: 因为点P(2,2-)在第二象限,与原点的距离为2,且OP 的倾斜角为43π.故选B. 答案:B2图1-2-8是某校园的平面示意图.假设某同学在教学楼处,试以此点为极点建立坐标系,说出教学楼、体育馆、图书馆、实验楼、办公楼的极坐标来.图1-2-8思路分析:如图所示,以AB 所在直线为极轴,点A 为极点建立极坐标系.找AB 、AC 、AD 、AE 的距离为各点的极径,分别以x 轴为始边,AB 、AC 、AD 、AE 为终边找在0到2π之间的极角.解:教学楼点A(0,0),体育馆点B(60,0),图书馆点C(120,3π),实验楼点D(360,2π),办公楼点E(50,43π). 3已知过曲线⎩⎨⎧==θθsin 4,cos 3y x (θ为参数,且0≤θ≤π)上一点P 与原点O 的直线PO 的倾斜角为4π,则P 点坐标是( )A.(3,4)B.(223,22) C.(-3,-4) D.(512,512)思路解析:因为点P 与原点O 的直线PO 的倾斜角为4π,即点P 的极角θ=4π,直接代入已知曲线方程,即可求出点P 的直角坐标来. 答案:B4极坐标系中,点A 的极坐标是(3,6π),则 (1)点A 关于极轴对称的点是_______________;(2)点A 关于极点对称的点的极坐标是_______________; (3)点A 关于直线θ=2π的对称点的极坐标是_______________.(规定ρ>0,θ∈[0,2π]) 思路解析:如图所示,在对称的过程中极径的长度始终没有变化,主要在于极角的变化.另外,我们要注意:极角是以x 轴正向为始边,按照逆时针方向得到的.答案:(1)(3,611π) (2)(3,67π) (3)(3,65π) 5直线l 过点A(3,3π)、B(3,6π),则直线l 与极轴夹角等于_______________.思路解析:如图所示,先在图形中找到直线l 与极轴夹角,另外要注意到夹角是个锐角.然后根据点A 、B 的位置分析夹角的大小.∵|AO|=|BO|=3,∠AOB=3π-6π=6π, ∴∠OAB=分 π-12526πππ=-. ∴∠ACO=π-3π-125π=4π.答案:4π6极坐标方程ρ=θθ2sin cos 22+所对应的直角坐标方程为__________. 思路解析:因为ρ=θθ2sin 2cos 2+可化为ρ=θθ2cos 1)cos 2(1-+,即ρ=θcos 12-, 去分母,得ρ=2+ρcos θ.将公式代入得x 2+y 2=(2+x)2.整理可得.答案:y 2=4(x+1)7在极轴上求与点A(24,4π)距离为5的点M 的坐标_________. 思路分析:题目要求是点在极轴上,可设点M(r,0),由于极坐标中有一个量是关于角的,A 、M两点之间的距离为5,所以可以根据余弦定理求出点M 的坐标来. 解:设M(r,0), ∵A(24,4π),∴4cos 28)24(22πr r -+=5,即r 2-8r+7=0.解得r=1或r=7.∴M 点的坐标为(1,0)或(7,0).在极坐标系下,任意两点P 1(ρ1,θ1),P 2(ρ2,θ2)之间的距离可总结如下: |P 1P 2|=)cos(221212221θθρρρ--+,此式可直接利用余弦定理证得.8已知△ABC 的三个顶点的极坐标分别为A(5,6π),B(5,2π),C(34-,3π),判断△ABC 的形状,并求出它的面积.(提示:对于点M(ρ,θ),当极径小于零时,此时M 点在极角θ终边的反向延长线上,且OM=|ρ|) 思路分析:判断△ABC 的形状,就需要计算三角形的边长或角,在本题中计算边长较为容易,不妨先计算边长.解:∵∠AOB=3π,∠BOC=65π,∠AOC=65π,又∵|OA|=|OB|=5,|OC|=34,∴由余弦定理,得|AC|2=|OA|2+|OC|2-2|OA|·|OC|·cos ∠AOC=52+(34)2-2×5×34·cos65π=133. ∴|AC|=133.同理,|BC|=133. ∴|AC|=|BC|.∴△ABC 为等腰三角形.又|AB|=|OA|=|OB|=5,∴AB 边上的高h=2313|)|21(||22=-AB AC . ∴S △ABC =21×436552313=⨯. 综合·应用9二次方程x 2-ax+b=0的两根为sinθ、cosθ,求点P(a,b)的轨迹方程(其中|θ|≤4π). 思路分析:这是一道三角函数知识与极坐标知识的综合运用题,尤其对三角要求比较高,还要注意三角函数的有界性,求出轨迹方程的限制条件. 解:由已知,得⎩⎨⎧•=+=,cos sin ,cos sin θθθθb a .①②①2-2②,得a 2=2(b+21). ∵|θ|≤4π,由sin θ+cos θ=2sin(θ+4π),知0≤a ≤2. 由sin θ·cos θ=21sin2θ,知|b|≤21.∴P(a,b)的轨迹方程是a 2=2(b+21)(0≤a ≤2).10舰A 在舰B 的正东6 km 处,舰C 在舰B 的北偏西30°且与B 相距4 km 处,它们围捕海洋动物.某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号.A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度是1 km/s,炮弹运行的初速度是3320gkm/s ,其中g 为重力加速度.若不计空气阻力与舰高,问若以舰A 所在地为极点建立极坐标系,求舰A 发射炮弹的极坐标.思路分析:先建立直角坐标系,分析出点P 在双曲线上,又在线段的垂直平分线上,求出交点P 的坐标,然后求出P 、A 两点之间的距离和PA 与x 轴正向所成的角,即可确定点P 的极坐标.解:对舰B 而言,A 、C 两舰位置如图所示.为方便起见,取B 所在直线为x 轴,AB 的中点O 为原点建立平面直角坐标系,则A 、B 、C 三舰的坐标分别为(3,0)、(-3,0)、(-5,32).由于B 、C 同时发现动物信号,记动物所处位置为P,则|PB|=|PC|.于是P 在BC 的中垂线l 上,此直线的倾斜角为30°,则其斜率为tan30°=33,设此直线为y=33x+b,将B,C 的中点(-4,3)代入上式,得b=337,则求得其方程为3x-3y+37=0. 又由A 、B 两舰发现动物信号的时间差为4秒,知|PB|-|PA|=4.∴a=2.又A 、B 的坐标分别为(3,0)、(-3,0),可知c=3.∴549=-.于是知P 应在双曲线4422y x -=1的右支上.由⎪⎩⎪⎨⎧=+-=-,03733,14422y x y x 得直线l 与双曲线的交点P(8,53)即为动物的位置,至此问题便可获解.据已知两点的斜率公式,得直线PA 的倾斜角为60°.于是舰A 发射炮弹的方位角应是北偏东30°.利用两点间的距离公式,可得|PA|=7525)035()38(22+=-+-=10.所以,以舰A 所在地为极点,舰A 发射炮弹的极坐标为(10,3π). 11我们已经熟悉了极点在直角坐标系的原点、极轴与x 轴正向相同的极坐标系下直角坐标与极坐标的互化,那么当极点不在坐标原点,以与x 轴平行的直线的正向为极轴时,又怎么求出点的极坐标来呢?(1)极坐标系的极点在直角坐标系的O′(-3+32,3),极轴的方向与x 轴正向相同,两个坐标系的长度单位相同,则点P(-3,3)的极坐标是____________.(2)极点在点O′(3,5)处,极轴与y 轴正方向一致,两个坐标系的长度单位相同,求点M(9,-1)的极坐标.思路分析:不管哪种建系原则,我们只要从定义出发,就能够解决问题.需要的量是极径、极点与点P 的距离、极角,从极轴开始逆时针旋转到OP 所得到的角.解:(1)如图(1),在Rt △PAO ′中,O ′A=-3+3-(-3)=3,AP=32-3=3.则tan α=33=1,α=4π,θ=∠x ′O ′P=π+4π=45π, ρ=|O ′P|=6)332()]3()33[(22=-+--+-.在极坐标系O ′x ′中,P 点的极坐标是(6,45π).(2)利用定义求出点的极坐标.如图(2),过O ′点作O ′A ∥Ox 轴,过M 点作MA ∥Oy 轴,与O ′A 交于A 点,连结O ′M,则 ρ=|O ′M|=26)51()39(22=--+-,在Rt △MAO ′中,|O ′A|=9-3=6,cos ∠AO ′M=22, ∴∠AO ′M=4π. ∴θ=23π-4π=45π.(注:极角是极轴按照逆时针方向旋转的)∴M(45,26π).12如图1-2-9所示是某防空部队进行射击训练时的示意图,以O 为极点,OA 所在直线为极轴,已知A 点坐标为(1,0)(千米),直升飞机位于D 点向目标C 发射防空导弹,D 点坐标为(35,2π),该导弹运行与地面最大高度为3千米,相应水平距离为4千米(即图中E 点),在地面O 、A 两个观测点测得空中固定目标C 的仰角分别为α和β,tanα=289,tanβ=83,不考虑空气阻力,导弹飞行轨道为一抛物线,那么按轨道运行的导弹能否击中目标C?说明理由.图1-2-9思路分析:能否击中C 点,关键是看一下C 点是否在导弹飞行的轨迹上,需要算出它的轨迹方程来.先把极坐标化为直角坐标,然后建立直角坐标系:以地面为x 轴,以点D 向地面作的垂线为y 轴,并且求出C 点坐标,再验证该点是否满足轨迹方程.解:A 点化为(1,0),D 点化为(0,35),由已知E 点为(4,3), 设抛物线为y=a(x-4)2+3.由抛物线过点(0,35),求得a=121-.所以y=121-(x-4)2+3=121-x 2+32x+35.设C 点坐标为(x 0,y 0),过C 作CB ⊥Ox 于B ,tan α=28900=x y ,tan β=83100=-x y ,则289x 0=83(x 0-1). 解得x 0=7,求出y 0=49,即C 点坐标为(7,49),经计算121-x 02+32x 0+35=121-·72+32·7+35=49. 所以C 点在抛物线上.故依轨道运行的导弹可以击中目标C.。