➢ x2+x5=250
→ 0=250?
➢ 显然不能得到相应的解。
编辑版pppt
9
一、问题的提出
➢ 为什么令x2=0,x5=0时不能得到解? ➢ 因为其余三个变量的系数列向量为
110
201
000
➢ 该矩阵是非可逆矩阵,即去掉x2和x5后的三个约束 方程线性相关,这种情况下得不到解。
编辑版pppt
10
编辑版pppt
24
二、单纯形法的基本思路和原理
➢ 3、那有没有办法在求出解之前保证我 们取得的基为可行基?
➢ 解决办法:保证右端项非负,找到一个 单位矩阵,必定是一个可行基。
编辑版pppt
25
二、单纯形法的基本思路和原理
➢ 如范例系数阵:
右端项非负
1 1 1 0 0 300 2 1 0 1 0 400 0 1 0 0 1 250
❖ 我们首先将最优解缩小在一个有限的❖ 回顾图解法,我们知道:最优解必定在可行域的顶 点上取得,而顶点的个数总是有限的。
❖ 多维线性规划问题的可行域也存在有限个顶点。
❖ 如果能够从一个顶点开始,通过某种方式向更优顶 点转移,总会找到最优点。
❖ 首先面临的问题: ❖ 如何通过代数方法找到第一个顶点?
存在3阶单位阵
编辑版pppt (初始可行基)
26
二、单纯形法的基本思路和原理
➢ 基本可行解为(0,0,300,400,250) ➢ 此可行基称为初始可行基。 ➢ 对应的解称为初始基本可行解。
➢ 初始基本可行解在上页矩阵中一目了然。
编辑版pppt
27
二、单纯形法的基本思路和原理 ➢第二步:最优性检验
不存在 (200,0,100,0,50) (300,0,0,-200,-50) (0,250,50,150,0) (0,400,-100,0,150) (0,300,0,100,-50)