食品化学复习知识点
- 格式:docx
- 大小:71.17 KB
- 文档页数:18
食品化学复习资料食品化学复习资料食品化学作为食品科学的重要学科之一,研究的是食品中的化学成分、化学变化以及与人体健康的关系。
在食品安全和营养方面,食品化学的知识是必不可少的。
本文将从食品的组成、食品加工过程中的化学反应以及食品添加剂等方面,为大家提供一些食品化学复习资料。
一、食品的组成食品由许多不同的化学成分组成,包括水分、碳水化合物、脂肪、蛋白质、维生素、矿物质等。
水分是食品中最基本的成分,它不仅是食品的溶剂,还能影响食品的质地和口感。
碳水化合物是食品中的主要能量来源,包括单糖、双糖和多糖。
脂肪是食品中的另一种重要能量来源,同时也是维生素的溶剂和传递体。
蛋白质是构成人体组织和维持生命所必需的,它们由氨基酸组成。
维生素和矿物质是人体所需的微量元素,对于人体的正常生长和发育至关重要。
二、食品加工过程中的化学反应食品加工过程中会发生许多化学反应,这些反应不仅会影响食品的质地和口感,还会对食品的营养价值产生影响。
例如,烹调过程中的加热反应会导致食物中的维生素和蛋白质的损失。
此外,食品中的糖类和氨基酸在高温下会发生糖胺反应和美拉德反应,产生有机化合物的香气和色素。
这些反应不仅能够改善食品的风味,还能增加其诱人的色泽。
三、食品添加剂食品添加剂是指为了改善食品质量、延长食品保质期、增加食品的色泽、口感和营养价值而加入的物质。
常见的食品添加剂包括防腐剂、色素、甜味剂、增稠剂等。
防腐剂可以抑制微生物的生长,延长食品的保质期。
色素可以改变食品的色泽,增加食欲。
甜味剂可以替代糖类,减少热量的摄入。
增稠剂可以增加食品的黏稠度,改善食品的质地。
然而,食品添加剂也存在一定的风险。
一些食品添加剂可能会引起过敏反应,甚至对人体健康产生不良影响。
因此,在选择食品时,我们应该尽量选择不含或含量较低的食品添加剂,避免长期过量摄入。
四、食品化学与健康食品化学与人体健康密切相关。
食品中的营养成分和化学物质可以影响人体的生理功能和健康状况。
食品化学的知识点总结一、食品成分食品的化学成分是指食品中含有的各种化学物质。
食品成分主要包括水分、蛋白质、脂肪、碳水化合物、维生素和矿物质等。
这些成分对于食品的营养价值和风味都有很大的影响。
1. 水分水是食品中最主要的成分之一,对于食品的质地、口感和营养价值都有着重要的影响。
食品中的水分含量是影响食品贮存以及微生物、酶、氧化、酶解等变质的主要因素之一。
2. 蛋白质蛋白质是食品中的主要营养成分,它是由氨基酸组成的,对于维持人体正常的生理功能和机体的发育都有重要的意义。
蛋白质在食品中的作用主要有增加食品的营养价值、影响食品的质地和口感等。
3. 脂肪脂肪是食品中的主要能量来源,也是体内沉积物和传导器,对于维持人的正常生理功能有重要的作用。
食品中的脂肪含量会影响食品的口感、香味和营养价值。
4. 碳水化合物碳水化合物是人体的主要能量来源,是构成膳食纤维的主要成分,对于维持人体生命活动和保持体能都有着重要的意义。
食品中的碳水化合物含量会影响食品的甜度、质地和口感。
5. 维生素维生素是对人体的新陈代谢活动和细胞分裂具有重要作用的微量营养素。
食品中的维生素种类繁多,对于维持人体的正常生理功能和增强人体的抵抗力都有着重要的作用。
6. 矿物质矿物质是人体必需的微量元素,对于人体的生理功能具有重要的作用。
食品中的矿物质种类繁多,对于人体的正常生长和发育都有着重要的意义。
二、食品的味道和香味的形成食品的味道和香味的形成是由于食品中的各种化学成分对人的感官器官产生的感觉。
食品的味道主要来自于咸、甜、酸、苦、鲜等味道,食品的香味主要来自于食品中的挥发性物质。
1. 咸味很多食品中都含有盐分,食品中的盐分会使食品呈现出咸味。
人的舌头上具有咸味感受器,当含有盐分的食品进入口腔时,就会产生咸味的感觉。
2. 甜味食品中含有碳水化合物会使食品呈现出甜味,当含有碳水化合物的食品进入口腔时,就会产生甜味的感觉。
3. 酸味食品中含有有机酸或无机酸会使食品呈现出酸味,当含有酸性物质的食品进入口腔时,就会产生酸味的感觉。
食品化学知识点第一章水1、在冷冻食品中存在4中主要的冰晶体结构:六方形、不规则树枝状、粗糙的球形和易消失的球晶以及各种中间状态的晶体。
2、冰的特性—过冷A】食品中水的蒸汽压和该温度下纯水的饱和蒸汽压的比值。
3、【水分活度W4、水在食品中以游离水和结合水两种状态存在的。
5、结合水的特性:①在-40℃不会结冰;②不能作为所加入溶质的溶剂;③在质子核磁共振试验中使氢的谱线变宽。
6、各种有机分子与水之间的作用以氢键为主要方式。
7、【吸湿等温线(MSI)】在恒定温度下,食品的水分含量与它的水分活度之间的关系图。
8、吸湿等温线:Ⅰ区:水的主要形式是化合水。
Ⅰ区和Ⅱ区分界线之间:水的主要形式是化合水和单层水。
Ⅱ区:水的主要形式是化合水+单层水+多层水。
Ⅱ区和Ⅲ区分界线之间:出现游离水。
Ⅲ区:游离水。
9、滞后现象:理论上二者应该一致,但实际二者之间有一个滞后现象,形成滞后环。
在一定时,食品的解吸过程一般比回吸过程时含水量更高。
【简答】10、简述水分活度与食品保存性的关系。
(一)、水分活度与微生物生长的关系:不同类群微生物生长繁殖的W A 最低范围是:大多数细菌为0.94~0.99,大多数霉菌为0.80~0.94,大多数耐盐细菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60~0.65。
在低于0.60时。
绝大多数微生物就无法生长。
细菌形成芽孢时的W A 阈值比繁殖生长时要高。
(二)、水分活度与酶水解的关系:当降低到0.25~0.30的范围,就能有效地减慢或阻止酶促褐变的进行。
(三)、水分活度与化学反应的关系:① 大多数化学反应都必须在水溶液中才能进行。
降低水分活度,食品中许多化学反应受到抑制,反应速率下降。
② 发生离子化学反应的条件是反应物首先必须进行离子的水合作用,所以要有足够的游离水。
③ 化学反应和生物反应都必须有水分子参与。
降低水分活度,减少了参加反应的水的有效数量,反应速率下降。
④ 当W A <0.8时,大多数酶活力受抑制;当W A 在0.25~0.30之间时,淀粉酶、多酚氧化酶和过氧化物酶就会丧失活力或受到强烈的抑制。
食品化学知识点一、食品组成及相关知识食品是指提供营养和能量,并满足人体生理和心理需求的物质。
食品大致可分为五大类:谷类、肉类、蔬菜类、水果类和奶类。
1.1 营养素营养素是指人体必须吸收的物质,包括碳水化合物、脂肪、蛋白质、维生素和矿物质等。
碳水化合物是人体能量的主要来源,包括单糖、双糖和多糖。
单糖包括葡萄糖、果糖和半乳糖等;双糖包括蔗糖、乳糖和麦芽糖等;多糖包括淀粉和纤维素等。
脂肪是人体必须吸收的营养素,包括不饱和脂肪酸和饱和脂肪酸等。
不饱和脂肪酸包括单不饱和脂肪酸和多不饱和脂肪酸等,可降低胆固醇水平,预防心血管疾病。
蛋白质是组成人体组织的重要成分,包括必需氨基酸和非必需氨基酸等。
维生素是维持人体生理功能的重要物质,包括水溶性维生素(如维生素B1、维生素B2、维生素B6、维生素C等)和脂溶性维生素(如维生素A、维生素D、维生素E、维生素K 等)等。
矿物质是人体必须吸收的元素,包括铁、钙、钾、镁、锌等。
1.2 食品添加剂食品添加剂是指在食品加工中添加的具有特定功能的物质,可分为色素、防腐剂、甜味剂、增味剂、膨松剂、酸味剂、稳定剂和乳化剂等。
色素可增加食品的色泽,使其更具吸引力;防腐剂可延长食品的保质期,防止细菌滋生;甜味剂可增加食品的甜度;增味剂可增强食品的香味和口感;膨松剂可增加食品的松软度;酸味剂可增加食品的酸味;稳定剂可提高食品的稳定性;乳化剂可使油水混合物更加均匀。
1.3 食品中的化学成分食品中含有多种化学成分,包括糖类、蛋白质、脂肪、矿物质、维生素、酸碱度等。
其中,糖类是食品中含量最高的成分之一,可分为单糖、双糖和多糖。
同时,食品中还含有不同种类的酸,如有机酸和脂肪酸等。
二、食品加工及相关知识2.1 食品生产加工食品生产加工包括原材料处理、加工制备、成品包装和贮存等环节。
其中,原材料处理包括采集、分级、分选、清洗、翻晒等步骤;加工制备包括切割、研磨、混合、腌制、烘干等步骤;成品包装包括采购包装材料、包装机械调试、包装等步骤;贮存包括成品的仓储、保管、配送、销售等步骤。
食品专业基础化学大一知识点在食品专业中,化学是一个重要的学科,它们提供了许多基础知识和理论,以帮助我们更好地理解食品的结构、组成和变化。
作为食品专业大一学生,下面是你应该了解的一些基础化学知识点。
1. 原子和分子结构原子是构成物质的基本单位,包含质子、中子和电子。
分子是由两个或更多原子组成的,它们通过共享或转移电子结合在一起。
了解原子和分子的结构对理解食品化学非常重要,因为化学反应涉及到分子的重组和重新排列。
2. 元素和化合物元素是由相同类型的原子组成的纯物质,如氧气(O2)和氢气(H2)。
化合物是由不同元素的原子组成的,它们以一定比例结合在一起,如水(H2O)和盐(NaCl)。
在食品中,各种元素和化合物以不同的方式组合起来形成了复杂的结构。
3. 溶液和悬浮液溶液是由一个或多个物质溶解在另一个物质中而形成的。
在食品中,像果汁和咖啡这样的液体是溶解了多种化合物的溶液。
悬浮液指的是微小的固体颗粒悬浮在液体中,如颗粒酥皮糖。
4. 酸碱中和反应酸和碱是常见的化学品,它们可以在食品加工中发挥重要作用。
酸具有酸味,如柠檬汁和醋。
碱具有苦味,如小苏打粉和氢氧化钠。
当酸和碱以适当的比例混合时,它们会发生中和反应,生成盐和水。
这种中和反应常用于调节食品的酸碱度。
5. 物质的性质食品中的物质具有各种性质,包括颜色、味道、气味和纹理。
这些特点与化学的性质密切相关。
例如,蔬菜的颜色取决于其中的色素类化合物,而食物的味道和气味则是由挥发性化合物引起的。
6. 化学反应与食品变化食品在加工、烹饪和储存过程中经历许多化学反应。
例如,蛋白质在受热后会发生变性,形成使食物变色的物质。
另外,食品的氧化反应会导致脂肪酸变质,产生臭味和不良口感。
了解这些化学反应有助于我们控制和改善食品的品质。
7. 食品添加剂食品添加剂是为了改善食品的质量和稳定性而添加到食品中的化学物质。
常见的食品添加剂包括防腐剂、抗氧化剂、增味剂和稳定剂。
它们经过严格的科学评估,并按照一定标准使用,以确保食品的安全和合规性。
食品化学复习知识点一、名词解释1、食品化学: 是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、储存和运销过程中的变化及其对食品品质和安全性影响的科学。
2、构型:一个分子各原子在空间的相对分布或排列, 即各原子特有的固定的空间排列, 使该分子所具有的特定的立体结构形式。
3、变旋现象:当单糖溶解在水中的时候, 由于开链结构和环状结构直接的相互转化, 出现的一种现象。
4、间苯二酚反应:5、膨润现象: 淀粉颗粒因吸水, 体积膨胀到数十倍, 生淀粉的胶束结构即行消失的现象。
6、糊化:生淀粉在水中加热至胶束结构全部崩溃, 淀粉分子形成单分子, 并为水所包围而成凝胶状态, 由于淀粉分子是链状或分支状, 彼此牵扯, 结果形成具有粘性的糊状黏稠体系的现象。
7、淀粉老化:经过糊化后的淀粉在室温或低于室温的条件下放置后, 溶液变得不透明甚至凝结而沉淀的现象。
8、多糖(淀粉)的改性:指在一定条件下通过物理或化学的方法使多糖的形态或结构发生变化, 从而改变多糖的理化性能的过程。
(如胶原淀粉)9、同质多晶现象: 同一种物质具有不同固体形态的现象。
10、油脂塑性: 指在一定压力下表现固体脂肪具有的抗应变能力。
11、油脂的精炼: 采用不同的物理或化学方法, 将粗油(直接由油料中经压榨、有机溶剂提取到的油脂)中影响产品外观(如色素等)、气味、品质、的杂质去除, 提高油脂品质, 延长储藏期的过程。
(碱炼: NaOH去除游离脂肪酸)12、氨基酸的等电点:当氨基酸在某一pH值时, 氨基酸所带正电荷和负电荷相等, 即净电荷为零, 此时的pH值成为氨基酸的等电点。
13、蛋白石四级结构: 由多条各自具有三级结构的肽链通过非共价键连接起来的结构形式。
14、蛋白质的变性: 把蛋白质二级及其以上的高级结构在一定条件下(如加热、酸、碱、有机溶剂、重金属离子等)遭到破坏而一级结构并未发生变化的过程。
15、水合性质:由于蛋白质与水的相互作用, 使蛋白质内一部分水的物理化学性质不同于正常水。
第2章水1.单个水分子的结构特征:分子的四面体结构有对称型. 共价键有离子性. c.氧的另外两对孤对电子有静电力. 键具有电负性.2.分子的缔合:a.水分子在三维空间形成多重b.氢键键合—每个水分子具有c.相等数目的氢键给体和受体,d.能够在三维空间形成氢键网络结构3.水分子缔合的原因:①H-O键间电荷的非对称分布使H-O键具有极性,这种极性使分子之间产生引力.②由于每个水分子具有数目相等的氢键供体和受体,因此可以在三维空间形成多重氢键.③静电效应.4.六方冰晶形成的条件:a.在最适度的低温冷却剂中缓慢冷冻b.溶质的性质及浓度均不严重干扰水分子的迁移;5.按冷冻速度和对称要素分,冰可分为四大类:六方型冰晶, 不规则树枝状结晶, 粗糙的球状结晶, 易消失的球状结晶及各种中间体6.水与溶质间的相互作用:a.化合水Constitutionalwater:在-40℃下不结冰;无溶解溶质的能力;与纯水比较分子平均运动为0;不能被微生物利用b邻近水Vicinalwater:在-40℃下不结冰;无溶解溶质的能力;与纯水比较分子平均运动大大减少;不能被微生物利用此种水很稳定,不易引起Food的腐败变质;c多层水Multilayerwater:大多数多层水在-40℃下不结冰,其余可结冰,但冰点大大降低;有一定溶解溶质的能力;与纯水比较分子平均运动大大降低;不能被微生物利用d体相水Bulk-phasewater:能结冰,但冰点有所下降;溶解溶质的能力强,干燥时易被除去;与纯水分子平均运动接近;很适于微生物生长和大多数化学反应,易引起Food的腐败变质,但与食品的风味及功能性紧密相关;7.比较高于和低于冻结温度下的aw时应注意两个重要差别:①在冻结温度以上,aw是样品组分与温度的函数,且前者是主要因素,在冻结温度以下,aw与样品组分无关,只取决于温度,不能根据aw预测受溶质影响的冰点以下发生的过程,如扩散控制过程,催化反应等.②冻结温度以上和以下aw对食品稳的影响是不同的.8.MSI的实际意义:a.由于水的转移程度与aw有关,从MSI图可以看出食品脱水的难易程度,也可以看出如何组合食品才能避免水分在不同物料间的转移.b.据MSI可预测含水量对食品稳定性的影响.c.从MSI还可看出食品中非水组分与水结合能力的强弱.9.滞后现象Hysteresis定义:采用回吸resorption的方法绘制的MSI和按解吸desorption的方法绘制的MDI并不互相重叠的现象称为滞后现象.滞后现象产生的原因:a.解吸过程中一些水分与非水溶液成分作用而无法放出水分.b.不规则形状产生毛细管现象的部位,欲填满或抽空水分需不同的蒸汽压要抽出需P内>P外,要填满则需P外>P内.c.解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同水分含量时处于较高的aw.玻璃态glassstate:是聚合物的一种状态,它既象固体一样有一定的形状,又象液体一样分子间排列只是近似有序,是非晶态或无定形态;处于此状态的聚合物只允许小尺寸的运动,其形变很小,类于玻璃,因此称玻璃态;玻璃化温度glasstransitiontemperature,Tg:非晶态食品从玻璃态到橡胶态的转变称玻璃化转变,此时的温度称玻璃化温度;无定形Amorphous:是物质的一种非平衡,非结晶态;分子流动性Mm:是分子的旋转移动和平转移动性的总度量;决定食品Mm值的主要因素是水和食品中占支配地位的非水成分;大分子缠结Macromoleculerentanglement:指大的聚合物以随机的方式相互作用,没有形成化学键,有或没有氢键;第3章糖1.食品中碳水化合物的作用:提供人类能量的绝大部分;提供适宜的质地、口感和甜味如麦芽糊精作增稠剂、稳定剂;有利于肠道蠕动,促进消化如纤维素被称为膳食纤维,低聚糖可促小孩肠道双歧杆菌生长,促消化2.单糖的作用及功能:1甜味剂:蜂蜜和大多数果实的甜味主要取决于蔗糖sucrose、D-果糖D-fructose、葡萄糖glucose的含量;①甜度定义:是一个相对值,以蔗糖作为基准物,一般以10%或15%的蔗糖水溶液在20°C时的甜度为1②甜度果糖>蔗糖>葡萄糖>麦芽糖>半乳糖2亲水功能吸湿性或保湿性:糖分子中含有羟基,具有一定的亲水能力具有一定的吸湿性或保湿性;吸湿性顺序果>转化>麦>葡>蔗>无水乳糖3糖的结晶性4提高渗透压5降低冰点6粘度:葡糖糖与果糖粘度低,淀粉糖浆粘度高;7抗氧化性8发酵性3.低聚糖的功能:1赋予风味:褐变产物赋予食品特殊风味;如,麦芽酚、异麦芽酚、乙基麦芽酚2特殊功能:增加溶解性:如环状糊精,麦芽糊精;稳定剂:糊精作固体饮料的增稠剂和稳定剂3保健功能:低聚糖可促进小孩肠道双歧杆菌生长,促消化.4.单糖在食品贮藏与加工中的化学反应:脱水反应;复合反应;变旋现象;烯醇化;褐变反应变旋现象mutarotation:葡萄糖溶液经放置一段时间后的旋光值与最初的旋光值不同的现象;稀碱可催化变旋;5.焦糖化现象PhenomenaofCaramelization:在高温150-200℃无水或浓溶液条件下加热糖或糖浆,用酸或铵盐作催化剂,发生脱水、降解、缩合、聚合等反应,生成焦糖的过程,称为焦糖化; 焦糖化反应产生色素的过程:a.糖经强热处理可发生两种反应分子内脱水向分子内引入双键,然后裂解产生一些挥发性醛、酮,经缩合、聚合生成深色物质;生成焦糖或酱色 b.环内缩合或聚合裂解产生的挥发性的醛、酮经—缩合或聚合—产生深色物质;反应条件:催化剂:铵盐、磷酸盐、苹果酸、延胡索酸、柠檬酸、酒石酸等;无水或浓溶液,温度150-200℃性质:焦糖是一种黑褐色胶态物质,等电点在甚至低于pH3,粘度100-3000cp,浓度在33-38波美度pH在较好;三种色素及用途:NH4HSO4催化耐酸焦糖色素可用于可口可乐料NH42SO4催化啤酒美色剂加热固态焙烤食品用焦糖色素6.淀粉粒的特性:淀粉粒有裂口-脐点;脐点周围有层状生长环;双折射;球状微晶体,偏光十字;7.淀粉的老化Retrogradation①老化:淀粉溶液经缓慢冷却或淀粉凝胶经长期放置,会变为不透明甚至产生沉淀的现象,被称为淀粉的老化;实质是糊化的后的分子又自动排列成序,形成高度致密的、结晶化的、不溶解性分子微束.②影响淀粉老化的因素;a.温度2~4℃,淀粉易老化,>60℃或<-20℃,不易发生老化,b含水量含水量30~60%,易老化;含水量过低10%或过高均不易老化;c结构直链淀粉比支链淀粉易老化粉丝;d聚合度n中等的淀粉易老化;e淀粉改性后,不均匀性提高,不易老化;f共存物的影响g脂类和乳化剂可抗老化,h多糖果胶例外、蛋白质等亲水大分子,可与淀粉竞争水分子及干扰淀粉分子平行靠拢从而起到抗老化作用;8.原果胶:protopectin高度甲酯化的果胶物质;只存在于植物细胞壁中,不溶于水;未成熟的果实和蔬菜中,它使果实,蔬菜保持较硬的质地;果胶:Pectin部分甲酯化的果胶物质;存在于植物汁液中;果胶酸:Pecticacid不含甲酯基,即羟基游离的果胶物质;酯化度:D—半乳糖醛酸残基的酯化数占D—半乳糖醛酸残基总数的百分数;9.果胶凝胶的形成条件:脱水剂蔗糖,甘油,乙醇含量60—65%,pH2—,果胶含量—%,可以形成凝胶;机制:脱水剂使高度含水的果胶分子脱水以及电荷中和而形成凝集体;10.黄原胶:组成:D-葡萄糖,D-甘露糖,D-葡萄醛酸;性质:黄原胶溶液在28℃-80℃以及广泛PH1-11范围内黏度基本不变,与高盐具有相容性;黄原胶与瓜儿豆胶具有协同作用;与LBG相互作用形成热可逆凝胶;能溶于冷水和热水,低浓度时具有高的黏度,在宽广的范围内0-100℃,溶液黏度不变,与盐具有相容性,在酸性食品中保持溶解与稳定,具有良好的冷冻与解冻稳定性;第4章脂类1.概念:脂质、脂肪、脂肪酸、必需脂肪酸、同质多晶、调温、SFI、POV、酸价、碘值、活性氧自由基;2.脂肪的亚晶胞最常见的堆积方式:六方型、正交′型、三斜型,稳定性依次递增;3.易形成塑性油脂的条件:SFI适当,脂肪的晶型为型,熔化温度范围宽则脂肪的塑性越大;4.塑性油脂具有涂抹性、可塑性、起酥作用、使面团体积增加;5.影响油脂稠度的因素:脂肪中固体脂比例、结晶粒度及晶种数量、液体的粘度、处理温度、机械作用;6.乳状液类型:水包油型O/W,水为连续相、油包水型W/O,油为连续相;7.乳状液失去稳定性导致:分层、絮凝、聚结;8.乳化剂的乳化原理:减小两相间的界面张力、增大分散相之间的静电斥力、增大连续相的粘度或生成有弹性的厚膜、微小的固体粉末的稳定作用、形成液晶相;9.食品中常见的乳化剂:甘油酯及其衍生物、蔗糖脂肪酸酯、山梨醇酐脂肪酸酯及其衍生物、丙二醇脂肪酸酯、磷脂;10.油脂氧化的初级产物是ROOH,生成ROOH途径有自动氧化、光敏氧化、酶促氧化;11.自动氧化历程中ROOH的形成:先在不饱和脂肪酸双键的-C处引发自由基,自由基共振稳定,双键可位移;参与反应的是3O2,生成的ROOH的品种数为:2-亚甲基数12.光敏氧化历程中ROOH的形成:Sen诱导出1O2,1O2进攻双键上的任一碳原子,形成ROOH,双键位移;生成的ROOH品种数为:2双键数;V光敏氧化1500V自动氧化13.影响脂肪氧化的因素:反应物的结构、温度、Aw、食物的表面积、光照、催化剂、抗氧化剂;14.抗氧化剂的类型:自由基清除剂、1O2淬灭剂、金属螯合剂、氧清除剂、ROOH分解剂、酶抑制剂、酶抗氧化剂、紫外线吸收剂;15.抗氧化与促氧化:有些抗氧化剂用量与抗氧化性能并不完全是正相关关系,有时用量不当,反而起到促氧化作用;16.油脂经长时间加热,粘度↑,碘值↓,酸价↑,发烟点↓,泡沫量↑;17.油炸食品中香气的形成与油脂在高温下的某些反应有关;18.油脂在高温下过度反应,则是十分不利的;加工中宜控制t<150C;19.使用过的油炸油品质检查:当石油醚不溶物%,发烟点低于170C;石油醚不溶物%,无论其发烟点是否改变;均可认为油已经变质;20.油脂氢化的优点:稳定性↑、颜色变浅、风味改变、便于运输和贮存、制造起酥油和人造奶油等;21.油脂氢化的不足:多不饱和脂肪酸含量↓、脂溶性维生素被破坏、双键的位移并产生反式异构体;22.卵磷脂的作用:构成生物膜的成分、参与脂肪的代谢、具有健脑、增强记忆力的作用、作乳化剂、作抗氧化剂;23.胆固醇:细胞膜的组成成分之一,是合成性激素和肾上腺素的原料;可在胆道中沉积为胆结石,在血管壁上沉积引起动脉硬化;胆固醇在食品加工中几乎不被破坏;高血清胆固醇是引起心血管疾病的危险因素;24.常见的粗脂肪的测定方法:索氏提取法、酸性乙醚提取法、碱性乙醚提取法、氯仿-甲醇提取法、巴布科克法和盖勃法;第5章蛋白质1.分类classification按R的极性分类:非极性氨基酸:Ala,Ile,Leu,Phe,Met,Trp,Val,Pro极性氨基酸:无电荷侧链氨基酸:Ser,Thr,Tyr,Asn,Gln,Cys,Gly带正电荷侧链氨基酸:Lys,Arg,His带负电荷侧链氨基酸:Asp,Glu2.氨基酸的呈味性:谷氨酸钠SodiumGlu:鲜味谷氨酸Glu:酸味D-缬氨酸D-Val:甜味L-缬氨酸L-Val:苦味3.蛋白质结构层次:一级结构PrimaryStructure;二级结构SecondaryStructure;超二级结构SupersecondaryStructure;结构域Domain;三级结构TertiaryStructure;四级结构QuaternaryStructure4.稳定蛋白质构象的作用力:1.空间张力:不同AA残基具有大小不同的R基,由于R的空间位阻使φ角与ψ角的转动受到很大的限制,只能取一定的旋转自由度;2.静电的相互作用:是由蛋白质中氨基酸可解离侧链基团引起的;3.范德华力:偶极-偶极作用、偶极-诱导偶极相互作用、色散力稳定蛋白质构象的作用力4.氢键的相互作用:肽键之间的氢键、非离子化羰基之间的氢键;5.疏水作用:稳定蛋白质三级结构非常重要的因素;6.二硫键:Cys残基间的共价与交联仅三级结构;7.配位键:金属蛋白中的金属与一些酸性AA残基的侧链5.蛋白质变性测定方法:测定蛋白质的比活性以天然蛋白质作对照,测定蛋白质物理性质的变化;测定蛋白质化学性质的变化观察蛋白质的溶解度变化测定蛋白质的抗原性是否改变6.影响蛋白质变性的因素:1物理因素1.高温变性:t>45℃后开始变性,变性蛋白质易消化,某些抗营养因子失活;化学反应的温度系数Q10=1-2温度提高10℃,化学反应加快1-2倍变性反应的温度系数Q10=600PI处,键力破坏疏水相互作用力除外高温瞬时灭菌HTST是依据变性反应的温度系数,在杀死微生物的条件下最大限度地保留营养物质;2.低温变性:以疏水相互作用为主稳定键力的蛋白质经低温处理后发生变性鱼蛋白大豆蛋白、麦醇溶蛋白、卵蛋白及乳蛋白低温下变性;3.机械力:搅拌、搓揉、研磨、强留震荡可使得蛋白质结构变得更为伸展蛋清,面筋蛋白4.静压力:蛋白质的柔顺性和可压缩性是因为其结构中存在空穴,也是压力诱导蛋白质变性的原因高静压力可用于灭菌300-1000MPa,不可逆地破坏细胞膜;较高静压力100-700MPa可使得蛋清、16%大豆蛋白、3%肌动蛋白溶液形成凝胶,压力凝胶比热凝胶更软;静液压牛肉肌纤维破裂,使肉嫩化;5.辐射与界面:共价键及二硫键断裂2化学因素值:大多数蛋白质pH4-10之间稳定AA具有缓冲能力,超出此范围变性蛋白质在PI处最稳定;蛋白质在极端碱性的条件下,比在极端酸性的条件下更为伸展与溶胀离子基团间的强静电排斥pH值引起的变性大多是可逆的;2.金属离子:碱金属、过渡金属皮蛋、豆腐3.有机溶剂:改变介质的介电常数和增加蛋白质非极性侧链在有机溶剂中的溶解度80%乙醇沉淀蛋白4.有机化合物水溶液:尿素与盐酸胍的高浓度水溶液4-8mol/L水溶液能断裂氢键还原剂半胱氨酸、抗坏血酸及β-巯基乙醇可还原二硫键;5.离液盐:低浓度有利于蛋白质的稳定,高浓度引起蛋白质的变性C<1mol/L:低浓度的盐使蛋白质分子上带上少量电荷,使蛋白质分子之间从PI处的相互结合到相互排斥----盐溶C>1mol/L:高浓度的盐是强的水结合剂,持水性强,使蛋白质水化层消失,蛋白质因失水而凝聚----盐析7.凯氏定氮法①原理消化:样品中含氮有机化合物经浓硫酸加消化,硫酸使有机物脱水;同时有机物炭化生成炭;炭将硫酸还原为SO2,C则变为CO2;SO2使氮还原为氨,本身则氧化为SO3;在反应过程中生成的氢,又加速氨的形成;生成物中水和SO2逸去,氨与硫酸结合生硫酸铵留在溶液中;蒸馏:硫酸胺在碱性条件下,释放出氨;NH4++OH-加热NH3+H2O吸收与滴定:NH3+H5BO3NH4++H2BO3-H2BO3-+H+H3BO3第7章食品色素和着色剂小结1.发色团是在紫外或可见光区200~800nm具有吸收峰的基团发色团均具有双键;2.助色团是有些基团的吸收波段在紫外区,不可能发色,但当它们与发色团相连时,可使整个分子对光的吸收向长波方向移动,这类基团被称为助色团;3.叶绿素是高等植物和其他所有能进行光合作用的生物体含有的一类绿色色素,为四吡咯螯合镁原子的结构;4.影响叶绿素稳定性的因素有:1光、氧2酶3酸、热4水份活度5盐5.护绿方法有:1加碱护绿2高温瞬时灭菌3加入铜盐和锌盐4控制Aw5气调技术6加盐;6.血红蛋白和肌红蛋白都是结合蛋白质,除了多肽链部分以外,还有与肽链配位的非肽部分;肌红蛋白的蛋白质部分称为珠蛋白,非肽部分称为血红素;7.氧合作用为肌红蛋白和分子氧之间形成共价键结合为氧合肌红蛋白的过程,氧化反应为肌红蛋白氧化Fe2+转变为Fe3+形成高铁肌红蛋白MMb的过程;8.腌肉色素为NOMb,NOMMb,氧化氮肌色原.9.肉及肉制品的护色方法有:1采用低透气性材料、抽真空和加除氧剂.2高氧压护色;3采用100%CO2条件,若配合使用除氧剂,效果更好;10.肉色变绿的原因有:A.由于一些细菌活动产生的H2O2可直接氧化-亚甲基;B.由于细菌活动产生的H2S等硫化物,在氧或H2O2存在下,可直接加在-亚甲基上;C.由于MNO2过量引起; 11.类胡萝卜素包括胡萝卜素及其含氧衍生物叶黄素,它们的结构特征是具有共轭双键,构成其发色基团,这类化合物由8个异戊二烯单位组成,异戊二烯单位的连接方式是在分子中心的左右两边对称;12.类胡萝卜素的结构和颜色的关系:1类胡萝卜素分子中有高度共轭双键的发色团和-OH等助色团,可产生不同的颜色;2分子中含有7个以上共轭双键时呈现黄色;这类色素因双键位置和基团种类不同,其最大吸收峰也不相同;3双键的顺、反几何异构也会影响色素的颜色; 13.类胡萝卜素物理性质为:1所有类型的类胡萝卜素烃类胡萝卜素和氧合叶黄素都系脂溶性化合物;2类胡萝卜素的颜色在黄色至红色范围,其检测波长一般在430nm~480nm;3类胡萝卜素通常采用己烷-丙酮混合溶剂提取,可较为有效的与其他脂溶性杂质分离;14.类胡萝卜素化学性质:1类胡萝卜素在食品中降解的主要原因是氧化作用,包括酶促氧化、光敏氧化和自动氧化3种历程;2类胡萝素由于高度共轭与不饱和结构,降解产物非常复杂.3亚硫酸盐或金属离子的存在将加速β-胡萝卜素的氧化;4许多组织中存在着能迅速降解类胡萝卜素的酶体系,特别是脂肪氧合酶;5某些类胡萝卜素可以作为一种单重态氧猝灭剂;15.类胡萝卜素加工过程中的稳定性:1大多数水果和蔬菜中的类胡萝卜素在一般加工和贮藏条件下是相对稳定的;2加热或热灭菌会诱导顺/反异构化反应,为减少异构化程度,应尽量降低热处理的程度;3类胡萝卜素异构化时,产生一定量的顺式异构体,是不会影响色素的颜色,仅发生轻微的光谱位移,然而却降低了维生素A原的活性;16.花色素苷被认为是类黄酮的一种,只有C6-C3-C6碳骨架结构;所有花色素苷都是花色羊flavylium阳离子基本结构的衍生物;17.花色羊阳离子由苯并吡喃和苯环组成的2-苯基-苯并吡喃阳离子,A环、B环上都有羟基存在,花色苷颜色与A环和B环的结构有关,羟基数目增加使蓝紫色增强,而随着甲氧基数目增加则吸收波长红移;18.花色素苷由配基花色素与一个或几个糖分子结合而成;目前仅发现5种糖构成花色素苷分子的糖基部分,按其相对丰度大小依次为葡萄糖、鼠李糖、半乳糖、木糖和阿拉伯糖;19.影响花色素苷的颜色和稳定性的因素有:1结构变化和pH2氧与还原剂3热和光4糖及其降解产物5金属6酶促反应20.类黄酮的基本结构是2-苯基苯并吡喃酮,最重要的类黄酮化合物是黄酮flavone和黄酮醇flavonol的衍生物;21.类黄酮的主要化学性质有:1类黄酮的羟基呈酸性,因此,具有酸类化合物的通性;2分子中的吡酮环和羰基,构成了生色团的基本结构.3类黄酮化合物遇三氯化铁,可呈蓝、蓝黑、紫、棕等各种颜色;4在碱性溶液中类黄酮易开环生成查耳酮型结构而呈黄色、橙色或褐色;在酸性条件下,查耳酮又恢复为闭环结构,于是颜色消失;5类黄酮色素在空气中放置容易氧化产生褐色沉淀;22.原花色素的基本结构单元是黄烷3-醇或黄烷3,4-二醇以4→8或4→6键形成的二聚物,但通常也有三聚物或高聚物;这些物质在无机酸存在下加热都可生成花色素;23.食品中单宁包括两种类型,一类是缩合单宁;另一类是包括倍单宁和鞣花单宁在内的水解单宁hydrolyzabletannins;24.甜菜色素betalaines是一类颜色上看来类似花色素苷和类黄酮的水溶性色素,与花色素苷不同,它们的颜色不受pH的影响;25.影响甜菜色素稳定性的因素有:1热和酸2氧和光26.酶促褐变机理为:植物中的酚类物质在酚酶及过氧化物酶的催化下氧化成醌,醌再进行非酶促反应生成褐色的色素melanin;27.酶促褐变的条件有:多酚类底物,酶及氧;28.防止酶促褐变的方法有:1加热灭酶2调节pH3加酚酶抑制剂4除氧29.主要的天然色素着色剂有:1叶绿素铜钠盐2胭脂虫色素3紫胶虫色素4红曲色素5姜黄色素6焦糖色素30.人工合成色素主要有:1苋菜红2胭脂红3柠檬黄4日落黄5靛蓝第8章维生素和矿物质小结1.维生素的功能:A辅酶或辅酶前体:如烟酸,叶酸等,B抗氧化剂:VE,VC,C遗传调节因子:VA,VD,D某些特殊功能:VA-视觉功能,VC-血管脆性;2.维生素的分类:水溶性维生素和脂溶性维生素3.水溶性维生素B1、B2、VC的结构,稳定性,降解机理;VC的降解途径:催化降解、非催化降解、厌氧降解;4.脂溶性维生素A、D、E的结构,稳定性,VE猝灭自由基的历程;5.维生素和矿物质在食品加工贮藏中的变化A原料对食品加工中维生素含量的影响B前处理对食品中维生素含量的影响C热烫和热加工造成维生素损失D产品贮藏中维生素的损失E加工中化学添加物和食品成分的影响6.VC的测定法荧光法:测总VC,准确,但操作繁琐2,6-二氯酚靛酚法:测H2A,较灵敏苯肼比色法:测总VC,易受干扰HPLC法:灵敏,准确,可分别测A和H2A7.维生素B1、B2的测定:荧光法8.常见痕量金属的测定法:AAS法第9章风味化合物小结1.风味是指以人口腔为主的感觉器官对食品产生的综合感觉嗅觉、味觉、视觉、触觉;2.风味物质一般具有下列特点:1成分多,含量甚微;2大多是非营养物质;3味感性能与分子结构有特异性关系;4多为对热不稳定的物质;3.化合物的气味与分子结构之间有以下关系:1分子的几何异构和不饱和度对气味有较强的影响;2大环酮碳数不同,气味不同.3同类化合物取代基不同,气味不同;4有些化合物的旋光异构体的气味不同;4.食品中气味形成的途径有:生物合成;酶直接作用;酶间接作用;加热分解;微生物作用;5.水果的香气成分特点:1主要是以亚油酸和亚麻酸为前体物经生物合成途径产生的有酶催化;2水果中的香气成分主要为C6~C9的醛类和醇类,此外还有酯类、萜类、酮类,挥发酸等;6.蔬菜的香气成分特点:1葫芦科和茄科具有显着的青鲜气味,特征气味物有C6或C9的不饱和醇、醛及吡嗪类化合物;2伞形花科蔬菜具有微刺鼻的芳香,头香物有萜烯类化合物;3百合科蔬菜具有刺鼻的芳香,风味成分主要是含硫化合物硫醚、硫醇;4十字花科蔬菜具有辛辣气味,最重要的气味物也是含硫化合物硫醇、硫醚、异硫氰酸酯;7.发酵食品的香气成分主要是微生物作用于蛋白质、脂类、糖等产生的;1酒类主要是酵母菌发酵,白酒中的香气成分有300多种,呈香物质以各种酯类为主体,而羰基化合物、羧酸类、醇类及酚类也是重要的芳香成分;2酱油酱类利用曲霉、乳酸菌和酵母菌发酵;酱油香气的主体是酯类,甲基硫是构成酱油特征香气的主要成分;3食醋是酵母菌和醋酸菌发酵,乙酸含量高达4%,香气成分以乙酸乙酯为主;8.水产品的气味特点:1新鲜鱼的淡淡的清鲜气味是内源酶作用于多不饱和脂肪酸生成中等碳链不饱和羰化物所致;2熟鱼肉中的香味成分是由高度不饱和脂肪酸转化产生的;3淡水鱼的腥味的主体成分是哌啶,存在于鱼腮部和血液中的血腥味的主体成分是-氨基戊酸;9.鱼中令人不愉快的气味形成途径主要是微生物和酶的作用;10.肉类的气味特点:。
食品生化知识点总结大全一、食品成分与组成1. 碳水化合物碳水化合物是食物的主要能量来源,包括单糖、双糖和多糖。
单糖最简单的碳水化合物,包括葡萄糖、果糖和半乳糖等。
双糖由两个单糖分子组成,如蔗糖、乳糖和麦芽糖等。
多糖是由多个单糖分子通过糖苷键连接而成,如淀粉和纤维素等。
2. 蛋白质蛋白质是构成生物体的重要物质,由氨基酸通过肽键连接而成。
食品中的蛋白质主要包括动物蛋白和植物蛋白,如肌肉、乳制品、豆类和谷物等。
3. 脂类脂类是食品中的重要营养成分,包括脂肪和油脂。
脂肪是动植物组织中的能量储备物质,同时也是细胞膜的主要组成部分。
油脂是植物种子中的脂类,广泛用于食品加工和烹饪。
4. 矿物质食品中的矿物质主要包括钙、铁、锌、镁等,是人体维持正常生理机能所必需的物质,参与酶的构成和活性,维持水盐平衡等。
5. 维生素维生素是人体必需的有机化合物,参与人体的代谢活动。
食品中的维生素主要包括水溶性维生素和脂溶性维生素,如维生素C、维生素B族和维生素A、维生素D等。
6. 酶酶是生物体内参与代谢活动的蛋白质,能够催化化学反应。
食品中的酶可分为内源酶和外源酶,对食品加工和贮藏有着重要作用。
二、食品生化反应1. 氧化反应氧化反应是食品加工和贮藏过程中常见的化学反应,主要包括脂质氧化和色素氧化。
脂质氧化会导致食品变质,产生不饱和脂肪酸氧化产物和恶臭物质。
色素氧化则会导致食品颜色的变化,产生氧化褐变和氧化红变等现象。
2. 水解反应水解反应是食品加工和消化过程中常见的化学反应,主要包括淀粉水解、蛋白质水解和脂肪水解。
淀粉水解可产生麦芽糖和葡萄糖等糖类,蛋白质水解可产生氨基酸,脂肪水解可产生甘油和脂肪酸。
3. 缩合反应缩合反应是食品加工过程中的化学反应,主要包括糖的缩合和酚类物质的缩合。
糖的缩合反应可产生焦糖和糖类的焦化产物,酚类物质的缩合反应可产生酚醛类化合物,影响食品的口感和色泽。
4. 氨基酸脱羧反应氨基酸脱羧反应是蛋白质加工和熟化过程中的化学反应,主要产生氨和酮酸,影响食品的风味和臭味。
化学食品知识点总结一、化学食品的概念化学食品是指在生产、加工、处理过程中添加了化学成分的食品。
这些化学成分可能是防腐剂、色素、增味剂、增稠剂、抗氧化剂等。
其中一些化学成分可能对人体健康造成危害,因此化学食品备受关注。
二、常见的化学食品添加剂1. 防腐剂防腐剂是为了延长食品的保质期而添加的化学物质。
常见的防腐剂有亚硝酸盐、硫酸盐等。
亚硝酸盐可以防止细菌滋生,但长期食用会增加致癌风险;硫酸盐可以防止食品腐败,但过量摄入会对人体造成伤害。
2. 色素色素是为了使食品的颜色更加鲜艳而添加的化学物质。
一些常见的食品色素,如苏丹红、甲基橙,由于含有致癌物质而被禁用。
3. 增味剂增味剂是为了增加食品的味道而添加的化学物质。
例如,味精是一种常用的增味剂,但长期食用过量会对身体造成伤害。
4. 抗氧化剂抗氧化剂是为了延长食品的保质期而添加的化学物质。
常见的抗氧化剂有BHT、BHA等,但过量摄入会对身体造成危害。
5. 酸度调节剂酸度调节剂是为了调节食品的酸碱度而加入的化学物质。
常见的酸度调节剂有柠檬酸、乳酸等,但过量摄入会对人体造成不良影响。
三、化学食品对人体的危害1. 致癌一些化学食品添加剂含有致癌物质,长期摄入会增加罹患癌症的风险。
2. 增加慢性病的风险长期食用化学食品可能导致肥胖、糖尿病、高血压等慢性病的发生。
3. 损害器官功能某些化学食品添加剂会损害肝脏、肾脏等重要器官的功能,对人体健康造成威胁。
四、如何避免化学食品危害1. 多吃新鲜食材新鲜水果、蔬菜、肉类等食材不含化学添加剂,是最健康的食品选择。
2. 少食加工食品加工食品通常含有大量的化学添加剂,因此需要尽量减少食用。
3. 相关法规的了解了解食品安全相关法规,避免购买和食用含有禁用食品添加剂的食品。
五、结语化学食品对人体健康造成的危害备受关注,因此人们应该尽量避免食用化学食品,并选择新鲜食材做为食物来源。
同时,政府和相关部门也应该加强对食品添加剂的监管,确保食品安全。
水1.冰:是水分子通过氢键有序排列成巨大且长的晶体。
2.冷冻食品中常见的4种冰晶体结构:六方形、不规则树枝状、粗糙的球形和易消失的球晶。
3.冰的特性——过冷(1)过冷是由于无晶核存在,当液体水冷却到冰点(0℃)以下仍不析出固体的现象(常常先被冷却成过冷状态,只有当温度降低到开始出现稳定性晶核时,或在震动促进下才会立即向冰晶体转化并促使温度回升到0℃,开始出现稳定性晶核的温度叫过冷温度)(2)若向冷水中投入一粒冰晶或摩擦器壁产生冰晶,过冷现象立即消失(3)过冷溶液中加入晶核,晶核逐渐形成长大的结晶,这种现象称之为异相成核(4)冰晶体的大小和结晶速度受溶质、温度、温度降低速度、溶质的种类和数量等因素影响4.水在食品中的存在状态:自由水、结合水(1)结合水特点:呈现低的流动性,在-40℃不会结冰,不能作为所加入溶质的溶剂,在质子核磁共振实验中使氢的谱线变宽(2)结合水分类:化合水——单层水——多层水——(自由水)(3)游离水分类:滞化水、毛细管水、自由流动水5.水与溶质的相互作用(1)水与离子或离子基团的相互作用:水合作用(2)水与极性基团的相互作用:各种有机分子与水之间的作用以氢键为主要方式(3)水与非极性基团的相互作用:主要为疏水水合作用疏水水合:含有非极性基团的烃类、脂肪酸、氨基酸以及蛋白质加入水中,由于极性的差异使疏水基尽可能聚集在一起以减少它们与水的接触,此过程称为疏水水合6.水分活度(Aw):在一定温度下,食品中水的蒸气压和该温度下纯水的饱和蒸气压的比值Aw与温度的关系:温度升高时,Aw随之升高,这对密封在袋中或罐内食品的稳定性有很大影响7.水的吸湿等温线:在一定温度条件下,用来联系食品的含水量(用每单位干物质中的水含量表示)与其水活度的关系图(MSI)【结合食品的吸湿等温线,解释各区间水的存在形式】区间Ⅰ:化合水,水与溶质结合最紧密区间Ⅰ与区间Ⅱ之间:化合水+单层水区间Ⅱ:化合水+单层水+多层水区间Ⅱ与区间Ⅲ之间:出现游离水区间Ⅲ:游离水,既可以作为溶剂,又有利于微生物生长8.滞后现象:食品的脱附曲线与吸湿曲线理论上应该一致,但实际不能重叠的现象【简述Aw与食品保存性的关系】1.Aw与微生物生命活动的关系:不同类群微生物生长繁殖的最低Aw范围是:大多数细菌为0.94-0.99,大多数霉菌为0.8.-0.94,大多数耐盐细菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60-0.65,、在Aw低于0.60时,绝大多数微生物就无法生长。
微生物在不同的生长阶段,所需要的Aw阈值也不一样。
细菌形成芽孢时比繁殖生长时要高。
2.Aw与食品化学变化的关系:①大多数化学反应都必须在水溶液中才能进行。
降低食品的水分活度,食品中游离水的比例减少,而结合水又不能作为反应物的溶剂,从而许多化学反应受到抑制,反应的速率下降②很多化学反应属于离子反应。
反应发生的条件是反应物首先必须进行离子的水合作用,要在足够的游离水中才能进行③化学反应和生物化学反应都必须有水分子参加才能进行。
若降低水分活度,化学反应速率变慢④许多以酶为催化剂的酶促反应,水有时除了具有底物作用外,还能作为底物向酶扩散的输送介质,并且通过水化促使酶和底物活化3.Aw与酶水解的关系Aw降低到0.25-0.30的范围,就能有效的减慢或阻止酶促褐变的进行【冰与食品保存性之间的关系】有益作用:低温情况下微生物的繁殖被抑制;一些化学反应的速度常数降低;低温冷藏可以提高一些食品的稳定性不利作用:膨胀效应——水转化为冰后,体积会增加9%,体积的膨胀就会产生局部压力,使细胞状食品受到机械性损伤,造成食品解冻后汁液的流失,或者使得细胞内的酶与细胞外的底物接触,导致不良反应的发生。
冷冻浓缩效应——结冰后,食品中仍然存在非冻结相,在非冻结相中非水组分浓度比冷冻前大,引起食品的理化性质发生改变9.玻璃态:是物质的一种存在状态,此时的物质像固体一样具有一定的形状和体积,又像液体一样分子间的排列只是近似有序,因此是非晶态或无定形态10.玻璃化转变温度(Tg):当非晶态的食品从玻璃态转变到橡胶态时的温度11.物质处于完全而完整的结晶状态和物质处于完全的玻璃态(无定形态)时分子移动性(Mm)为零,绝大多数食品的Mm值不等于零12.Mm方法与Aw方法的比较:Aw主要研究食品中水分的可利用性;Mm法主要研究食品的微观黏度和组分的扩散能力研究不含冰的食品中微生物生长和非扩散限制的化学反应速度时,Aw法更有效碳水化合物1.碳水化合物的分类:(1)单糖:不能再水解的糖,葡萄糖、果糖、半乳糖(2)低聚糖:2-10个单糖残基以糖苷键结合而形成的糖,蔗糖、麦芽糖、乳糖(3)多糖:糖基单位数在10个以上的糖类,淀粉、糖原、植物胶单糖1.物理性质:(1)溶解性:可降低水分活度,提高食品保藏性2.化学性质:(1)异构化反应:食品工业中,以廉价淀粉为原料,通过淀粉的酶水解得到葡萄糖,再应用葡萄糖异构酶使葡萄糖发生异构化反应,将部分葡萄糖异构化为果糖,得到果葡糖浆。
果葡糖浆可以代替蔗糖作为甜味剂。
(2)氧化反应:葡萄糖发生氧化反应,生成的葡萄糖酸可以转化为δ-葡萄糖酸内酯。
δ-葡萄糖酸内酯是一种重要的食品添加剂(3)还原作用:单糖的羰基可被还原为羟基,生成相应的糖醇。
应用:糖醇化合物不被机体所代谢,也不被微生物所利用。
山梨醇可用于取抗坏血酸,于食品和糖果的保湿、牙齿的防龋;木糖醇可以代替蔗糖作为糖尿病患者的疗效食品。
低聚糖1.麦芽糖是由2分子G通过α-1,4糖苷键链接而成;蔗糖=G+果2.环状糊精:人工合成的低聚糖,是由D-葡萄糖残基以α-1,4糖苷键链接而成的环状低聚糖在食品加工和保藏上环状糊精可用作保香、保色、减少维生素损失之用,对油脂起乳化作用,对易氧化和易光解的物质起保护作用。
还可去除苦味和异味,如对柑橘罐头中橙皮甘的苦味掩盖等多糖1.多糖的构象螺旋构象:直链淀粉(1,4连接的α-D-吡喃葡萄糖残基的特征)拉伸螺条型构象:纤维素(1,4连接的β-D-吡喃葡萄糖残基的特征)折叠螺条型构象:果胶、海藻酸盐2.淀粉(直链+支链)(1)酶水解【比较用于淀粉酶水解的几种淀粉酶作用机制和生成产物的异同】酶水解——主要有α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶淀粉水解产物:一般为糊精或糖浆,此时淀粉的转化程度以葡萄糖当量(DE)表示(2)糊化【简述淀粉的糊化过程及影响因素】定义:未受损伤的淀粉颗粒不溶于冷水,但可逆的吸着水并产生溶胀,淀粉粒的直径明显的增加;随着温度的增加,淀粉分子的运动更加剧烈,从而使淀粉分子间的氢键开始断开,所断开的氢键位置就可以同水分子产生氢键的缔合。
由于水分子的穿透,以及更多的、更长的淀粉链段的分离,增加了淀粉分子结构的无序性和减少了结晶区域的数目和大小,淀粉的分散液呈糊状,粘度增加且双折射现象消失,这个过程称为淀粉的糊化。
影响糊化的因素:①直链淀粉含量越高,越难以糊化,糊化温度越高②水活度较低,糊化就不能发生或糊化程度非常有限③高浓度糖降低了淀粉糊化的程度、粘度的峰值和凝胶的强度④脂类,由于能与直链淀粉形成复合物,推迟了颗粒的溶胀⑤酸、盐对淀粉溶胀或糊化产生很小的影响,但在低PH时,由于淀粉可以发生水解产生糊精而降低其粘度(3)老化【简述淀粉老化过程及影响因素】定义:表示淀粉由增溶或分散态向不溶的微晶态的不可逆转变,即是直链淀粉分子的重新定位过程;老化可以看成是糊化的逆过程,糊化后的淀粉分子在低温下又自动排列成序,相邻分子间的氢键又逐步恢复形成致密、高度晶化的淀粉分子微末,但是老化不能使淀粉彻底复原到生淀粉的机构状态影响老化的因素:①直链淀粉易于老化,支链淀粉几乎不发生老化,淀粉的老化与所含直链淀粉及支链淀粉的比例有关②在较低温度、中性PH、高浓度淀粉和无表面活性剂的情况下,淀粉老化趋势增强③淀粉的老化程度还取决于淀粉分子的分子量和淀粉的来源【简述淀粉老化过程并提出控制淀粉老化的方法】控制方法:①淀粉糊化后,在80℃以下的高温迅速除去水分,或冷至0℃以下迅速脱水。
②脂类对抗淀粉老化有较大作用③一些大分子物质如蛋白质、半纤维素、植物胶等对淀粉的老化有减缓作用3.纤维素(1)纤维素是由β-葡萄糖通过1,4-糖苷键链接而成的直链分子(2)纤维素酶水解纤维素,可将它转化为膳食纤维和葡萄糖,提高果汁的出汁率和澄清度。
4.果胶物质(1)果胶使水果、蔬菜具有较硬的质地;在果蔬的成熟过程中,果胶酶作用于果胶物质,对改善果蔬的质地起重要作用(2)果胶物质的基本结构是D-吡喃半乳糖醛酸,以α-1,4糖苷键结合成聚半乳糖醛酸(3)果胶物质按照化学结构,可分为原果胶、果胶、果胶酸(4)果胶按照甲氧基含量或甲酯化程度,可分为高甲氧基果胶和低甲氧基果胶【简述果胶物质凝胶的形成条件与机理】、形成条件:①普通果胶水溶液含糖量在60%-65%,PH在 2.0-3.5,果胶含量为0.3-0.7%发生胶凝而形成凝胶②低甲氧基果胶在有一定量的糖和酸、以及二价金属离子存在时也能够形成凝胶机理:①添加糖类,其目的在于脱水作用,促使果胶分子周围的水化层发生变化,使原来胶粒表面吸附水减少,分子与分子易于结合而产生链状胶束②添加一定量的的酸,果胶近与电中性,溶解度降至最小,加速了果胶胶束结晶、沉淀和凝聚,有利于形成凝胶③钙离子的作用在于促使果胶分子间形成“盐桥”结构【美拉德反应(非酶褐变)】定义:含有还原糖或羰基化合物的蛋白食品,在加工或保藏过程中发生的生成类黑精的反应反应过程:1.初始阶段:美拉德反应开始于一个非解离的氨基和一个还原糖(羰基)之间的缩合反应在PH4-9时,还原性羰基和氨基可缩合成羰胺化合物,然后脱去一份子水生成西佛碱,西佛碱可进一步转化生成醛糖基胺或酮糖基胺,这些糖基胺分别经过分子重排生成氨基酮糖或氨基醛糖。
2.中间阶段:主要是分解反应①氨基酮糖或氨基醛糖进一步发生反应,生成许多羰基化合物,其中羟甲基糠醛的积累与褐变速度关系密切,可根据HMF的生成量、生成速度来监测食品中褐变反应的发生。
②脱去胺基重排形成还原酮。
还原酮的性质活泼,可裂解成较小分子的化合物,也可进一步发生其他反应。
③还原酮与氨基酸反应,生成新的羰基化合物,α-氨基酸氧化脱羧生成比原来氨基酸少一个碳原子的醛,α-氨基酸与二羰基化合物结合并缩合成吡嗪化合物。
吡嗪化合物是食品中重要的风味化合物。
3.最后阶段:①醛类化合物之间的缩合反应,生成不饱和的醛类;②多羰基不饱和衍生物一方面进行裂解反应,产生挥发性化合物,另一方面又进行缩合、聚合反应,生成褐黑色物质类黑精化合物,从而完成整个美拉德反应。
影响因素:1.温度:反应是热反应,温度越高,时间越长,美拉德反应进行的程度越大,温度相差10℃吗,褐变速度相差3-5倍。