山东乐陵市高中数学第一章解直角三角形11正弦定理和余弦定理112余弦定理(1)学案新人教B版5.
- 格式:doc
- 大小:148.50 KB
- 文档页数:4
[推荐学习]高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理教案新人教A版必修51.1.2 余弦定理一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法;2.会利用余弦定理解决两类基本的解三角形问题;3.能利用计算器进行运算.二、过程与方法1.利用向量的数量积推出余弦定理及其推论;2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学重、难点教学重点余弦定理的发现和证明过程及其基本应用.教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路;3.勾股定理在余弦定理的发现和证明过程中的作用.教学准备投影仪、幻灯片两张第一张:课题引入图片(记作1.1.2A)如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a?第二张:余弦定理(记作1.1.2B)余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C,形式二:co s A=bcacb2222-+,co s B=cabac2222-+,co s C=abcba2222-+教导入新课学过程师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题.在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A.师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解.解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得A2=CD2+BD2.∵在Rt△ADC中,CD2=B2-AD2,又∵BD2=(C-AD)2=C2-2C·AD+AD2,∴A 2=B 2-AD 2+C 2-2C ·AD +AD 2=B 2+C 2-2C ·AD .又∵在Rt△ADC 中,AD =B ·CO s A , ∴a 2=b 2+c 2-2ab c os A .类似地可以证明b 2=c 2+a 2-2caco s B .c 2=a 2+b 2-2ab c os C .另外,当A 为钝角时也可证得上述结论,当A 为直角时,a 2+b 2=c 2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B )推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.在幻灯片1.1.2B 中我们可以看到它的两种表示形式:形式一:a 2=b 2+c 2-2bcco s A , b 2=c +a 2-2caco s B , c 2=a 2+b 2-2abco s C .形式二:bc a c b A 2cos 222-+=, cab ac B 2cos 222-+=,abc b a C 2cos 222-+=.师 在余弦定理中,令 C =90°时,这时co s C =0,所以c 2=a 2+b 2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用.[合作探究]2.向量法证明余弦定理 (1)证明思路分析师 联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边C .由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢?生 向量数量积的定义式a ·b =|a ||b |co sθ,其中θ为A 、B 的夹角.师 在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C,则构造CACB•这一数量积以使出现CO s C.同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在△ABC中,设AB、BC、CA的长分别是c、a、b.由向量加法的三角形法则,可得BCABAC+=,∴,cos2)180cos(22)()(222222aBaccBCBBCABABBCBCABABBCABBCABACAC+-=+-︒+=+•+=+•+=•即B2=C2+A2-2AC CO s B.由向量减法的三角形法则,可得ABACBC-=,∴222222cos2cos22)()(cAbcbABAABACACABABACACABACABACBCBC+-=+•-=+•-=-•-=•即a2=b2+c2-2bcco s A.由向量加法的三角形法则,可得BCACCBACAB-=+=,∴,cos2cos22)()(222222aCbabBCCBCACACBCBCACACBCACBCACABAB+-=+•-=+•-=-•-=•即c2=a2+b2-2abco s C.[方法引导](1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则.(2)在证明过程中应强调学生注意的是两向量夹角的确定,AC 与AB 属于同起点向量,则夹角为A ;AB 与BC 是首尾相接,则夹角为角B 的补角180°-B ;AC 与BC 是同终点,则夹角仍是角C . [合作探究]师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:bac a b C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=.师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?生(学生思考片刻后会总结出)若△ABC 中,C =90°,则co s C =0,这时c 2=a 2+b 2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变成可定量计算的公式了.师在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B)通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角.例4这类问题由于三边确定,故三角也确定,解唯一,课本P8属这类情况.(2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.接下来,我们通过例题来进一步体会一下.[例题剖析]【例1】在△ABC中,已知B=60 c m,C=34 c m,A=41°,解三角形(角度精确到1°,边长精确到1 c m).解:根据余弦定理,a2=b2+c2-2bcco s A=602+342-2·60·34co s41°≈3 600+1 156-4 080×0.754 7≈1 676.82,所以A≈41 c m.由正弦定理得sin C =4141sin 34sin ︒⨯=a A c ≈41656.034⨯≈0.544 0,因为C 不是三角形中最大的边,所以C 是锐角.利用计数器可得C ≈33°,B =180°-A -C =180°-41°-33°=106°.【例2】在△ABC 中,已知a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形.解:由余弦定理的推论,得co s A =7.1618.8726.1347.1618.872222222⨯⨯-+=-+bc a c b ≈0.554 3,A ≈56°20′; co s B =7.1616.13428.877.1616.1342222222⨯⨯-+=-+ca b a c ≈0.839 8,B ≈32°53′;C=180°-(A +B )=180°-(56°20′+32°53′)=90°47′.[知识拓展]补充例题: 【例1】在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C .(精确到1°)分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二.解:∵725.0610276102cos 222222=⨯⨯-+=-+=bc a c b A ,∴A ≈44°.∵c os C =140113107261072222222=⨯⨯-+=-+ab c b a ≈0.807 1,∴C ≈36°.∴B =180°-(A +C )=180°-(44°+36°)=100°.[教师精讲](1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出.(2)对于较复杂运算,可以利用计算器运算.【例2】在△ABC 中,已知a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效数字,角度精确到1′).分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好.解:由c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′,得c ≈4.297.∵c os A =297.4696.32730.2297.4696.32222222⨯⨯-+=-+bc a c b ≈0.776 7,∴A ≈39°2′.∴B =180°-(A +C )=180°-(39°2′+82°28′)=58°30′.[教师精讲]通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦.【例3】在△ABC 中,已知A =8,B =7,B =60°,求C 及S △ABC .分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边C ,而三角形面积由公式S △ABC =21ac sin B 可以求出.若用余弦定理求C ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2caco s B 建立关于C 的方程,亦能达到求C 的目的.下面给出两种解法.解法一:由正弦定理得︒=60sin 7sin 8A ,∴A 1=81.8°,A 2=98.2°, ∴C 1=38.2°,C 2=21.8°.由Ccsin 60sin 7=︒,得c 1=3,c 2=5,∴S △ABC =36sin 211=B ac 或S △ABC =310sin 212=B ac . 解法二:由余弦定理得b 2=c +a 2-2caco s B ,∴72=c +82-2×8×cco s60°,整理得c 2-8c +15=0,解之,得c 1=3,c 2=5.∴S △ABC =36sin 211=B ac 或S △ABC =310sin 212=B ac .[教师精讲]在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之. 课堂练习1.在△ABC 中:(1)已知c =8,b =3,b =60°,求A ;(2)已知a =20,b B =29,c =21,求B ; (3)已知a =33,c =2,b =150°,求B ;(4)已知a =2,b =2,c =3+1,求A .解:(1)由a 2=b 2+c 2-2bcco s A,得a 2=82+32-2×8×3co s60°=49.∴A =7.(2)由cab ac B 2cos 222-+=,得21202292120cos 222=⨯⨯-+=B .∴B =90°.(3)由b 2=c 2+a 2-2caco s B ,得b 2=(33)2+22-2×33×2co s150°=49.∴b =7.(4)由bca cb A 2cos 222-+=,得22)13(222)13()2(cos 222=+-++=A .∴A =45°.评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题效率.2.根据下列条件解三角形(角度精确到1°).(1)a =31,b =42,c =27;(2)a =9,b =10,c =15.解:(1)由bca cb A 2cos 222-+=,得27422312742cos 222⨯⨯-+=A ≈0.6755,∴A ≈48°.由273124227312cos 222222⨯⨯-+=-+=ca b a c B ≈-0.044 2,∴B ≈93°.∴C =180°-(A +B )=180°-(48°+93°)≈39°. (2)由,2222bca cb -+得1510291510cos 222⨯⨯-+=A ≈0.813 3,∴A ≈36°.由1592109152cos 222222⨯⨯-+=-+=ca b a c B ≈0.763 0,∴B ≈40°.∴C =180°-(A +B )=180°-(36°+40°)≈104°.评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力.课堂小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题:(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①已知三边求三角;②已知两边、一角解三角形.布置作业课本第8页练习第1(1)、2(1)题.余弦定理1.余弦定理2.证明方法:3.余弦定理所能解决的两类问题:(1)平面几何法; (1)已知三边求任意角;。
当谈到三角函数的定理时,正弦定理和余弦定理是高中数学中的重要定理。
以下是它们的公式:
1. 正弦定理(Sine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,正弦定理给出了边长和角度之间的关系:
a/sin(A) = b/sin(B) = c/sin(C)
2. 余弦定理(Cosine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,余弦定理给出了边长和角度之间的关系:
c² = a² + b² - 2ab·cos(C)
b² = a² + c² - 2ac·cos(B)
a² = b² + c² - 2bc·cos(A)
这些定理在解决三角形中的边长、角度关系问题时非常有用。
通过应用正弦定理和余弦定理,可以计算未知边长或角度,以及解决各种涉及三角形的几何问题。
余弦定理(1)一、学习目标:1.理解用向量的数量积证明余弦定理的方法;2.熟记余弦定理及其变形公式;3.会利用余弦定理及其变形公式求解简单斜三角形边角问题。
二、学习重难点:重点:余弦定理证明及应用.难点:1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路.三、自主预习:1.余弦定理:三角形任何一边的_______等于其他两边__________的和减去这两边与它们的__________的余弦的积的______________.即a 2=_______________________,b 2=______________________________,c 2=________________________________.2.余弦定理的推论:cos A =___________________, cos B =___________________, cos C =_____________.2222222223.-0,_______;(2)-,____;(2),____;ABC a b c C c a b ab C c a b C ∆+===+==++=在中:(1)若则若则若则四、自主探究:用向量的数量积证明余弦定理五、能力技能交流:活动一、已知三角形的两边及夹角解三角形:例1:在△ABC 中,已知b=3,c=1,A=60°,求a 。
【总结】21,-52060.ABC a b x x C c ∆+==︒变式训练、在中,边的长是方程的两根,,求变活动二、已知三角形三边求求角23,4,.ABC a b c ABC ∆===∆例、已知在的三边长为求的最大内角【总结】::2ABC a b c ∆=变式训练2、在中,已知求三角形各角的度数.活动三、利用余弦定理判断三角形的形状【总结】变式训练3:以2、3、x 为三条边,构成一个锐角三角形,求x 的范围。
第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 33.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403 4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3C .3∶5∶7D .4∶5∶66.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90°14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .52.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π123.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .44.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.235.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 8.△ABC 中,已知a =2,b =4,C =60°,则A =________.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150°2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等边三角形 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120°4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C .能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π314.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA ·BC = 23,求a+c 的值.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表:已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A +B +C =180°求出另一 角.在有解时只有一解.三边(a ,b ,c )余弦定理 由余弦定理求出角A 、B ;再利用A +B +C =180°,求出角C .在有一解时只有一解. 两边和其中一边的对角如 (a ,b ,A ) 余弦定理 正弦定理 由正弦定理求出角B ;由A +B +C =180°,求出角C ;再利用正弦定理或余弦定理求c .可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)一、选择题 1答案 D 2答案 C 解析 由正弦定理a sin A =b sin B, 得4sin 45°=bsin 60°,∴b =2 6. 3答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5答案 C解析 由a sin A =b sin B 得sin B =b sin Aa=2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°. 6答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3. 又C ∈(0°,180°),∴C =120°. 二、填空题 7答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin 150°1010=102.9答案 1解析 由正弦定理,得 3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1. 10答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°,∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11解 ∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4. ∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3. 12解 a =23,b =6,a <b ,A =30°<90°.又因为b sin A =6sin 30°=3,a >b sin A ,所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°. 当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.13答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2. ∴sin(π4+B )=1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12. 又a <b ,∴A <B ,∴A =π6. 1.1.1 正弦定理(二)一、选择题1答案 D2答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C ,∴A =B =C .3答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C . ∴0<c ≤403. 4答案 A解析 由a =2b cos C 得,sin A =2sin B cos C ,∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C .5答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6,∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b 6=k (k >0), 则⎩⎪⎨⎪⎧ b +c =4k c +a =5ka +b =6k ,解得⎩⎪⎨⎪⎧ a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1. 二、填空题7答案 2 3解析 ∵cos C =13,∴sin C =223, ∴12ab sin C =43,∴b =2 3. 8答案 2 解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B, ∴sin B =12,故B =30°或150°.由a >b , 得A >B ,∴B =30°,故C =90°,由勾股定理得c =2.9答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C=2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183, ∴sin C =12,∴c sin C =a sin A=12,∴c =6. 三、解答题11证明 因为在△ABC 中,a sin A =b sin B =c sin C=2R , 所以左边=2R sin A -2R sin C cos B 2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin B sin A. 12解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形.13答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45. 所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87. 1.1.2 余弦定理(一)一、选择题1答案 A2答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2. 4答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34. 5答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a 22bc ⇒a 2+b 2=c 2,符合勾股定理. 故△ABC 为直角三角形.6答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C , ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45° .二、填空题7答案 120°8答案 30°解析 c 2=a 2+b 2-2ab cos C=22+42-2×2×4×cos 60°=12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12. ∵a <c ,∴A <60°,A =30°.9答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12, ∴θ=120°. 10答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13, ∴cos C =a 2+b 2-c 22ab =-113,sin C =1213, ∴tan C =-12=-2 3.11解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12, 又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32. 1.1.2 余弦定理(二)一、选择题1答案 C解析 ∵(a +b -c )(a +b +c )=ab ,∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12, ∴cos C =-12,∴∠C =120°. 2答案 C解析 ∵2cos B sin A =sin C =sin(A +B ),∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B .3答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7,不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12. ∴C =120°.∴最小外角为60°.4答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5答案 A解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角.二、填空题7答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C=a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1. ∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2,化简得:0<a <8.又∵a +2a -1>2a +1,∴a >2,∴2<a <8.9答案 12解析 S △ABC =12AB ·AC ·sin A =12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49,∴AB +AC =7,∴△ABC 的周长为12.10答案 13π3解析 S △ABC =12bc sin A =34c =3, ∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A=12+42-2×1×4cos 60°=13,∴a =13.∴2R =a sin A =1332=2393, ∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin B sin C ·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C . 12解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21.∴ac=35,∵cosB =53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54 = 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =b sin B. ∴sin C =c b sin B =542×45=22. ∵c <b 且B 为锐角,∴C 一定是锐角.∴C =45°.13答案 A 解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1, ∴0<sin C ≤12. ∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6, ∴0<C ≤π6. 14解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC = 23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2. 由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a2+c2=b2+2ac·cos B=5,∴(a+c)2=a2+c2+2ac=5+4=9,∴a+c=3.。
1.1 正弦定理和余弦定理知识梳理1.正弦定理和余弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即Cc B b A a sin sin sin ==. (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦积的两倍,即a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2accosB ,c 2=a 2+b 2-2abcosC.(3)余弦定理的推论:cosA=bc a c b 2222-+,cosB=ac b a c 2222-+,cosC=abc b a 2222-+. 2.正弦定理的推广及变形(1)由正弦定理的推导过程,得面积公式S △ABC =21absinC=21bcsinA=21acsinB. (2)设R 为△ABC 外接圆的半径,则C c B b A a sin sin sin ===2R , 则有如下边角互化公式:a=2RsinA,b=2RsinB,c=2RsinC ——边化角公式; sinA=R a 2,sinB=R b 2,sinC=Rc 2——角化边公式; a∶b∶c=sinA∶sinB∶sinC.知识导学本节知识在现实生活中应用广泛,与前面学过的很多内容联系密切.所以学习本节前,要对相关的知识进行系统的复习.如初中我们学习过的勾股定理、三角形的面积公式以及三角形的内心、外心、重心、垂心等性质,还有三角形内角和、三边关系、内角平分线定理等相关内容.这些知识对本节的学习起着基础性的作用.由于此类问题主要有两类考查方式:一是与三角函数结合,再是与平面向量尤其是向量的数量积结合,求值或判断三角形的形状.所以学习中还要注意与三角函数、平面向量等知识联系,将新知识融入到已知的知识体系中,从而提高综合运用知识的能力. 疑难突破1.如何恰当地使用正、余弦定理?剖析:正、余弦定理揭示的都是同一个三角形的边角间的关系,有了这两个重要定理后,对于三角形问题的解决就有了一定的信心.在应用时,通常视题中所给的具体条件而定.一般说来,正弦定理常宜解决下列问题:(1)已知两角及一边,求其他元素;(2)已知两边及其中一边的对角,求其他元素.而余弦定理常宜解决下列问题:(3)已知三边,求各角;(4)已知两边及其夹角,求其他元素.由于三角形全等的判定定理有“角角边”“角边角”“边边边”“边角边”,所以以上的(1)(3)(4)情形都只有一解,而(2)这样的情形可能有一解、两解或无解.当然这也不是绝对的,有关解三角形的问题,在具体的问题中如何恰当地使用这两个定理必须视具体问题而定,有时在同一个问题中可能这两个定理要同时使用才能达到目的或者使用其中的任何一个定理都可以达到目的.另外,还应当注意使用方式,是利用定理的原始形式还是使用相应的某种变形形式,这都是要在具体问题中去具体地分析才行.2.解决三角形问题时,除了正、余弦定理及三角形面积公式是基础外,还要用到哪些基础知识?应注意的问题是什么?有什么规律?剖析:另外还用到的知识主要有:(1)三角形的一些性质,如:内角和定理、勾股定理、大边对大角等,如cos(B+C)=-cosA ,tan 2cot 2C B A -=+,sin(2A+2B)=-sin2C. (2)三角变换.三角变换是基础,是计算和证明的关键.规律:(1)分析条件,缩小差异,尽量实现边角的统一,或化边为角,化角为边;(2)选用合适的公式,将三角变换和解三角形问题结合起来.(3)注意画图,分清题意,注意条件和结论的联系,选准突破口.。
余弦定理(1)
一、学习目标:
1.理解用向量的数量积证明余弦定理的方法;
2.熟记余弦定理及其变形公式;
3.会利用余弦定理及其变形公式求解简单斜三角形边角问题。
二、学习重难点:
重点:余弦定理证明及应用.
难点:1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;
2.余弦定理在解三角形时的应用思路.
三、自主预习:
1.余弦定理:三角形任何一边的_______等于其他两边__________的和减去这两边与它们的
__________的余弦的积的______________.即a 2=_______________________,
b 2=______________________________,
c 2=________________________________.
2.余弦定理的推论:
cos A =___________________, cos B =___________________, cos C =
_____________.
2222222223.-0,_______;
(2)-,____;
(2),____;
ABC a b c C c a b ab C c a b C ∆+===+==+=在中:
(1)若则若则若则
四、自主探究:
用向量的数量积证明余弦定理
五、能力技能交流:
活动一、已知三角形的两边及夹角解三角形:
例1:在△ABC 中,已知b=3,c=1,A=60°,求a 。
【总结】
21,-520
60.
ABC a b x x C c ∆+==︒变式训练、在中,边的长是方程的两根,,求变
活动二、已知三角形三边求求角
23,4,.
ABC a b c ABC ∆===∆例、已知在的三边长为求的最大内角
【总结】
::ABC a b c ∆=变式训练2、在中,已知求三角形各角的度数.
活动三、利用余弦定理判断三角形的形状
【总结】
变式训练3:以2、3、x 为三条边,构成一个锐角三角形,求x 的范围。
【课堂小结】
2222
,,)sin())sin().
.
ABC a b c A B C a b A B a b A B ∆+-=-+例3、在中,,,分别表示三个内角的三条对边,如果((试判断三角形的形状
【课时作业】
2221120,_______.
2,_________.
,,-)(),___________.
sin :sin :sin 7:8:13,_______.
560ABC c A a ABC a b c bc A a b c ABC a b c a b c ab C ABC A B C C ABC A ∆=∠=︒=∆=++∆+++=∠=∆==∆=︒、在则、在中,已知则等于3、已知是三边的长,满足等式
(则4、在中,若则、已知中,,最大边和最小边22-980____________.
653120______.
73,5,6,__________.
83,4,x,_____.
9,,,-x x BC ABC BC AB B ABC ABC a b c ABC ABC a b c C x ABC a AC b a b x +=∆===︒∆∆===∆∆===∆=是方程的
两个正实数根,那么边长是、在中,,,,则的周长等于、已知的三边长为则的面积为、为钝角三角形,为钝角,则的取值范围为、在中,BC=
是方程202cos()1,123.
ABC A B C AB S ∆+=+=两个根,
且求
()角的度数;
()的长度;
()
,8,9.ABC AC AB AC ∆==10、在中,BC=7,求边上的中线
、在中,求的值∆+=+==
ABC A C B a c ac b 112,8,15,.。