整理一元一次方程应用题归类汇集(实用)
- 格式:docx
- 大小:20.08 KB
- 文档页数:8
一元一次方程应用题分类汇集一、一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,销售问题增长率问题数字问题,方案设计与成本分析,积分问题5古典数学,浓度问题等。
二、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)三、具体分类(一)行程问题——画图分析法(线段图)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。
常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
一元一次方程应用题归类汇集一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题 , 工程问题 , 和差倍分问题(生产、做工等各类问题), 调配问题, 分配问题,配套问题 , 增长率问题 数字问题 ,方案设计与成本分析 ,古典数学 , 浓度等问题。
一、行程问题:(1)行程问题中的三个基本量及其关系: 路程=速度×时间。
(2)基本类型有:① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(一)相遇:1.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
2. A 、B 两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A 、B 两地同时出发,相向而行,几小时后两人相遇?3.A 、B 两地相距15千米.甲每小时走5千米,乙每小时走4千米.甲、乙两人分别从A 、B 两地相向而行,甲先出 类型 等 量 关 系 列一元一次方程解行程问题 直线 相遇 追及 相遇 追及 顺逆流问题 错车问题 两者的路程之和=两地的距离 两者的路程之差=两地的距离 两者的路程之和=环形跑道一圈的长度 两者的路程之差=环形跑道一圈的长度 路程或静水中的速度相等 两者路程和或差=两个车身的长度和发1小时后乙再出发,几小时后两人相遇?4. A 、B 两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A 、B 两地同时出发,背向而行,几小时后两人相距60千米?5.甲乙两人从相距32千米的两地相向而行,甲步行每小时走4千米,先行1小时后,乙骑自行车出发2小时后与甲相遇,问乙骑自行车每小时走多少千米?6.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
一元一次方程应用题归类汇集一、行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型有:①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(一)相遇:1.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
2. A、B两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A、B两地同时出发,相向而行,几小时后两人相遇?3. A、B两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A、B两地同时出发,背向而行,几小时后两人相距60千米?4.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
求两车的速度。
5.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里,早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是多少?他去某地的路程是多远?(二)追及:1.某中学学生步行去某地参加社会公益活动,每小时行走4千米. 出发30分钟后,学校派一名通信员骑自行车以12千米/时的速度追赶队伍,问通信员用多少时间可以追上学生队伍?2.甲乙两人练习短距离赛跑,甲每秒跑7.5米,乙每秒跑7米,如果乙先跑1秒种,甲经过几秒钟可以追上乙?3. 甲、乙两人练习跑步,从同一地点出发,甲每分钟跑250米,乙每分钟跑200米,甲因找跑鞋比乙晚出发3分钟,结果两人同时到达终点,求两人所跑的路程。
4.敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,问需几小时可以追上?5.甲、乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?(三)行船问题:流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)( 1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵ 速度=路程÷时间⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程⑵ 各段时间和=总时间⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是°/ 分② 分针的速度是6°/ 分③ 秒针的速度是6° / 秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8 千米,公交车的速度为每小时 40 千米,设甲、乙两地相距x 千米,则列方程为。
七年级下册数学一元一次方程应用题归类集锦(经典)一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。
2、多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。
增长量=原有量某增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.2①圆柱体的体积公式V=底面积某高=S·h=rh②长方体的体积V=长某宽某高=abc③正方体(正六面体)的体积V=棱长3=a3例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?练习:将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:100a+10b+c.2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。
一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?解:设快车开出x小时后两车相遇.(90+140)x=480-90×1(2)两车同时开出,相背而行多少小时后两车相距600公里?解:设x小时后快车与慢车相距600公里.(140+90)x=600-480(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?解:设x小时后快车与慢车相距600公里.(140-90)x=600-480(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?解:设x小时后快车追上慢车.(140-90)x=600(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?解:设x小时后快车追上慢车.(140-90)x=600-90×1(二)行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
流水问题有如下两个基本公式:顺水速度=船速+水速(V顺=V静+V水)逆水速度=船速-水速(V顺=V静-V水)例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离?解:设两码头之间的距离为x千米.(三)工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
一元一次方程应用题归类汇集:(一)行程问题:行程问题是指有关匀速运动的应用题.这类问题可分为:①基本行程问题;②相遇问题;③追及问题;④航行问题;⑤环行问题等等。
但无论怎样变化,都离不开匀速运动基本关系式:,以及由此推导出来的:,.现将这几类应用题的解法,通过举例介绍如下:一基本行程问题.基本行程问题的特点是:同一人(或物体)在去时与回时的运动过程中,改变了路程、速度或时间;也可以是两人(或两物体)在同一路程行进中,由于速度不同而导致到达的时间不同.解这类问题时,要抓住总路程或总时间不变,直接运用路程、速度与时间三者之间的关系式.二、相遇问题.相遇问题的特点是:两个运动着的人(或物体)从两地沿同一路线相向而行,最终相遇.解这类问题时,要抓住甲、乙同时出发至相遇时的基本等量关系:(1)甲行的路程+乙行的路程=两地间的路程,即:甲与乙的速度和×相遇时间=两地间的路程;(2)同时出发到相遇甲与乙所用的时间相等.三、追及问题.追及问题的特点是:两人(或两物体)同时沿同一路线,同一方向运动,慢者在前,快者在后,快者追赶慢者.解这类问题要抓住基本等量关系:(1)快者行的路程-慢者行的路程=两者间的距离,即:两者的速度差×追及时间=两者间的距离;(2)从开始追赶到追及时,快者与慢者所用的时间相等.四、航行问题.航行问题是一种特殊的行程问题,它的特殊性在于要考虑水速对船速的影响,其基本等量关系是:(1)船顺流速度=船的速度+ 水流速度;(2)船逆流速度=船的速度-水流速度.五、环行问题.环行问题即封闭路线上的行程问题.如果同时从同一地点出发,到第一次相遇,有两种情况:同向环行类似追及问题,其基本等量关系是:快者走的路程-慢者走的路程=环形周长;反向环行类似相遇问题,其基本等量关系是:快者走的路程+慢者走的路程=环形周长.数学运算之行程问题专题行程问题的“三原色”路程、速度、时间。
问题千变万化,归根结底就是这三者之间的变化。
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.3.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量4.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc5.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.6.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息本金×100% 利息=本金×利率×期数1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
最新整理一元一次方程应用题归类汇集(实用)
最新整理一元一次方程应用题归类汇集(实用)
和差倍分问题(生产、做工等各类问题):
1.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数?
2.某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值?
3.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?
4.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.
(1)设计横断面面积为1.6米2,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;
(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。
数字问题
1.一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,
求原来的两位数?
2、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。
3、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。
工程问题
1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
3、整理一批图书,由一个人做需要40小时完成,现在计划由一部分人先做4小时,在增加2人和他们一起做8小时,完成这项任务。
假设这些人的工作效率都相同,具体应该先安排多少人工作?
4、在西部大开发中,基础建设优先发展,甲、乙两队共同承包了一段长6500米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成220米,乙队比甲队晚一天开工,乙队开工几天后两队完成全部任务?
配套问题:
1某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花
呢多少米?
2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
调配问题:
1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?
分配问题:
4.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数?
6.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数?
行程问题三个基本量及其关系路程=速度×时间
基本类型①相遇问题快行距+慢行距=原距
②追及问题快行距-慢行距=原距
③航行问题顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度+水流(风)速度
经典例题:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出同向而行,快车在慢车的后面多少小时后快车追上慢车?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出,相背而行多少小时后两车相距600公里?
1. 两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
2. 一架飞机飞行于甲、乙两城之间,顺风时需要5小时30分钟,逆风时需要6小时,若风速是每小时24公里,求两城之间的距离?
3. 一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离?
利润问题
1.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?
2.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?
3.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?
4、某电子商场将某种DVD产品按进价提高35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?
5、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%,这次交易中的盈亏
情况如何?
6、某同学在A、B两家超市发现她看中的随身听的单价相同,书包的单价也相同,随身听与书包的单价和是452元,且随身听的单价是书包的单价的4倍少8元。
①求该同学看中的随身听和书包的单价各是多少元?
②某一天该同学听说商家促销,超市A所有商品打八折,超市B全场购物满100元返购物劵30元(不足100元不返,购物劵可全场通用).但她只带了400元,如果他只在一家超市购买这两样物品,请问他在哪家买更省钱?
方案设计问题
1.某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据行驶的路程的多少讨论用哪个公司的车比较合算?
2、小张到新华书店帮同学们买书,售货员告诉他,如果花20元钱办理“会员卡”,将享受八折优惠.请问: ①在这次买书中小张买标价为多少元书的情况下办会员卡与不办会员卡花钱一样多? ②当小张买标价为200元书时,怎么做合算?能省多少钱? ③当小张买标价为60元书时,怎么做合算?能省多少钱
3、我校准备印刷一批招生宣传单,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:每份定价2元,按八折收费,另收1000元制版费;乙厂的优惠条件是:每份定价2元不变,而制版900按6折优惠。
(1)设印刷数量为x份,分别求出表示两个印刷厂收费的式子;
(2)请问选择哪家印刷厂收费比较合算?
4、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。
乒乓球拍每副定价
30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。
该班需球拍5副,乒乓球若干盒(不小于5盒)。
问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?
5.在“五一”黄金周期间,小明小亮等同学随家人一同到将狼山游玩,下面是购买门票是,小明与他爸爸的对话:爸爸说:“大人总门票每张35元,学生门票五折优惠,我们总共有12人,共要350元。
”小敏说:“爸爸,等一下,让我算一算,换一种方式买票是否更省钱。
”票价单:成人:35元一张。
学生:按成人5折优惠,团体票:16人以上(含16人)按成人票6折优惠。
问题:(1)小明他们一共去了几个成人?几个学生?(2)小明算一算,用那种方式买票更省钱?并说明理由
6、已知天一电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元。
常青一校计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由
分段收费问题
1、某市出租车计价规则如下:行程不超过3千米,收起步价8元;超过部分每千米路程收费1.20元,某天该出租车行驶路程为
①行驶2千米时,应收费为:
②行驶5千米时,应收费为:
③行驶X千米时,应收费为:
2.某市民生活用电基本价格为0.4元/度,若每月用电超过a度,超过部分按基本电价的70%收费。
(1)某用户4月份用电84度,共缴纳电费30.72元,求a的值。
(2)若该用户5月份的电费平均每度0.36元,求5月份共用电多少度?应缴纳电费多少?
古典数学:
1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚?
2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?。