七年级数学一元一次方程应用题分类汇总
- 格式:doc
- 大小:146.50 KB
- 文档页数:5
一、介绍1.1 什么是一元一次方程1.2 为什么学习一元一次方程二、一元一次方程的基本形式与解法2.1 一元一次方程的一般形式2.2 一元一次方程的解法三、一元一次方程的应用题类型汇总3.1 两个未知数的一元一次方程应用题 3.2 物品售卖价的一元一次方程应用题 3.3 翻译句子成一元一次方程应用题3.4 人物芳龄关系的一元一次方程应用题 3.5 图表数据的一元一次方程应用题3.6 几何问题的一元一次方程应用题四、解题思路分析4.1 假设和变量的设定4.2 列方程式4.3 解方程五、案例解析5.1 实际案例分析及解题过程5.2 案例问题探讨与解决六、总结6.1 一元一次方程应用题的重要性6.2 解题技巧与方法6.3 拓展性思考七、结语一、介绍1.1 什么是一元一次方程一元一次方程是指方程中只有一个未知数,并且未知数的最高次数是一次的方程。
它的一般形式可以表示为ax+b=0,其中a和b都是已知的数,a≠0。
1.2 为什么学习一元一次方程一元一次方程是数学中的基础知识,它在解决实际问题中有着广泛的应用。
学习一元一次方程不仅可以提高学生的逻辑思维能力,还可以培养学生对数学的兴趣和实际运用能力。
二、一元一次方程的基本形式与解法2.1 一元一次方程的一般形式一元一次方程的一般形式为ax+b=0,其中a和b是已知的常数,a≠0,x是未知数。
求解一元一次方程,就是要找到一个数,使得方程等式成立。
2.2 一元一次方程的解法解一元一次方程的方法主要有逆运算法、积分法、代数法、图形法等。
其中代数法是最常用的方法,可以通过等式的等价变形,逐步推导出未知数的解。
三、一元一次方程的应用题类型汇总3.1 两个未知数的一元一次方程应用题两个未知数的一元一次方程应用题主要包括两个未知数的芳龄、工作效率、速度、距离等问题,通过列方程组的方式来解决。
3.2 物品售卖价的一元一次方程应用题物品售卖价的一元一次方程应用题是指通过比例关系,推导物品的原价和售卖价之间的关系,是日常生活中经常遇到的数学问题。
初一数学一元一次方程应用题的各种类型
一、直接问题
例1:
一家商店共有商品150个,其中书籍与文具的总数为110个,书籍的数量是
文具的2倍。
求文具的数量。
解:设文具的数量为x,则书籍的数量为2x,根据题意可列方程: x + 2x = 110,解得 x = 40。
悉知文具的数量为40个。
二、尺寸问题
例2:
将一个正方形底边长为x m的长方体的长、宽、高依次加长,使得体积增加153 m³,求原底边和增长量各是多少?
解:设原正方形底边长为x,则原长方体的体积为x³,经计算可得(DO IT YOURSELF)。
故原底边长为3m,增长量为2m。
三、速度问题
例3:
甲、乙两地相距160km,甲以每小时40km的速度向乙方向行驶,而乙以每小时20km的速度向甲方向行驶。
两人出发时,距离甲地60km的地方对面接触,问:这次相遇到底花费了多少时间?
解:设相遇所需时间为t小时,甲行驶时间为t小时,乙行驶时间为(t - 60/20)小时,由此可列方程: 40t + 20(t - 60/20) = 160,解得t = 2。
故这次相遇花费了
2小时。
四、混合问题
例4:
有一瓶饮料,里面有150ml水,加了40g的糖。
若按这样的方法再加入50g
的糖,得到的糖水浓度为20%,求这瓶饮料总共有多少(ml)?
解:设原糖水总量为x ml,则从题意可列方程: (40+50)/(x+150) = 20%,解得 x = 650。
故这瓶饮料总共为650ml。
未完,待更新……。
一元一次方程实际应用题分类汇总1.列一元一次方程解应用题的一般步骤:(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设未知数,列方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.若干应用问题等量关系的规律(1)和、差、倍、分问题:增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题:常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式:V=底面积×高=S·h= r2h②长方体的体积:V=长×宽×高=abc3.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.4.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.5.行程问题基本量之间的关系:路程=速度×时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.6.工程问题工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=17.储蓄问题(1)利润=每个期数内的利息本金×100%一元一次方程实际应用题分类讨论题型(一)数字问题例:小明和小红作游戏,小明拿出一张日历说;“我用笔圈出了2╳2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?1、在日历上任意画一个含有9个数字的方框(3╳3),然后把方框中的9个数字加起来,结果等于90,试求出这9个数字正中间的那个数。
七年级上册一元一次方程应用题分类汇集(1)行程问题——画图分析法(线段图)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)解:1、设快车开出x小时后相遇,依题意得480=90(1+x)+140X解得x=39/23小时2、设x小时后两车相距600km,依题意得600-480=90x+140X解得x=12/23小时3、设x小时后两车相距600km,依题意得600-480=140x-90x解得x=2.4小时4、设x小时后快车追上慢车,依题意得480=(140-90)x解得x =9.6小时5、设x 小时后快车追上慢车,依题意得480+90*1=(140-90)x解得x =11.4小时2、人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?解:设家到学校y 千米,依题意得60159601515-=+y y 解得y=45/4千米 答:家到学校的距离为45/4千米3、某人计划骑车以每小时12千米的速度由A 地到B 地,这样便可在规定的时间到达B 地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B 地,求A 、B 两地间的距离。
初一数学一元一次方程应用题的各种类型一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其根本关系是:路程=时间×速度〔一〕相遇问题的等量关系:甲行距离+乙行距离=总路程〔二〕追击问题的等量关系:〔1〕同时不同地:慢者行的距离+两者之间的距离=快者行的距离〔2〕同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间〔三〕环形跑道常用等量关系:〔1〕同时同向出发:快的走的路程-环行跑道周长=慢的走的路程〔第一次相遇) 〔2〕同时反向出发:甲走的路程+乙走的路程=环行周长〔第一次相遇〕〔四〕航行问题常用的等量关系:〔1〕顺水速度=静水速度+水流速度〔2〕逆水速度=静水速度-水流速度〔3〕顺速–逆速 = 2水速;顺速 + 逆速 = 2船速〔4〕顺水的路程 = 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1〕两列火车同时相向而行,多少时间可以相遇?2〕两车同时反向而行,几小时后两车相距270公里?3〕假设两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4〕假设两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5〕两车同时同向而行〔快车在后面〕,几小时后快车可以追上慢车?6〕两车同时同向而行〔慢车在后面〕,几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传到达该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
问:〔1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。
七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
七年级一元一次方程应用题8种类型
一元一次方程是初中阶段数学中的重要内容,通过学习求解一元一次方程的应
用题,可以帮助学生更好地理解方程的应用及解题方法。
在七年级阶段,常见的一元一次方程应用题可以分为以下8种类型:
1. 代数式转化型
这类题目常常要求将自然语言描述的问题转化成数学表达式,建立方程求解。
2. 分桃问题型
这类问题是一个经典的应用题,考察学生解决初步方程的能力。
3. 水池加水问题型
让学生通过建立方程求解水池加水的问题,培养学生的逻辑思维和数学计算能力。
4. 定额分配问题型
这类问题要求根据一定的分配规则来解方程,考察学生的分析和解决问题的能力。
5. 公司销售型
通过公司销售额或利润等问题,进行方程求解,考察学生的应用数学能力。
6. 几何问题型
这类题目常常结合几何图形,让学生建立方程解决几何问题。
7. 时间、速度、距离问题型
通过时间、速度、距离的关系,让学生建立相应的方程求解问题。
8. 工程题型
通过建筑工程、人均工作效率等问题,让学生运用一元一次方程解决实际问题。
以上是七年级常见的一元一次方程应用题类型,通过解题可以提高学生的逻辑
思维能力,培养学生的数学计算能力,帮助学生理解方程的实际应用和意义。
希望学生在学习过程中能够灵活应用这些解题方法,提高数学解题能力。
一元一次方程应用考试题型大全1、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。
列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:2、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得x=37则45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x 最后的取值必须为正整数。
一元一次方程应用题分类汇总一元一次方程应用题归类聚集:形积变化问题、行船问题、工程问题、和差倍分问题、劳力调配问题、配套问题、分配问题、年龄问题、比赛积分问题、利润赢亏问题、储蓄问题、增长率问题、数字问题、古典数学、分段函数问题等〔一〕形积变化问题:解决这类问题,应从有关图形的面积、周长、体积等计算公式出发,根据题目中这些量的变化,建立相等关系,从而列出方程。
有关公式如下:〔1〕长方形的周长、面积公式:C长方形=2(长+宽),s长方形=长×宽〔2〕长方体、圆柱的体积公式:V长方体=长×宽×高,V圆柱=∏r2h〔3〕等积变形的相等关系:变形前的体积=变形后的体积&1、学校建花坛余下 24米长的小围栏,某班同学准备在自己教室前的空地上,建一个一面砖墙、三面围栏的长方形小花圃。
〔注意此题面积最大不是长与宽相等,因为这里24米只包括一个长两个宽,而不是两个长两个宽。
此题需要代数分别讨论后,再比拟得结论。
〕1〕请你设计一下,使长比宽多3米,算一算这时的面积。
2〕请你再设法改变长与宽,扩大花圃的面积,并和其他同学比一比,看谁设计的花圃面积最大2、有一个底面积 20×20长方体玻璃杯〔已满水〕向一个内底面积16×5,内高是10的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?3、某工厂锻造直径为 60毫米,高20毫米的圆柱形零件毛坯,需要截取直径40毫米的圆钢多长?4:有一个底面积20×20长方体玻璃杯〔已满水〕向一个内底面积16×5,内高是10的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?〔一〕行程问题:〔1〕行程问题中的三个根本量及其关系:路程=速度×时间S=vt〔2〕根本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
〔3〕解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
七年级数学一元一次方程应用分类汇总
1、分配问题:
例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?
变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?
变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?
2、匹配问题:
例题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?
例题2、某车间100个工人,每人平均每天可加螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓配两个螺母),应如何分配加工螺栓和螺母的工人?
例题3、一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米,•如何分配挖土和运土人数,使挖出的土能及时运走?
3、利润问题
(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.
变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.
(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.
变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________. 变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.
变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?
变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?
变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?
(3)某商品的进价是3000元,标价是4500元(1)商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品?(2)若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品?(3)如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品?
4、工程问题:
(1)甲每天生产某种零件80个,3天能生产个零件。
(2)甲每天生产某种零件80个,乙每天生产某种零件x个。
他们5天一共生产个零件。
(3)甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙也加入生产同一种零件,再经过5天,两人共生产个零件。
(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的。
变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。
甲乙合做,需几小时完成这件工作?
变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。
若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?
变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?
变式4:整理一批数据,有一人做需要80小时完成。
现在计划先由一些人做2小时,在增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?
5、计分问题:
1)在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?
2)在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴ 如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题? ⑵ ㈠班代表队的最后得分能为145分吗?请简要说明理由.
3
(1
(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?
4)某同学去公园春游,公园门票每人每张5元,如果购买20人以上(包括20人)的团体票,就可以享受票价的8折优惠。
(1)若这位同学他们按20人买了团体票,比按实际人数买一张5元门票共少花25元钱,求他们共多少人?(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)
6、数位问题
1、一个两位数,十位上的数比个位上的数小1。
十位上的数与个位上的数的和是这个两位数的
5
1
,求这个两位数。
2、一个两位数,个位上的数与十位上的数的和为7,如果把十位与个位的数对调。
那么所得的两位数比原两位数大9。
求原来的两位数。
3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
7、日历问题:
例题1、在某张月历中, 一个竖列上相邻的三个数的和是60,求出这三个数.
变式1:小彬假期外出旅行一周,这一周各天的日期之和是84,小彬几号回家?
变式2:爷爷的生日那天的上、下、左、右4个日期的和为80, 你能说出我爷爷的生日是几号吗?
例题2:下表为某月的月历。
(1)在此月历上用一个矩形任意圈出2×3个数,如果圈出的6个数之和为51
8、路程问题
例题1、(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。
已知甲的速度为15千米/小时,乙的速度为45千米/小时。
(1)经过多少时间两人相遇?(2)相遇后经过多少时间乙到达A地?
例题2、(追及问题)市实验中学学生步行到郊外旅行。
(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。
前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。
(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?
(3)两队何时相距3千米?(4)两队何时相距8千米?
变式:甲,乙两人登一座山,甲每分钟登高10米,并且先出发30分钟,乙每分钟登高15米,两人同时登上山顶。
甲用多少时间登山?这座山有多高?
例题3、(环型跑道问题)一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑250米。
(1)若两人同时同地背向而行,几分钟后两人首次相遇?变式:几分钟后两人二次相遇?
(2)若两人同时同地同向而行,几分钟后两人首次相遇?又经过几分钟两人二次相遇?
例题4、(顺、逆水问题)一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?
变式:一架飞机在两城之间飞行,风速为24千米/小时。
顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程。
例题5、(错车问题)在一段双轨铁道上,两列火车同时驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?
变式1:一列火车匀速行驶,经过一条长300m 的隧道需要20秒的时间。
隧道的顶上有一盏灯 ,垂直向下发光,灯光照在火车上的时间是10秒,根据以上数据,你能求出火车的长度?
变式2:在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间?
例6.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?
例7、小明原计划骑车以每小时12千米的速度从家去电影院看电影,这样就可以刚好在电影开始放映时到达,但他因临时有事耽误了20分钟,只好以每小时15千米的速度行进,结果在电影开始放映前4分钟到达,求小明家与电影院之间的路程。
9、年龄问题
1、姐姐4年前的年龄是妹妹的2倍,今年年龄是妹妹的1.5倍,求姐姐今年的年龄。
2、爸爸和女儿两人岁数加起来是91岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是爸爸现在岁数的3
1
,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁.
10、 几何问题
例1.小刚在手工劳作时,把一个正方形铁片剪去一个宽为3厘米的长条后,在剩下的长方形铁片上,沿短边剪下一宽为4厘米的长条.如果这两次剪下来的长条的面积相等,那么原来的正方形铁片的边长是多少厘米?
例2. 用一根长为10米的铁丝围成一个长方形.
(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多出0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?。