蚁群算法的matabl程序1
- 格式:doc
- 大小:30.00 KB
- 文档页数:5
蚁群算法路径优化matlab代码标题:蚁群算法路径优化 MATLAB 代码正文:蚁群算法是一种基于模拟蚂蚁搜索食物路径的优化算法,常用于求解复杂问题。
在路径优化问题中,蚂蚁需要从起点移动到终点,通过探索周围区域来寻找最短路径。
MATLAB 是一个常用的数值计算软件,可以用来实现蚁群算法的路径优化。
下面是一个基本的 MATLAB 代码示例,用于实现蚁群算法的路径优化:```matlab% 定义参数num_ants = 100; % 蚂蚁数量num_steps = 100; % 路径优化步数search_radius = 2; % 搜索半径max_iterations = 1000; % 最大迭代次数% 随机生成起点和终点的位置坐标start_pos = [randi(100), randi(100)];end_pos = [75, 75];% 初始化蚂蚁群体的位置和方向ants_pos = zeros(num_ants, 2);ants_dir = zeros(num_ants, 2);for i = 1:num_antsants_pos(i, :) = start_pos + randn(2) * search_radius; ants_dir(i, :) = randomvec(2);end% 初始化蚂蚁群体的速度ants_vel = zeros(num_ants, 2);for i = 1:num_antsants_vel(i, :) = -0.1 * ants_pos(i, :) + 0.5 *ants_dir(i, :);end% 初始时蚂蚁群体向终点移动for i = 1:num_antsans_pos = end_pos;ans_vel = ants_vel;for j = 1:num_steps% 更新位置和速度ans_pos(i) = ans_pos(i) + ans_vel(i);ants_vel(i, :) = ones(1, num_steps) * (-0.1 * ans_pos(i) + 0.5 * ans_dir(i, :));end% 更新方向ants_dir(i, :) = ans_dir(i, :) - ans_vel(i) * 3;end% 迭代优化路径max_iter = 0;for i = 1:max_iterations% 计算当前路径的最短距离dist = zeros(num_ants, 1);for j = 1:num_antsdist(j) = norm(ants_pos(j) - end_pos);end% 更新蚂蚁群体的位置和方向for j = 1:num_antsants_pos(j, :) = ants_pos(j, :) - 0.05 * dist(j) * ants_dir(j, :);ants_dir(j, :) = -ants_dir(j, :);end% 更新蚂蚁群体的速度for j = 1:num_antsants_vel(j, :) = ants_vel(j, :) - 0.001 * dist(j) * ants_dir(j, :);end% 检查是否达到最大迭代次数if i > max_iterationsbreak;endend% 输出最优路径[ans_pos, ans_vel] = ants_pos;path_dist = norm(ans_pos - end_pos);disp(["最优路径长度为:" num2str(path_dist)]);```拓展:上述代码仅仅是一个简单的示例,实际上要实现蚁群算法的路径优化,需要更加复杂的代码实现。
PythonMatlab实现蚂蚁群算法求解最短路径问题的⽰例⽬录1知识点1.1 蚁群算法步骤1.2 蚁群算法程序2蚂蚁算法求解最短路径问题——Python实现2.1源码实现2.2 ACA_TSP实现3 蚂蚁算法求解最短路径问题——Matlab实现3.1流程图3.2代码实现3.3结果1 知识点详细知识点见:我们这⼀节知识点只讲蚁群算法求解最短路径步骤及流程。
1.1 蚁群算法步骤设蚂蚁的数量为m,地点的数量为n,地点i与地点j之间相距Dij,t时刻地点i与地点j连接的路径上的信息素浓度为Sij,初始时刻每个地点间路径上的信息素浓度相等。
蚂蚁k根据各个地点间连接路径上的信息素决定下⼀个⽬标地点,Pijk表⽰t时刻蚂蚁k从地点i转移的概率,概率计算公式如下:上式中,为启发函数,,表⽰蚂蚁从地点i转移到地点j的期望程度;为蚂蚁k即将访问地点的集合,开始时中有n-1个元素(除出发地点),随时间的推移,蚂蚁每到达下⼀个地点,中的元素便减少⼀个,直⾄空集,即表⽰所有地点均访问完毕;a为信息素重要程度因⼦,值越⼤,表明信息素的浓度在转移中起到的作⽤越⼤,也就是说蚂蚁选择距离近的下⼀个地点的概率更⼤,β为启发函数重要程度因⼦。
蚂蚁在释放信息素的同时,每个地点间连接路径上的信息素逐渐消失,⽤参数表⽰信息素的挥发程度。
因此,当所有蚂蚁完成⼀次循环后,每个地点间连接路径上的信息素浓度需更新,也就是有蚂蚁路过并且留下信息素,有公式表⽰为:其中,表⽰第k只蚂蚁在地点i与j连接路径上释放的信息素浓度;表⽰所有蚂蚁在地点i与j连接路径上释放的信息素浓度之和;Q为常数,表⽰蚂蚁循环⼀次所释放的信息素总量;Lk表⽰第k只蚂蚁经过路径的长度,总的来说,蚂蚁经过的路径越短,释放的信息素浓度越⾼,最终选出最短路径。
1.2 蚁群算法程序(1)参数初始化在寻最短路钱,需对程序各个参数进⾏初始化,蚁群规模m、信息素重要程度因⼦α、启发函数重要程度因⼦β、信息素会发因⼦、最⼤迭代次数ddcs_max,初始迭代值为ddcs=1。
蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。
它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。
该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。
在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。
每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。
当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。
下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。
蚁群算法matlab代码蚁群算法,英文名为Ant Colony Algorithm,缩写为ACO,是一种启发式算法,是一种模拟蚂蚁寻找食物路径的算法。
在实际生活中,蚂蚁找到食物并返回巢穴后,将其找到食物的路径上的信息素留下,其他蚂蚁通过检测信息素来指导寻路,成为了一种集体智慧行为。
ACO也是通过模拟蚂蚁寻找食物路径的方式来寻找优化问题的最优解。
在ACO算法中,信息素是一个重要的概念,代表了走过某一路径的“好概率”,用这个“好概率”更新一些路径上的信息素,使得其他蚂蚁更可能选择经过这条路径,从而实现路径优化的目的。
在本文中,我们将讨论如何使用Matlab实现蚁群算法来优化问题。
1. 设定问题首先,我们要选取一个优化问题,并将其转换为需要在优化过程中进行选择的决策变量。
例如,我们想要优化旅行商问题(TSP)。
在TSP中,我们需要让旅行商以最短的距离经过所有城市,每个城市仅经过一次,最终回到出发的城市。
我们可以将每个城市编号,然后将TSP转化为一个最短路径选择的问题,即最短路径从编号为1的城市开始,经过所有城市,最终回到编号为1的城市。
2. 设定ACO参数在使用ACO优化问题时,需要设定一些参数,这些参数会影响算法的表现。
ACO算法需要设定的参数有:1.信息素含量:初始信息素的大小,即每个路径上的信息素浓度。
2.信息素挥发速度:信息素的随时间“减弱”程度。
3.信息素加成强度:蚂蚁经过路径后增加的信息素量。
4.启发式权重:用于计算启发式因子,即节点距离的贡献值。
5.蚂蚁数量:模拟蚂蚁数量,即同时寻找路径的蚂蚁个数。
6.迭代次数:模拟的迭代次数,即ACO算法运行的次数。
7.初始节点:ACO算法开始的节点。
3. 创建ACO优化函数我们可以使用Matlab来创建一个函数来实现ACO算法。
我们称其为“ACOoptimization.m”。
function best_path =ACOoptimization(city_location,iter_num,ant_num,init ial_path,alpha,beta,rho,update_flag) %ACO优化函数 %输入: %city_location: 城市坐标矩阵,格式为[x1,y1;x2,y2;...;xn,yn] %iter_num: 迭代次数 %ant_num: 蚂蚁数量 %initial_path: 起始路径,即初始解 %alpha,beta,rho: 超参数,用于调节蚂蚁选择路径的概率 %update_flag: 是否更新信息素的标志(1表示更新,0表示否) %输出: %best_path: 最优解,即最短路径%初始化信息素 pheromone = 0.01 *ones(length(city_location),length(city_location)); %初始化路径权重 path_weight =zeros(ant_num,1); %城市数量 n_cities =length(city_location);%主循环 for iter = 1:iter_num %一个迭代里所有蚂蚁都寻找一遍路径 for ant =1:ant_num %初始化蚂蚁位置current_city = initial_path; %标记是否经过了某个城市 visit_flag =zeros(1,n_cities);visit_flag(current_city) = 1; %用来存储当前路径 current_path = [current_city];%蚂蚁找东西 for i =1:n_cities-1 %计算路径概率p =calculate_probability(current_city,visit_flag,phero mone,city_location,alpha,beta); %蚂蚁选择路径 [next_city,next_index] = select_path(p);%路径更新current_path = [current_path;next_city];visit_flag(next_city) = 1;current_city = next_city;%更新路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end-1),:),city_location(current_path(end),:));end%加入回到起点的路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end),:),city_location(current_path(1),:));%判断是否为最优解 ifant == 1 best_path = current_path; else if path_weight(ant) <path_weight(ant-1) best_path =current_path; end end%更新信息素 ifupdate_flag == 1 pheromone =update_pheromone(pheromone,path_weight,initial_path,current_path,rho); end end end end在函数中,我们首先定义了ACOalg函数的参数,包括城市坐标矩阵,迭代次数,蚂蚁数量,初始路径,超参数alpha,beta,rho,以及是否需要更新信息素。
%% 蚁群算法¨clearcloseclcn = 10; % 城市数量m = 100; % 蚂蚁数量alfa = 1.5;beta = 2.5;rho = 0.1;Q = 1000;maxgen = 50;x = [2 14 9 6 3 2 4 8 12 5]';y = [8 9 12 4 1 2 5 8 1 15]';% x =[37,49,52,20,40,21,17,31,52,51,42,31,5,12,36,52,27,17,13,57,62,42,16,8,7,27,30, 43,58,58,37,38,46,61,62,63,32,45,59,5,10,21,5,30,39,32,25,25,48,56,30]';% y =[52,49,64,26,30,47,63,62,33,21,41,32,25,42,16,41,23,33,13,58,42,57,57,52,38,68, 48,67,48,27,69,46,10,33,63,69,22,35,15,6,17,10,64,15,10,39,32,55,28,37,40]';City = [x,y]; % 城市坐标%% 城市之间的距离for i = 1:nD(i,:) = ((City(i,1) - City(:,1)).^2 + (City(i,2) - City(:,2)).^2).^0.5 + eps; endeta = 1./D; % 启发因子tau = ones(n); % 信息素矩阵path = zeros(m,n); % 记录路径for iter = 1: maxgen%% 放置蚂蚁path(:,1) = randi([1 n],m,1);for i = 2 : nfor j = 1 : mvisited = path(j,1:i-1);leftcity = setdiff(1:n,visited);%% 计算剩下城市的概率P = zeros(1,length(leftcity));for k = 1:length(leftcity)P(k) =tau(visited(end),leftcity(k))^alfa*eta(visited(end),leftcity(k))^beta;%判断是否有重复城市endP1 = sum(P);Pk = P / P1;P = cumsum(Pk);r = rand;index = find(P >= r);nextcity = leftcity(index(1));path(j,i) = nextcity;endendfor flag = 1:mif length(unique(path(flag,:))) ~= n %keyboard;endendif iter >= 2path(1,:) = Pathbest(iter-1,:);endfor i = 1 : mnode = path(i,:);d = 0;for j = 1 : n - 1d = d + D(node(j),node(j + 1));endL(i) = d;end[shortroute,antindex] = min(L);Lbest(iter) = shortroute;Pathbest(iter,:) = path(antindex,:);detatau = zeros(n);for i = 1 : mfor j = 1 : n-1detatau(path(i,j),path(i,j + 1)) = detatau(path(i,j),path(i,j + 1)) + Q/L(i);detatau(path(i,j + 1),path(i,j))=detatau(path(i,j),path(i,j + 1));enddetatau(path(i,n),path(i,1)) = detatau(path(i,n),path(i,1)) + Q/L(i);detatau(path(i,1),path(i,n))=detatau(path(i,n),path(i,1));endtau = (1 - rho)*tau + detatau;path = zeros(m,n);endindex = find(Lbest == min(Lbest));shortestpath = Pathbest(index(1),:);shortestdistance = Lbest(index(1))subplot(1,2,1)plot(x,y,'o')hold onfor i = 1 : n - 1firstcity = shortestpath(i);nextcity = shortestpath(i + 1);plot([x(firstcity),x(nextcity)],[y(firstcity),y(nextcity)],'b');endfirstcity = shortestpath(n);nextcity = shortestpath(1);plot([x(firstcity),x(nextcity)],[y(firstcity),y(nextcity)],'b');axis equalaxis([0 18 0 18])subplot(1,2,2)plot(Lbest)hold ontitle('×î¶Ì¾àÀë')。
#include<iostream.h>#include<stdlib.h>#include<time.h>#include<math.h>#define citynumber 5#define Q 100#define p 0.5#define NM2 1000#define A 1#define B 5int ccdi=-1;//全局变量,用在myrand()中float myrand()//产生0-1随机数,100个,每调用一次,结果不同{srand(time(0));float my[100];ccdi++;if (ccdi==100)ccdi=0;for(int mi=0;mi<100;mi++){float fav=rand()%10000;my[mi]=fav/10000;}return my[ccdi];}double fpkij(double T[citynumber][citynumber],double n[citynumber][citynumber],int tabu[citynumber][citynumber],int k,int s,int i,int j )//定义函数用于计算Pij{//double A=0.5,B=0.5;double sumup,pkij,sumdown;sumdown=0;for(int aTi=0;aTi<citynumber;aTi++){for(int aTj=0;aTj<citynumber;aTj++)aT[aTi][aTj]=pow(T[aTi][aTj],A);}for(int bni=0;bni<citynumber;bni++){for(int bnj=0;bnj<citynumber;bnj++)bn[bni][bnj]=pow(n[bni][bnj],B);}for (int can=0;can<citynumber;can++)//判断,除掉已经走过的城市{if(can==tabu[k][ci]){aT[i][can]=0;bn[i][can]=0;}}sumup=aT[i][j]*bn[i][j];for(int tj=0;tj<citynumber;tj++)sumdown=aT[i][tj]*bn[i][tj]+sumdown;pkij=sumup/sumdown;return pkij;}void main(){ doublecity[citynumber][2]={{0,1},{0,2},{2,2},{2,4},{1,3}/*,{3,4},{4,7},{2,8},{3,9},{1,10},{1,0},{2,1},{3,0},{4,9},{5,2},{6,2},{7,1},{8,6},{9,0},{10,3}*/}; /*城市坐标*/ double d[citynumber][citynumber]; //L[j][k]是城市j to k距离for(int j=0;j<citynumber;j++){d[j][k]=sqrt((city[j][0]-city[k][0])*(city[j][0]-city[k][0])+(city[j][1]-city[k][1])*(city[j][1]-city[k] [1]));// cout<<d[j][k]<<" ";}//cout<<"\n";} /*计算距离,从j城市到k城市*//* for (int cj=0;cj<10;cj++){float c=myrand();cout<<c<<" "<<"\n";}*///输出随机数double n[citynumber][citynumber];for(int ni=0;ni<citynumber;ni++){for(int j=0;j<citynumber;j++)}//cout<<"\n";} /*初始化visibility nij*/double L[citynumber];int shortest[citynumber];double T[citynumber][citynumber];for(int ti=0;ti<citynumber;ti++){for (int j=0;j<citynumber;j++){//cout<<T[ti][j]<<" ";}//cout<<"\n";}/*初始化t*/double changT[citynumber][citynumber];//step2:for(int NC=0;NC<NM2;NC++){ for(int cti=0;cti<citynumber;cti++){for (int j=0;j<citynumber;j++){changT[cti][j]=0;//cout<<changT[cti][j]<<" ";}//cout<<"\n";} /*初始化changT*/int tabu[citynumber][citynumber];//tabu[k][s]表示第k只蚂蚁,第s次循环所在的城市for (int i=0;i<citynumber;i++)tabu[tai][i]=0;}for (int tabui1=0;tabui1<citynumber;tabui1++)tabu[tabui1][0]=tabui1;/*for (tai=0;tai<citynumber;tai++){for (int i=0;i<citynumber;i++)cout<<tabu[tai][i]<<" ";cout<<"\n";}*///初始化tabufor(int kk=0;kk<citynumber;kk++)L[kk]=0;//第三步开始for(int s=0;s<citynumber-1;s++){for(int k=0;k<citynumber;){int ci,can;float sumpk=0;float pkij;hq2: can++;if (can==citynumber) can=0;for (ci=0;ci<=s;ci++){if(can==tabu[k][ci]) goto hq2;}pkij=fpkij(T,n,tabu,k,s,tabu[k][s],can);sumpk=sumpk+pkij;else goto hq2;tabu[k][s+1]=can;k++;}} //第三步完成/*for (tai=0;tai<citynumber;tai++){for (int i=0;i<citynumber;i++) }*///输出一个循环后的tabu[][]//第四步开始for(int k4=0;k4<citynumber;k4++){s44=s4+1;if (s44==citynumber) s44=0;L[k4]+=d[tabu[k4][s4]][tabu[k4][s44]]; }//cout<<L[k4]<<" ";}//计算L[k]float shortest1=0; int short2=0;//最短距离for(ii=1;shorti<citber;shi++ ){shortest1=L[0];if(L[shorti]<=shortest1){shortest1=L[shorti];short2=shorti;}}//cout<<L[sort2]<<"\n";cout<<short2<<"\n";for(int shoi=0;shoi<ctynumber;shoi++){shortest[shoi]=tabu[short2][shoi];//cout<<shest[shoi]<<" ";}//cout<<"\n";for(int k41=0;k41<citynumber;k41++){for(int s41=0,ss=0;s41<citynumber;s41++){ss=s41+1;if (ss==citynumber) ss=0;changT[tabu[k41][s41]][tabu[k41][ss]]+=Q/L[k41];changT[tabu[k41][ss]][tabu[k41][s41]]=changT[tabu[k41][s41]][tabu[k41][ss]]; }}/* for(int cti4=0;cti4<citynumber;cti4++){for (int j=0;j<citynumber;j++){cout<<changT[cti4][j]<<" ";}cout<<"\n";}*///第四步完// 第五步开始for(int i5=0;i5<citynumber;i5++){for(int j5=0;j5<citynumber;j5++){// cout<<T[i5][j5]<<" ";}//cout<<"\n";}}for(int shoi1=0;shoi1<citynumber;shoi1++){cout<<city[shortest[shoi1]][0]<<" "<<city[shortest[shoi1]][1]<<" ";}}。
% Ant Colony Optimization for the Clustering% Reference : An ant colony approach for clustering %% Author : Du Yi%% Copyright : /%% Data : 31/03/06clc;clear;% N = number_of_test_sample;N =150;% n = number_of_attribute_of_test_sample;n = 4;% K = number_of_cluster;K = 3;% R = number_of_ants;R = 10;% t_max = MaxIterations;t_max = 1000;% X = test_sample_matrix;X = [5.1 3.5 1.4 0.24.9 3.0 1.4 0.24.7 3.2 1.3 0.24.6 3.1 1.5 0.25.0 3.6 1.4 0.25.4 3.9 1.7 0.44.6 3.4 1.4 0.35.0 3.4 1.5 0.24.4 2.9 1.4 0.24.9 3.1 1.5 0.15.4 3.7 1.5 0.24.8 3.4 1.6 0.24.8 3.0 1.4 0.14.3 3.0 1.1 0.15.8 4.0 1.2 0.25.7 4.4 1.5 0.45.4 3.9 1.3 0.45.1 3.5 1.4 0.35.7 3.8 1.7 0.35.1 3.8 1.5 0.35.4 3.4 1.7 0.24.6 3.6 1.0 0.25.1 3.3 1.7 0.54.8 3.4 1.9 0.25.0 3.0 1.6 0.2 5.0 3.4 1.6 0.4 5.2 3.5 1.5 0.2 5.2 3.4 1.4 0.2 4.7 3.2 1.6 0.24.8 3.1 1.6 0.25.4 3.4 1.5 0.4 5.2 4.1 1.5 0.1 5.5 4.2 1.4 0.24.9 3.1 1.5 0.15.0 3.2 1.2 0.2 5.5 3.5 1.3 0.2 4.9 3.1 1.5 0.14.4 3.0 1.3 0.25.1 3.4 1.5 0.2 5.0 3.5 1.3 0.3 4.5 2.3 1.3 0.34.4 3.2 1.3 0.25.0 3.5 1.6 0.6 5.1 3.8 1.9 0.44.8 3.0 1.4 0.35.1 3.8 1.6 0.24.6 3.2 1.4 0.25.3 3.7 1.5 0.2 5.0 3.3 1.4 0.2 7.0 3.2 4.7 1.46.4 3.2 4.5 1.5 6.9 3.1 4.9 1.55.5 2.3 4.0 1.36.5 2.8 4.6 1.55.7 2.8 4.5 1.36.3 3.3 4.7 1.6 4.9 2.4 3.3 1.0 6.6 2.9 4.6 1.3 5.2 2.7 3.9 1.4 5.0 2.0 3.5 1.05.9 3.0 4.2 1.56.0 2.2 4.0 1.0 6.1 2.9 4.7 1.4 5.6 2.9 3.6 1.35.6 3.0 4.5 1.55.8 2.7 4.1 1.06.2 2.2 4.5 1.5 5.6 2.5 3.9 1.15.9 3.2 4.8 1.86.1 2.8 4.0 1.3 6.3 2.5 4.9 1.5 6.1 2.8 4.7 1.2 6.4 2.9 4.3 1.3 6.6 3.0 4.4 1.4 6.8 2.8 4.8 1.4 6.7 3.0 5.0 1.7 6.0 2.9 4.5 1.5 5.7 2.6 3.5 1.0 5.5 2.4 3.8 1.1 5.5 2.4 3.7 1.05.8 2.7 3.9 1.26.0 2.7 5.1 1.65.4 3.0 4.5 1.56.0 3.4 4.5 1.6 6.7 3.1 4.7 1.5 6.3 2.3 4.4 1.3 5.6 3.0 4.1 1.3 5.5 2.5 4.0 1.35.5 2.6 4.4 1.26.1 3.0 4.6 1.4 5.8 2.6 4.0 1.2 5.0 2.3 3.3 1.0 5.6 2.7 4.2 1.3 5.7 3.0 4.2 1.25.7 2.9 4.2 1.36.2 2.9 4.3 1.3 5.1 2.5 3.0 1.15.7 2.8 4.1 1.36.3 3.3 6.0 2.5 5.8 2.7 5.1 1.97.1 3.0 5.9 2.1 6.3 2.9 5.6 1.86.5 3.0 5.8 2.27.6 3.0 6.6 2.1 4.9 2.5 4.5 1.7 7.3 2.9 6.3 1.8 6.7 2.5 5.8 1.86.5 3.2 5.1 2.06.4 2.7 5.3 1.96.8 3.0 5.5 2.15.7 2.5 5.0 2.05.8 2.8 5.1 2.46.4 3.2 5.3 2.36.5 3.0 5.5 1.87.7 3.8 6.7 2.27.7 2.6 6.9 2.36.0 2.2 5.0 1.56.9 3.2 5.7 2.35.6 2.8 4.9 2.07.7 2.8 6.7 2.06.3 2.7 4.9 1.86.7 3.3 5.7 2.17.2 3.2 6.0 1.86.2 2.8 4.8 1.86.1 3.0 4.9 1.86.4 2.8 5.6 2.17.2 3.0 5.8 1.67.4 2.8 6.1 1.97.9 3.8 6.4 2.06.4 2.8 5.6 2.26.3 2.8 5.1 1.56.1 2.6 5.6 1.47.7 3.0 6.1 2.36.3 3.4 5.6 2.46.4 3.1 5.5 1.86.0 3.0 4.8 1.86.9 3.1 5.4 2.16.7 3.1 5.6 2.46.9 3.1 5.1 2.35.8 2.7 5.1 1.96.8 3.2 5.9 2.36.7 3.3 5.7 2.56.7 3.0 5.2 2.36.3 2.5 5.0 1.96.5 3.0 5.2 2.06.2 3.4 5.4 2.35.9 3.0 5.1 1.8];% INITIALIZA TION% pheromone trailsc = 10^-2;tau = ones(N,K) * c;%tau = [% 0.014756 0.015274 0.009900;% 0.015274 0.009900 0.014756;% 0.015274 0.014756 0.009900;% 0.009900 0.015274 0.014756;% 0.014756 0.015274 0.009900;% 0.009900 0.014756 0.015274;% 0.009900 0.020131 0.009900;% 0.015274 0.014756 0.009900;%];% probability threshold qq = 0.9;% evaporation raterho = 0.1;% fitness functionbest_solution_function_value = inf;t = 1;while ((t <= t_max))% SEND R ANTS EACH WITH EMPTY SOLUTION STRING,S =============================% solution string : every ant construction solution and fitness functionsolution_string = zeros(R,N+1);% COMPUTE R SOLUTIONfor i = 1 : R% solution_string(1,1:N) = randint(1,N,[1,K]);r = rand(1,N); %construct solution Si using pheromone trailfor g = 1 : Nif r(g) < qtau_max = max(tau(g,:));Cluster_number = find(tau(g,:)==tau_max);solution_string(i,g) = Cluster_number(1); %%%%%%%%%%%%% 1--ielsesum_p = sum(tau(g,:));p = tau(g,:) / sum_p;for u = 2 : Kp(u) = p(u) + p(u-1);endrr = rand;%Cluster_number = K;for s = 1 : Kif (rr <= p(s))Cluster_number = s;solution_string(i,g) = Cluster_number; %%%%%%%%%%%%% 1--ibreak;endendendend% compute weights(weight) of all test samples and cluster centers(cluster_center)weight = zeros(N,K);for h = 1:NCluster_index = solution_string(i,h); %%%%%%%%%%%%% 1--iweight(h,Cluster_index) = 1;endcluster_center = zeros(K,n);for j = 1:Kfor v = 1:nsum_wx = sum(weight(:,j).*X(:,v));sum_w = sum(weight(:,j));if sum_w==0cluster_center(j,v) =0continue;elsecluster_center(j,v) = sum_wx/sum_w;endendend% computer clustering metric and% assign it as objective function value Fi of solution ,SiF = 0;for j= 1:Kfor ii = 1:NTemp=0;if solution_string(i,ii)==j; %%%%%%%%%%%%% 1--ifor v = 1:nTemp = ((abs(X(ii,v)-cluster_center(j,v))).^2)+Temp;endTemp = sqrt(Temp);endF = (Temp)+F;endendsolution_string(i,end) = F; %%%%%%%%%%%%% 1--iend %for i = 1 : R% select best L solutions out of R solutions using objective function values% LOCAL SEARCH PROCEDURES====================================================% fitness sort in ascending order[fitness_ascend,solution_index] = sort(solution_string(:,end),1);solution_ascend = [solution_string(solution_index,1:end-1) fitness_ascend];% pls is local search threshold probabilitypls = 0.05;% perform local search on L solutionL = 2;% local search proceduressolution_temp = zeros(L,N+1);k = 1;while(k <= L)solution_temp(k,:) = solution_ascend(k,:);rp = rand(1,N);for i = 1:Nif rp(i) <= plscurrent_cluster_number = setdiff([1:K],solution_temp(k,i));change_cluster = randint(1,1,current_cluster_number);solution_temp(k,i) = change_cluster;endend% computer weights of all test samples and cluster centerssolution_temp_weight = zeros(N,K);for h = 1:Nsolution_temp_cluster_index = solution_temp(k,h); %%%%%%%%%%%%% 1--k solution_temp_weight(h,solution_temp_cluster_index) = 1;endsolution_temp_cluster_center = zeros(K,n);for j = 1:Kfor v = 1:nsolution_temp_sum_wx = sum(solution_temp_weight(:,j).*X(:,v));solution_temp_sum_w = sum(solution_temp_weight(:,j));if solution_temp_sum_w==0solution_temp_cluster_center(j,v) =0;continue;elsesolution_temp_cluster_center(j,v) = solution_temp_sum_wx/solution_temp_sum_w; endendend% computer solution temp clustering metric and% assign it as objective function value Ft of solution ,Stsolution_temp_F = 0;for j= 1:Kfor ii = 1:Nst_Temp=0;if solution_temp(k,ii)==j; %%%%%%%%%%%%% 1--kfor v = 1:nst_Temp = ((abs(X(ii,v)-solution_temp_cluster_center(j,v))).^2)+st_Temp;endst_Temp = sqrt(st_Temp);endsolution_temp_F = (st_Temp)+solution_temp_F;endendsolution_temp(k,end) = solution_temp_F; %%%%%%%%%%%%% 1--k% if Ft<Fl then Fl=Ft and Sl=Stif solution_temp(k,end) <= solution_ascend(k,end) %%%%%%%%%%%%% 1--k solution_ascend(k,:) = solution_temp(k,:); %%%%%%%%%%%%% 1--kendif solution_ascend(k,end)<=best_solution_function_valuebest_solution = solution_ascend(k,:);endk = k+1;end %end while(local search)% UPDA TE PHEROMONE TRAIL MA TRIX=============================================% Update pheromone trail matrix using best L solution% for i = 1 : N% %for j = 1 : L% tau(i,best_solution(1,i)) = (1 - rho) * tau(i,best_solution(1,i)) + rho / (sum(best_solution(1,end)));% %end% end%% t = t+1;% end %while(main)%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++tau_F = 0;for j = 1:Ltau_F = tau_F + solution_ascend(j,end);endfor i = 1 : Ntau(i,best_solution(1,i)) = (1 - rho) * tau(i,best_solution(1,i)) + 1/ tau_F;%use 1/tau_F or rho/tau_F, neither of them is goodend%+++++++++++++++++++++++++++++++++++++++++++t=t+1;endclc; Fbest_solution = solution_ascend(1,1:end-1)best_solution_function_value = solution_ascend(1,end)。
matlab蚁群算法代码,蚁群算法(ACO)MATLAB实现(⼀)蚁群算法的由来蚁群算法(ant colony optimization)最早是由Marco Dorigo等⼈在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找⾷物时,通过分泌⼀种称为信息素的⽣物激素交流觅⾷信息从⽽能快速的找到⽬标,据此提出了基于信息正反馈原理的蚁群算法。
蚁群算法的基本思想来源于⾃然界蚂蚁觅⾷的最短路径原理,根据昆⾍科学家的观察,发现⾃然界的蚂蚁虽然视觉不发达,但它们可以在没有任何提⽰的情况下找到从⾷物源到巢⽳的最短路径,并在周围环境发⽣变化后,⾃适应地搜索新的最佳路径。
蚂蚁在寻找⾷物源的时候,能在其⾛过的路径上释放⼀种叫信息素的激素,使⼀定范围内的其他蚂蚁能够察觉到。
当⼀些路径上通过的蚂蚁越来越多时,信息素也就越来越多,蚂蚁们选择这条路径的概率也就越⾼,结果导致这条路径上的信息素⼜增多,蚂蚁⾛这条路的概率⼜增加,⽣⽣不息。
这种选择过程被称为蚂蚁的⾃催化⾏为。
对于单个蚂蚁来说,它并没有要寻找最短路径,只是根据概率选择;对于整个蚁群系统来说,它们却达到了寻找到最优路径的客观上的效果。
这就是群体智能。
(⼆)蚁群算法能做什么蚁群算法根据模拟蚂蚁寻找⾷物的最短路径⾏为来设计的仿⽣算法,因此⼀般⽽⾔,蚁群算法⽤来解决最短路径问题,并真的在旅⾏商问题(TSP,⼀个寻找最短路径的问题)上取得了⽐较好的成效。
⽬前,也已渐渐应⽤到其他领域中去,在图着⾊问题、车辆调度问题、集成电路设计、通讯⽹络、数据聚类分析等⽅⾯都有所应⽤。
(三)蚁群算法实现优化的 函数为F(x,y)= -(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)MATLABclearclcAnt = 300;%蚂蚁数量Times = 80;%移动次数Rou = 0.9;%荷尔蒙发挥系数P0 = 0.2;%转移概率Lower_1 = -1;%搜索范围Upper_1 = 1;Lower_2 = -1;Upper_2 = 1;for i=1:AntX(i,1)=(Lower_1+(Upper_1-Lower_1)*rand);X(i,2)=(Lower_1+(Upper_2-Lower_2)*rand);Tau(i)=F(X(i,1),X(i,2));endstep=0.05;f='-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)';figure(1);subplot(1,2,1);mesh(x,y,z);hold on;plot3(X(:,1),X(:,2),Tau,'k*')hold on;text(0.1,0.8,-0.1,'蚂蚁的初始位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');for T=1:Timeslamda=1/T;[Tau_Best(T),BestIndex]=max(Tau);for i=1:AntP(T,i)=(Tau(BestIndex)-Tau(i))/Tau(BestIndex);%计算转移状态概率endfor i=1:Antif P(T,i)temp1=X(i,1)+(2*rand-1)*lamda;temp2=X(i,2)+(2*rand-1)*lamda;else%全局搜索temp1=X(i,1)+(Upper_1-Lower_1)*(rand-0.5);temp2=X(i,2)+(Upper_2-Lower_2)*(rand-0.5);endif temp1temp1=Lower_1;endif temp1>Upper_1temp1=Upper_1;endif temp2temp2=Lower_2;endif temp2>Upper_2if F(temp1,temp2)>F(X(i,1),X(i,2))%更新位置X(i,1)=temp1;X(i,2)=temp2;endendfor i=1:AntTau(i)=(1-Rou)*Tau(i)+F(X(i,1),X(i,2));%更新荷尔蒙endendsubplot(1,2,2);mesh(x,y,z);hold on;x=X(:,1);y=X(:,2);plot3(x,y,eval(f),'k*');hold on;text(0.1,0.8,-0.1,'蚂蚁的最终位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');[max_value,max_index]=max(Tau);maxX=X(max_index,1);maxY=X(max_index,2);maxValue=F(X(max_index,1),X(max_index,2));1234567891016 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4450 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78clcAnt=300;%蚂蚁数量Times=80;%移动次数Rou=0.9;%荷尔蒙发挥系数P0=0.2;%转移概率Lower_1=-1;%搜索范围Upper_1=1;Lower_2=-1;Upper_2=1;fori=1:AntX(i,1)=(Lower_1+(Upper_1-Lower_1)*rand);X(i,2)=(Lower_1+(Upper_2-Lower_2)*rand);Tau(i)=F(X(i,1),X(i,2));endstep=0.05;f='-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)';[x,y]=meshgrid(Lower_1:step:Upper_1,Lower_2:step:Upper_2); z=eval(f);figure(1);subplot(1,2,1);mesh(x,y,z);holdon;plot3(X(:,1),X(:,2),Tau,'k*')holdon;text(0.1,0.8,-0.1,'蚂蚁的初始位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');forT=1:Timeslamda=1/T;[Tau_Best(T),BestIndex]=max(Tau);fori=1:AntifP(T,i)temp1=X(i,1)+(2*rand-1)*lamda;temp2=X(i,2)+(2*rand-1)*lamda;else%全局搜索temp1=X(i,1)+(Upper_1-Lower_1)*(rand-0.5); temp2=X(i,2)+(Upper_2-Lower_2)*(rand-0.5); endiftemp1temp1=Lower_1;endiftemp1>Upper_1temp1=Upper_1;endiftemp2temp2=Lower_2;endiftemp2>Upper_2temp2=Upper_2;endifF(temp1,temp2)>F(X(i,1),X(i,2))%更新位置X(i,1)=temp1;X(i,2)=temp2;endendfori=1:AntTau(i)=(1-Rou)*Tau(i)+F(X(i,1),X(i,2));%更新荷尔蒙endendsubplot(1,2,2);mesh(x,y,z);y=X(:,2);plot3(x,y,eval(f),'k*');holdon;text(0.1,0.8,-0.1,'蚂蚁的最终位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');[max_value,max_index]=max(Tau);maxX=X(max_index,1);maxY=X(max_index,2);maxValue=F(X(max_index,1),X(max_index,2));优化函数:MATLABfunction f = F(x,y)f = -(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6); end123functionf=F(x,y)f=-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6); end效果:。
蚁群算法TSP(旅行商问题)通用matlab程序[转]-很有借鉴意义!!
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACA TSP(C,NC_max,m,Alpha,Beta, Rho,Q)
%%====================================================================== ===
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:aihuacheng@
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%====================================================================== ===
%%第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);%Tau为信息素矩阵
Tabu=zeros(m,n);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,n);%各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
L_ave=zeros(NC_max,1);%各代路线的平均长度
while NC<=NC_max%停止条件之一:达到最大迭代次数
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已访问的城市
J=zeros(1,(n-j+1));%待访问的城市
P=J;%待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave)
function DrawRoute(C,R)
%%====================================================================== ===
%% DrawRoute.m
%% 画路线图的子函数
%%-------------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%====================================================================== ===
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)]) hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)]) hold on
end
设置初始参数如下:
m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100; 31城市坐标为:
1304 2312
3639 1315
4177 2244
3712 1399
3488 1535
3326 1556
3238 1229
4196 1004
4312 790
4386 570
3007 1970
2562 1756
2788 1491
2381 1676
1332 695
3715 1678
3918 2179
4061 2370
3780 2212
3676 2578
4029 2838
4263 2931
3429 1908
3507 2367
3394 2643
3439 3201
2935 3240
3140 3550
2545 2357
2778 2826
2370 2975。