结构力学第7章力法
- 格式:ppt
- 大小:2.47 MB
- 文档页数:79
结构力学力法的计算在结构力学中,力法是一种常用的计算方法,用于分析和设计各种结构的受力状态和稳定性。
力法基于牛顿第二定律和结构平衡原理,通过将结构划分为多个互相独立的力学系统,再进行力学方程的求解,可以得到结构各点的受力情况。
力法的计算过程主要包括以下几个步骤:1.确定受力系统:首先,需要明确结构的受力体系,包括受力点、受力方向和受力大小。
根据结构的特点和应用要求,可以选择合适的受力系统。
2.提取受力系统:将受力系统从结构中剥离出来,形成独立的力学系统。
这样可以降低计算难度,并且便于分析结构的受力情况。
3.建立力学模型:对于每个独立的力学系统,需要建立相应的力学模型。
根据受力情况和结构的几何形状,可以选择适当的力学模型,如简支梁、悬臂梁等。
4.进行力学方程求解:通过应用牛顿第二定律和结构平衡原理,可以建立相应的力学方程。
根据方程的特点,可以选择适当的数值解法,如代数法或迭代法等。
5.求解受力分布:通过求解力学方程,可以得到结构各点的受力情况。
这包括受力方向、受力大小和受力位置等信息。
根据这些信息,可以对结构的受力状态进行分析和评估。
6.验证和优化设计:对于计算结果,需要进行验证和优化设计。
通过与理论计算或实验结果的对比,可以确认计算的准确性,并对结构的设计进行必要的调整和优化。
需要注意的是,力法的计算过程需要考虑以下几个因素:1.边界条件:在进行力法计算时,需要确定结构的边界条件。
边界条件可以影响结构的受力情况,因此对于计算结果的准确性至关重要。
2.材料性质:在建立力学模型时,需要考虑材料的性质和力学参数。
材料的性质直接影响结构的刚度和强度,因此对于计算结果的准确性有很大影响。
3.荷载条件:在进行力法计算时,需要明确结构所受的荷载条件,包括静载和动载。
不同的荷载条件会导致结构不同的受力状态和响应,因此需要准确确定。
4.结构几何形状:在进行力法计算时,需要考虑结构的几何形状。
结构的几何形状会直接影响结构的受力分布和刚度特性,因此需要准确描述和建模。
第7章 力 法
7.1 复习笔记【知识框架】
【重点难点归纳】
一、概述(见表7-1-1) ★★
表7-1-1 概述
二、超静定次数的确定(见表7-1-2) ★★★★
表7-1-2 超静定次数的确定
三、力法的基本概念(见表7-1-3) ★★★
力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表7-1-3,此外,表中还归纳了超静定结构的力法分析步骤。
表7-1-3 力法的基本未知量、基本体系和基本方程
四、力法的典型方程(见表7-1-4) ★★★
表7-1-4 力法的典型方程
五、对称性的利用 ★★★★
1.对称结构及作用荷载的对称性(表7-1-5)
表7-1-5 对称结构及作用荷载的对称性
2.非对称荷载的处理(表7-1-6)
表7-1-6 非对称荷载的处理。
结构力学第7章力法力法是结构力学中的一种分析方法,通过力法可以计算结构系统中各个构件的受力情况。
力法分为两种,即静力法和动力法。
静力法是力法的一种基本形式,它假设结构系统处于静止状态,通过平衡条件来计算结构中构件的受力。
在应用静力法时,我们根据不同的受力情况选择适当的计算方法。
常见的静力法有三种,即图解法、解析法和力平衡方程法。
图解法是最直观、易于理解和应用的方法之一、在图解法中,我们首先绘制结构的荷载图和支座反力图。
然后,根据等效荷载和支座反力,我们可以通过直观的力平衡图来计算结构中各个构件的受力情况。
解析法是一种较为精确的力法方法。
在解析法中,我们可以通过力平衡方程来计算结构中各个构件的受力。
通过将力平衡方程应用于不同的构件,我们可以得到方程组,并解得未知力的数值。
常见的解析法有支反推移法、拆解法和替换法。
支反推移法是一种常见的解析法,它通过将处于平衡状态的内力反向传递来计算结构中各个构件的受力。
该方法适用于简单、对称的结构系统。
拆解法是一种适用于复杂结构的方法,它将结构系统拆解为多个简单结构,在每个简单结构中应用平衡条件计算受力。
替换法是一种常用于桁架结构的方法,它通过将构件按照等效的支座反力进行替换,然后计算受力。
力平衡方程法是一种广泛应用于结构力学中的方法。
在力平衡方程法中,我们通过应用力平衡方程来计算结构中各个构件的受力。
在计算过程中,我们需要考虑结构的平衡条件、力的合成和分解等因素。
常见的力平衡方程法有梁静力法、杆件静力法和平面结构静力法等。
动力法是力法的另一种形式,它适用于分析结构在动力作用下的响应。
动力法通过求解结构的动力方程,计算结构的振动、位移和应力等。
常见的动力法有等效荷载法、阻尼振动法和模态分析法等。
等效荷载法是一种常用的动力法,它将随机振动转化为与之等效的静力荷载,然后用静力法来计算结构的受力情况。
阻尼振动法是一种考虑结构阻尼特性的动力法,它在动力方程中引入阻尼项,计算结构的振动衰减情况。
1. 超静定结构基本特性(1) 几何构造特性:几何不变有多余约束体系(2) 静力解答的不唯一性:满足静力平衡条件的解答有无穷多组(3) 产生内力的原因:除荷载外,还有温度变化、支座移动、材料收缩、制造误差等,均可产生内力 2. 超静定结构类型3. 求解原理(1) 平衡条件:解答一定是满足平衡条件的,平衡条件是必要条件但不是充分条件。
(2) 几何条件:或变形协调条件或约束条件等,指解答必须满足结构的约束条件与位移连续性条件等。
(3) 物理条件:求解过程中还需要用到荷载与位移之间的物理关系。
4. 基本方法力法:以多余约束力作为求解的基本未知量 位移法:以未知结点位移作为求解的基本未知量§7-2超静定次数的确定超静定次数:多余约束的个数,也就是力法中基本未知量的个数。
确定方法:超静定结构 去掉多余约约束 静定结构,即可确定超静定次数即力法基本未知量的个数。
T强调,(1)去掉的一定是多余约束,不能去掉必要约束(2)结果一定是得到一个静定结构,也称力第七章力法 §7-1超静定结构概述图7.3力法基車堀构IP一次超静定,去掉支座B ,得到力法基本未知量与基本结构;(2)要使基本结构与原结构等价,则要求,荷载与X i共同作用下,1=0(3)由叠加原理,有,宀一站•冷p =X 「ii =0,力法典型方程,即多余约束处的位移约束条件(4)柔度系数W与自由项"MP均为力法基本结构上(静定结构)的位移,由图乘法,得(5)X i已知,可作出原结构M图,如图示§7-4力法典型方程由上节知,力法典型方程就是多余约束处的位移方程。
下面讨论一般情况下力法方程的形式。
图7.4图7.6§7-3力法基本概念F面用力法对一单跨超静定梁进行求解,以说明力法基本概念, 对力法有一个初步了解^1=136 =丄丄4 ,l 2 J^也ii III , ipEI 2 3 3EI4i i I i |2 3| ql 、,l ql l , X iEI 3 2 4 8EI=fqi-'ii 8图7.5形式上完全相同,只是各符号的具体物理含义有所不同依此类推,n 次超静定结构,有n 个多余约束力时,力法典型方程为■「n X n ■“1P八:1 = 0+ ^2nX n + 也2P =6 =0' nnXn ^nP 二"n = 0A P '-2P:_i=0,卜]{X} { P } =0UnP为线性代数方程组,由位移互等定理, r =13次超静定,去掉一个固定支座,得到力法基本结构。
第1章绪论(无习题)第2章平面体系的机动分析习题解答习题是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几不变体系。
( )(2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几不变体系。
( )(3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几不变体系。
( )(4) 由三个铰两两相连的三刚片组成几不变体系且无多余约束。
( )(5) 习题(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几不变体系。
( )习题(5)图(6) 习题(6)(a)图所示体系去掉二元体ABC后,成为习题(6) (b)图,故原体系是几可变体系。
( )(7) 习题(6)(a)图所示体系去掉二元体EDF后,成为习题(6) (c)图,故原体系是几可变体系。
( )(a)(b)(c)习题(6)图习题填空(1) 习题(1)图所示体系为_________体系。
习题(1)图(2) 习题(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题(3)图(4) 习题(4)图所示体系的多余约束个数为___________。
习题 (4)图(5) 习题(5)图所示体系的多余约束个数为___________。
习题 (5)图(6) 习题(6)图所示体系为_________体系,有_________个多余约束。
习题 (6)图(7) 习题(7)图所示体系为_________体系,有_________个多余约束。
习题 (7)图习题 对习题图所示各体系进行几组成分析。
(a)(b)(c)(d)(e)(f)(h)(g)(i)(j)(k)(l)习题图第3章 静定梁与静定刚架习题解答习题 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
结构力学力法结构力学是研究物体在外力作用下变形、破坏及承受载荷的学科。
而力法(Force Method)是结构力学中常用的一种分析方法,通过分解和叠加结构的内力来求解结构的变形和应力分布。
力法的基本原理是牛顿第三定律:作用力与反作用力大小相等、方向相反。
在结构力学中,物体在外力作用下会产生内力,而这些内力满足力的平衡条件。
以简支梁为例,梁受到上面的外力作用,会产生下方的支反力。
根据力的平衡条件,可以得到支反力与外力之间的关系,进而求解出支反力的大小和方向。
力法的应用步骤一般如下:1.设计空间内部力和位移:根据物体的几何性质、材料特性和外力条件,建立结构受力模型,并假设结构内部力和位移的初值。
2.材料模型:根据结构的材料特性,选择相应的力学模型。
常见的材料模型包括弹性模型和塑性模型。
3.受力平衡:根据物体在力的作用下的平衡条件,可以得到各个节点处的力平衡等式。
这些等式可以根据结构的几何特性和受力条件进行推导,建立结构的力平衡方程。
4.结构刚度矩阵:根据结构的几何性质和材料特性,可以得到结构的刚度矩阵。
刚度矩阵是结构的一种特征矩阵,描述了结构在受力下的刚度特性。
5.定义单元力和变形:根据结构的力平衡方程和刚度矩阵,可以将结构的内力和受力位移表示为单元力和单元变形的叠加形式。
6.求解结构内力和位移:通过迭代的方法,将结构的内力和位移从初值迭代到收敛。
在每一次迭代中,根据力的平衡条件和结构刚度矩阵,计算节点的内力和位移,然后更新节点处的单元力和变形。
7.结果分析:根据结构的内力和位移,可以进一步分析结构的应力分布、变形形态和稳定性等问题。
根据需要,还可以根据结果对结构进行优化设计。
力法的优点是简单、直观,适用于各种结构的分析。
但力法也存在一些限制,比如只适用于小变形、线性弹性结构的分析;不适用于存在局部破坏、非线性特性的结构。
总之,力法是结构力学中一种常用的分析方法,通过分解和叠加结构的内力来求解结构的变形和应力分布。
结构力学——力法结构力学,力法结构力学是研究物体和结构受力情况以及结构变形的一门学科。
在结构力学中,力法是一种重要的分析方法之一,它可以用来解决结构的内力和位移分布问题。
力法的基本思想是将外力作用在结构上的效果转化为力的剪力、弯矩和轴力等,通过求解这些内力来得到结构的受力和变形情况。
力法的基本步骤包括:选择适当的受力系统,根据受力系统的特点将受力转化为剪力、弯矩和轴力等力的效果,通过平衡条件得到内力分布方程,并解析或计算出内力分布,最后计算结构的位移和变形情况。
力法的应用范围较广,适用于静定和非静定结构的受力和变形分析。
在静定结构中,结构的支座反力可以通过受力平衡条件求解,然后根据支座反力和结构的几何形状得到结构的内力和位移分布。
在非静定结构中,由于受力平衡条件无法直接求解,需要通过引入位移相关的方程来解决。
在应用力法进行受力分析时,需要根据结构的几何形状和受力情况,选择适当的受力系统。
受力系统的选择应当符合结构的几何特征以及边界条件,使得受力效果可以直接转化为剪力、弯矩和轴力的效果。
通常情况下,剪力和弯矩用受力系统的剪力图和弯矩图来表示,而轴力则通过受力系统的轴力图来表示。
在进行力法计算时,首先需要确定受力系统的作用点和力的大小,然后通过受力平衡条件求解支座反力,并根据支座反力和结构的几何形状构造内力分布方程。
内力分布方程一般根据结构的受力特点,可以通过积分法、均布加载原理、等效剪力原理等构造。
然后,通过解析或计算的方法求解内力分布方程,得到结构的内力分布情况。
最后,根据内力分布和结构的弹性特性,可以计算出结构的位移和变形情况。
力法在结构分析中具有广泛的应用,可以用来解决梁、柱、桁架、刚架等结构的受力和变形分析问题。
在实际工程中,通过力法可以得到结构的内力和位移分布情况,从而评估结构的稳定性和安全性,指导结构的设计和施工,并对结构的荷载承载能力进行估算。
总之,力法是一种重要的结构力学分析方法,通过将受力效果转化为剪力、弯矩和轴力等,可以求解结构的内力和位移分布情况。