结构力学第六章力法
- 格式:ppt
- 大小:2.87 MB
- 文档页数:94
习题6-1试确定图示结构的超静定次数。
(a)(b)(c)(d)(e)(f)(g)所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定I II 刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M 、F Q 图。
(a)解:上图=l1M pM 01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EI l F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61F PA2l 3l 3B2EIEIC题目有错误,为可变体系。
+pF p lF 32X 1=1M 图p Q X Q Q +=11p F 21⊕p F 21(b)解:基本结构为:l1M 3l l2M l F p 21pM l F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδp M X M X M M ++=2211pQ X Q X Q Q ++=22116-4试用力法计算图示结构,并绘其内力图。
(a)l2l 2l2lABCD EI =常数F Pl 2E FQ 图F PX 1X 2F P解:基本结构为:1M pM 01111=∆+p X δpM X M M +=11(b)解:基本结构为:EI=常数qACEDB4a 2a4a4a20kN/m3m6m6mAEI 1.75EIB CD 20kN/mX 1166810810计算1M ,由对称性知,可考虑半结构。
结构力学第6章力法力法(也叫统一力法)是一种简化结构分析和计算的方法,通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的复杂性。
力法在结构力学中有很广泛的应用,特别是在求解复杂结构的内力分布和变形方程时非常有用。
力法的基本原理是将结构的内力分布看作是由一系列基本力的叠加形成的。
这些基本力包括拉力、压力、剪力和弯矩等。
通过对这些基本力的作用点和大小进行合理的选取,可以将结构的内力分布近似为一个简单的形式,从而方便地进行计算。
力法的具体步骤如下:1.选择合适的基本力系统:根据结构的受力情况,选择适合的基本力系统,一般包括平行力、共点力、算术力和等效力等。
2.确定基本力的作用点和大小:通过结构的受力平衡条件和变形方程,确定基本力的作用点和大小,一般可以通过静力平衡方程或者变形方程进行计算。
3.将基本力作用在结构上:将确定的基本力作用在结构上,这些基本力可以是集中力也可以是分布力,根据具体情况进行选择。
4.分析结构的受力和变形:应用力学的基本原理和公式,分析结构的受力和变形情况,求解结构的内力和位移等参数。
5.进行计算和分析:根据步骤4中得到的结果,进行计算和分析,比较计算结果与实际情况的差异,进行调整和修正。
力法的优点是计算简单、直观,尤其适用于计算结构的内力和变形情况;缺点是只能得到局部的内力情况,无法得到整体的受力情况。
在结构力学中,力法的应用非常广泛。
例如,可以利用力法求解悬臂梁的内力分布和变形情况,以及桁架和刚架的受力情况等。
同时,力法还可以用于计算复杂结构的等效荷载,简化结构的计算过程。
总结起来,力法是一种通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的方法。
通过选择合适的基本力系统,确定基本力的作用点和大小,将基本力作用在结构上,进行受力和变形分析,最终得到结构的内力和变形情况。
力法在结构力学中有很广泛的应用,对于求解复杂结构的内力分布和变形方程非常有用。
第6章力法6.1 复习笔记一、超静定次数的确定——力法的前期工作1.超静定结构的静力平衡特征和几何构造特征(1)静力平衡特征一个结构,如果它的支座反力和各截面的内力不能完全由静力平衡条件唯一地加以确定,就称为超静定结构。
(2)几何构造特征超静定结构是有多余约束的几何不变体系。
2.超静定次数的确定(1)从几何构造看,超静定次数=多余约束的个数。
(2)从静力分析看,超静定次数=未知力个数-平衡方程的个数。
(3)求超静定次数时,应注意以下事项:①撤去一根支杆或切断一根链杆,等于拆掉一个约束;②撤去一个铰支座或撤去一个单铰,等于拆掉两个约束;③撤去一个固定端或切断一个梁式杆,等于拆掉三个约束;④在连续杆中加入一个单铰,等于拆掉一个约束;⑤不要把必要约束拆掉;⑥要把全部多余约束都拆除。
二、力法的基本概念1.力法的基本未知量、基本体系和基本方程 (1)力法的基本未知量把多余未知力的计算问题当作超静定问题的关键问题,把多余未知力当作处于关键地位的未知力——称为力法的基本未知量。
(2)力法的基本体系和基本结构①含有多余未知力的静定结构,称为力法的“基本体系”; ②去掉多余约束力和荷载后的静定结构,称为力法的“基本结构”。
(3)力法的基本方程11δ——基本结构在单位未知力单独作用下沿1X 方向的位移;1X ——未知力;1P ∆——基本结构在荷载单独作用下沿1X 方向的位移。
2.多次超静定结构的计算 (1)二次超静定结构①图6-1-1(a )为二次超静定结构,取B 点两个支杆为多余约束,用X 1、X 2作为基本未知量代替,则基本体系如图6-1-1(b )所示。
图6-1-1②二次超静定结构的力法基本方程(2)多次超静定——力法典型方程——由荷载产生的沿方向的位移;——由单位力产生的沿方向的位移,常称为柔度系数。
在得到多余未知力的数值之后,超静定结构的内力可根据平衡条件求出,或者根据叠加原理用下式计算三、力法解超静定刚架和排架1.刚架的解法步骤(1)选取基本体系;(2)列出力法方程;(3)求系数和自由项;(4)求多余未知力;(5)作内力图。
第六章位移法和力矩分配法一、基本内容及学习要求本章内容包括:位移法的基本概念,位移法基本未知量的确定,位移法的计算步骤和示例,位移法的典型方程,力矩分配法的基本概念,力矩分配法计算连续梁和无结点线位移刚架,超静定结构的受力分析和变形特点等。
重点是位移法的基本原理及用位移法计算刚架,力矩分配法的基本原理和计算方法。
位移法是解算超静定结构的基本方法之一,力矩分配法是由位移法演变出来的常用渐进解法。
通过本章学习应达到:(1)掌握位移法的基本原理,准确判定位移法的基本未知量。
(2)灵活应用等截面单跨超静定梁的转角位移方程[教材式(5—3)~(5—6)]或表5—1,确定各种外因影响下的杆端弯矩和杆端剪力。
(3)熟练掌握位移法计算超静定梁和刚架的方法及步骤。
对照力法典型方程,加深对位移法典型方程的理解。
(4)掌握力矩分配法的计算原理和步骤,会计算连续梁和无结点线位移刚架。
(5)初步了解超静定结构的受力特点和变形性能。
根据不同结构选择合理的计算方法。
二、学习指导(一)位移法的解题思路§6—l以两跨连续梁为例说明了位移法的解题思路:(1)把超静定结构转化为由单跨超静定梁构成的组合体,用后者代替前者计算。
(2)利用单跨梁已知的转角位移方程,应用变形协调条件,建立结点位移与单跨梁杆端内力问的关系。
(3)根据组合体与原结构受力一致应满足的平衡条件,建立以结点位移为基本未知量的位移法方程。
(4)解方程求出结点位移,进而计算单跨梁的杆端内力。
教材§6—3以示例阐明了位移法的计算步骤和实际应用。
此外,教材§6—4介绍了建立位移法方程的另一途径,即首先选取基本结构,然后根据基本结构受力和变形应与原结构一致的条件建立位移法典型方程,求出其系数和自由项,同样解方程求得结点位移并绘出最后弯矩图。
其实,两种方式本质完全相同,只是建立方程的途径不同而已。
针对图6.1 a所示刚架的计算过程,可做如下扼要对比(表6.1)。