结构力学——力法
- 格式:ppt
- 大小:4.45 MB
- 文档页数:76
结构力学第7章力法力法是结构力学中的一种分析方法,通过力法可以计算结构系统中各个构件的受力情况。
力法分为两种,即静力法和动力法。
静力法是力法的一种基本形式,它假设结构系统处于静止状态,通过平衡条件来计算结构中构件的受力。
在应用静力法时,我们根据不同的受力情况选择适当的计算方法。
常见的静力法有三种,即图解法、解析法和力平衡方程法。
图解法是最直观、易于理解和应用的方法之一、在图解法中,我们首先绘制结构的荷载图和支座反力图。
然后,根据等效荷载和支座反力,我们可以通过直观的力平衡图来计算结构中各个构件的受力情况。
解析法是一种较为精确的力法方法。
在解析法中,我们可以通过力平衡方程来计算结构中各个构件的受力。
通过将力平衡方程应用于不同的构件,我们可以得到方程组,并解得未知力的数值。
常见的解析法有支反推移法、拆解法和替换法。
支反推移法是一种常见的解析法,它通过将处于平衡状态的内力反向传递来计算结构中各个构件的受力。
该方法适用于简单、对称的结构系统。
拆解法是一种适用于复杂结构的方法,它将结构系统拆解为多个简单结构,在每个简单结构中应用平衡条件计算受力。
替换法是一种常用于桁架结构的方法,它通过将构件按照等效的支座反力进行替换,然后计算受力。
力平衡方程法是一种广泛应用于结构力学中的方法。
在力平衡方程法中,我们通过应用力平衡方程来计算结构中各个构件的受力。
在计算过程中,我们需要考虑结构的平衡条件、力的合成和分解等因素。
常见的力平衡方程法有梁静力法、杆件静力法和平面结构静力法等。
动力法是力法的另一种形式,它适用于分析结构在动力作用下的响应。
动力法通过求解结构的动力方程,计算结构的振动、位移和应力等。
常见的动力法有等效荷载法、阻尼振动法和模态分析法等。
等效荷载法是一种常用的动力法,它将随机振动转化为与之等效的静力荷载,然后用静力法来计算结构的受力情况。
阻尼振动法是一种考虑结构阻尼特性的动力法,它在动力方程中引入阻尼项,计算结构的振动衰减情况。
结构力学第6章力法力法(也叫统一力法)是一种简化结构分析和计算的方法,通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的复杂性。
力法在结构力学中有很广泛的应用,特别是在求解复杂结构的内力分布和变形方程时非常有用。
力法的基本原理是将结构的内力分布看作是由一系列基本力的叠加形成的。
这些基本力包括拉力、压力、剪力和弯矩等。
通过对这些基本力的作用点和大小进行合理的选取,可以将结构的内力分布近似为一个简单的形式,从而方便地进行计算。
力法的具体步骤如下:1.选择合适的基本力系统:根据结构的受力情况,选择适合的基本力系统,一般包括平行力、共点力、算术力和等效力等。
2.确定基本力的作用点和大小:通过结构的受力平衡条件和变形方程,确定基本力的作用点和大小,一般可以通过静力平衡方程或者变形方程进行计算。
3.将基本力作用在结构上:将确定的基本力作用在结构上,这些基本力可以是集中力也可以是分布力,根据具体情况进行选择。
4.分析结构的受力和变形:应用力学的基本原理和公式,分析结构的受力和变形情况,求解结构的内力和位移等参数。
5.进行计算和分析:根据步骤4中得到的结果,进行计算和分析,比较计算结果与实际情况的差异,进行调整和修正。
力法的优点是计算简单、直观,尤其适用于计算结构的内力和变形情况;缺点是只能得到局部的内力情况,无法得到整体的受力情况。
在结构力学中,力法的应用非常广泛。
例如,可以利用力法求解悬臂梁的内力分布和变形情况,以及桁架和刚架的受力情况等。
同时,力法还可以用于计算复杂结构的等效荷载,简化结构的计算过程。
总结起来,力法是一种通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的方法。
通过选择合适的基本力系统,确定基本力的作用点和大小,将基本力作用在结构上,进行受力和变形分析,最终得到结构的内力和变形情况。
力法在结构力学中有很广泛的应用,对于求解复杂结构的内力分布和变形方程非常有用。
力法1概述1.1超静定结构我们学习了各种静定结构的计算方法,它们的支座反力和内力都可以由静力平衡条件全部唯一确定下来。
一个结构,如果它的支座反力和各截面的内力都可以用静力平衡条件唯一的确定,我们就称为静定结构,图1a所示简支梁就是一个静定结构。
一个结构,如果它的支座反力和各截面的内力不能完全由静力平衡条件唯一的确定,我们就称之为超静定结构,图1b所示的连续梁就是一个超静定结构。
(a)(b)图1从几何构造来看,静定结构是没有多余约束的几何不变体系,超静定结构是有多余约束的几何不变体系。
例如图1a所示的简支梁,如果我们去掉一个支杆B,它就变成了几何可变体系。
图1b所示的连续梁,如果我们去掉支杆C,体系仍然是几何不变的,所以,支杆C是多余约束。
而多余约束上产生的反力称为多余力。
可见,超静定结构的基本特点是:内力是超静定的,约束是有多余的。
1.2超静定次数超静定次数就是超静定结构中所具有的多余约束的数目,或者说多余未知力的数目。
在超静定结构中,由于具有多余约束力,使平衡方程的数目少于未知力的数目,所以仅靠平衡条件无法确定全部反力和内力,还必须考虑位移条件以建立补充方程。
一个超静定结构有多少个多余约束,相应的便有多少个多余未知力,也就需要建立同样数目的补充方程,才能求解。
因此,用力法计算超静定结构时,首先必须确定多余约束的数目。
确定超静定次数的方法,就是把给定的超静定结构通过去掉多余约束变为静定结构,所去掉的多余约束的数目就是超静定次数。
如去掉n个约束,就称原结构是n次超静定。
通过前面几何组成分析的学习我们知道:(1)去掉一个链杆支座或切断一根链杆的轴向联系,相当于去掉一个约束。
(2)去掉一个铰支座或去掉一个单铰,相当于去掉两个约束。
(3)去掉一个固定支座或切断一根受弯杆,相当于去掉三个约束。
(4)一个固定支座改为固定铰支座或将一个刚性联结改为单铰,相当于去掉一个约束。
图2 (a)所示连续梁,去掉右边两根链杆支座后,即变为静定结构。
结构力学——力法对称性的利用力法对称性是结构力学中常用的一种方法,可以有效简化结构分析的复杂性。
它基于结构的几何和物理特性,通过利用结构的对称性来减少需要考虑的自由度,从而简化结构力学问题。
力法对称性的利用可以在两个方面发挥作用:减少计算自由度和简化载荷分析。
首先,力法对称性可以减少计算自由度。
结构力学问题的求解通常需要计算结构的内力和变形。
结构的自由度越多,计算所需的计算量就越大,求解也就越复杂。
通过利用结构的对称性,我们可以将结构分为若干对称部分,仅对其中一个部分进行力学分析,然后通过对称性来得到其他部分的结果。
这样可以大大减少计算自由度,简化结构力学问题的求解过程。
具体来说,力法对称性可以应用于不同的结构部分,如杆件、板和壳体等。
例如,在杆件问题中,结构的对称性可以体现为几何对称性,如轴对称、平面对称等。
通过建立合适的坐标系和选择适当的参考点,可以简化结构的力学分析。
力法对称性还可以应用于简化载荷分析。
结构在受力时,通常存在很多不同的载荷情况,如重力、集中力、分布力等。
利用力法对称性可以简化对这些载荷的分析。
通过找到适当的对称轴或对称面,可以使得一些载荷分布具有对称性,从而简化分析。
通过减少载荷分布的复杂程度,可以更方便地计算结构的内力和变形。
需要注意的是,力法对称性在实际应用中需要满足一定的条件。
首先,结构必须存在对称性,即具有一定的几何和物理特性。
其次,结构的对称性必须与载荷情况相匹配。
如果对称性不满足这些条件,力法对称性可能无法有效地简化结构力学问题。
总之,力法对称性在结构力学中的应用可以大大简化力学分析的困难。
通过减少计算自由度和简化载荷分析,可以提高结构力学问题的求解效率。
利用力法对称性,结构工程师可以更加方便地进行结构设计和分析,提高工作效率和设计质量。