人教版初一数学作业
- 格式:doc
- 大小:28.00 KB
- 文档页数:8
人教版练习册初一答案人教版初一数学练习册答案【练习一:有理数的加减法】1. 计算下列各题:- 3 + (-2) = 1- (-4) + 5 = 1- 7 + (-9) = -2- (-6) + (-8) = -142. 解决实际问题:- 如果小明向东走了3米,然后又向西走了5米,他现在的位置是向东走了2米。
【练习二:有理数的乘除法】1. 计算下列各题:- (-3) × 2 = -6- 4 × (-5) = -20- (-2) ÷ 2 = -1- 6 ÷ (-3) = -22. 解决实际问题:- 如果一个工厂每天生产40个零件,那么5天可以生产多少个零件?答案是:40 × 5 = 200个零件。
【练习三:绝对值】1. 计算下列各题的绝对值:- |-5| = 5- |7| = 7- |-12| = 12- |0| = 02. 解决实际问题:- 如果一个点距离原点的距离是5,那么这个点的坐标可以是(5,0)或(-5,0)。
【练习四:有理数的混合运算】1. 计算下列各题:- (-3) × (-2) + 4 ÷ (-2) = 6 - 2 = 4- 7 - 3 × 2 + (-1) = 7 - 6 - 1 = 02. 解决实际问题:- 如果一个班级有40名学生,每名学生需要支付10元的书本费,那么总共需要支付多少元?答案是:40 × 10 = 400元。
结束语:通过以上练习,同学们应该已经掌握了有理数的加减乘除以及混合运算的基本概念和计算方法。
希望同学们能够继续努力,不断提高自己的数学能力。
如果有任何问题,欢迎随时向老师提问。
参考答案第一章 有理数1.1正数和负数(1)1.(1)-60(2)逆时针旋转45ʎ2.D3.6,+212,+8.5;-21,-30%4.D5.B,C,D地区农业总产值增加了,A,E地区农业总产值减少了,F地区农业总产值没有变化6.A(7,0),C(15,-3),D(0,-12)1.1正数和负数(2)1.23,+14,0.78;-178,-0.75,-12.200,0,-503.-0.5秒4.上,95.星期一低于警戒水位3c m,星期二恰为警戒水位,星期四超过警戒水位12c m6.(1)负数(2)正数,A1.2有理数1.2.1有理数1.0,负整数,负分数2.有理3.略4.(1)+2,+3(答案不唯一)(2)-2,-3(答案不唯一)(3)0(4)-13(答案不唯一)5.整数:{4,0,-6,208,-37}分数:-23,3.5,97,-20%,-4.6负分数:-23,-20%,-4.6有理数:4,-23,3.5,0,97,-6,-20%,208,-4.6,-376.答案不唯一.如-4,-3,2,1,12,0.6数学作业本七年级上义务教育教材1.2.2 数轴1.(1)负,正 (2)左,42.D3.略4.-3,-1,1,2.5和45.点A 表示的数是-2,点B 表示的数是+1,点C 表示的数是+56.(1)(2)C 地位于A 地西面,且两地相距4k m1.2.3 相反数1.左右两侧;-4,42.(1)-6 (2)0.5 (3)-34 (4)163.(1)C (2)A4.(1)23 (2)-3 (3)9.6 (4)-1945.③④6.(1)略 (2)距离相等7.略1.2.4 绝对值1.(1)65,3.78,0,-4.9 (2)ʃ2,2 2.(1)<,> (2)>,< 3.C 4.(1)数轴表示略,-1<0<134<|-2|<3.2 (2)-2,-1,0,1,25.(1)20 (2)16 (3)169(4)3 6.(1)-67>-78 (2)-+12<-(-1)1.3 有理数的加减法1.3.1 有理数的加法(1)1.(1)0 (2)-30 (3)10 (4)-1 2.(1)+,-或-,+ (2)- (3)+ (4)-,-3.(1)-6 (2)-1 (3)-37 (4)-123244.(-36)+(+160)=124(元)5.(1)(-7)+(-1)等 (2)0+(-8) (3)(-9)+1等 6.-1或91.3.1 有理数的加法(2)1.加法交换律,加法结合律 2.C 3.(1)-3 (2)2 (3)-12(4)-84.550+(-260)+150=440(元) 5.(1)3.84 (2)-34考答参案6.(1)16,120,142 (2)14082420*7.原式=(-2020-2019+4040-1)+-56-23-12=-21.3.2 有理数的减法(1)1.(1)3,3 (2)+,-8 (3)10,20 (4)2.4,-3.2 2.-6,8,-73.(1)-3 (2)-34 (3)6.79 (4)-91314 4.A 5.(1)3 (2)0.1 6.矿井下A 处最高,B 处最低,A 处与B 处相差92.2m*7.(1)7 (2)-61.3.2 有理数的减法(2)1.-10+2-3 2.(1)3 (2)4 (3)2 3.(1)0 (2)-11.2 4.(+11)+(+7)+(-21)+(+3)=(11+7+3)+(-21)=0,该班这个月收支平衡,没有结余5.(1)-9 (2)16.能.例如:(+1)+(-2)+(+3)+(-4)+(+5)+(-6)+(+7)+(+8)+(-9)+(-10)=1-2+3-4+5-6+7+8-9-10=-7(答案不唯一)*7.表示数a 的点与表示数b 的点,表示数b 的点与表示数-3的点1.4 有理数的乘除法1.4.1 有理数的乘法(1)1.(1)< (2)> (3)= (4)< 2.C 3.C 4.(1)2020 (2)-5 (3)-0.35 (4)05.(1)-23 (2)23(3)-7 (4)16.如4与-2,4+(-2)=2,4ˑ(-2)=-8.归纳:这两个数一个为正数,一个为负数,且正数的绝对值大于负数的绝对值1.4.1 有理数的乘法(2)1.(1)> (2)< (3)=2.(1)乘法交换律 (2)乘法分配律 (3)乘法交换律与乘法结合律3.(1)1200 (2)-180 (3)-10 4.(1)173 (2)-1 (3)-79125.(1)12.5 (2)-136.0义务教育教材数学作业本七年级上1.4.2有理数的除法(1)1.(1)< (2)< (3)> (4)=2.(1)5(2)-9(3)-15(4)343.(1)-12(2)-30(3)176(4)14.(1)-3(2)43(3)-13(4)235.(1)12(2)-1506.(1)抽取-3,-5,最大的乘积是15(2)抽取-5,+3,最小的商是-531.4.2有理数的除法(2)1.C2.标下划线略(1)-49(2)-723.(1)-17(2)-104.(1)-539(2)0.545.(1)-7(2)-126.6.5小时*7.①3ˑ(10+4-6);②(10-4)ˑ3-(-6);③4-(-6)ː3ˑ101.5有理数的乘方1.5.1乘方(1)1.(1)4,5(2)-6,3,-2162.D3.(1)18(2)-125(3)0.0001(4)2594.(1)32768(2)-7776(3)2541.1681(4)731.16165.14平方米,18平方米,128平方米6.(1)3的正整数次幂的个位数字只有3,9,7,1四种情形(2)11.5.1乘方(2)1.A2.3或-3,-23.正确答案为(1)-45(2)-2344.(1)4(2)-9(3)-607(4)15495.-436.a m㊃a n=a m+n7.461.5.2科学记数法1.5.3近似数1.(1)6.371ˑ107(2)8.64ˑ104(3)2.8ˑ1072.(1)200000(2)7080000(3)-20040000考答参案3.(1)3.14 (2)0.003 (3)0.017 (4)4104.(1)十 (2)85.5.6ˑ1056.70ˑ60ˑ24ˑ365=3.6792ˑ107(次),3.6792ˑ107<1亿复习题1.(1)-2.5 (2)23,23,-32(3)3ˑ1082.正整数:{4}负整数:{-100}正有理数:{4,0.01}负有理数:{-3.5,-314,-100,-2.15}3.数轴略,-3<0<112<|-2.5|<-(-4)4.(1)-75(2)-16 (3)-20 (4)5185.(-1)2,|-1|,-1-1,-(-1)6.百分,37.495,37.505 7.C 8.(1)25 (2)-609.(1)-712(2)当b 为0时,0做除数没有意义,屏幕上显示: 该操作无法进行 10.当a =1时,值为3;当a =-1时,值为-1 11.猜想略,3025第二章 整式的加减2.1 整式(1)1.4a 2.πr 2-a 23.(1)24x y (2)-13a (3)0.85m 元 4.(1)12a -b 2 (2)(40-2x )页 5.(1)10m +n (2)(500+8a -6b )米6.答案不唯一.例如:(1)买5支单价为a 元/支的铅笔的费用 (2)长为5㊁宽为a 的长方形的面积2.1 整式(2)1.(1)②③④,①⑤⑥ (2)3,-3,-12.第一行:-2;5;-116π.第二行:5;8;4;2;4.第三行:3x 2,-2;4a 4,-4a 2b 2,b 4义务教育教材数学作业本七年级上3.D4.05.(1)2a-400,12a+245(2)1539人6.(1)4039x2020(2)40804002.2整式的加减(1)1.(1)0(2)32a2(3)-1.5x32.C3.B4.(1)-2x2(2)-12a(3)0(4)-x2y5.(1)2a2-8a+5(2)26.3πa2.2整式的加减(2)1.(1)-x(2)92a2.A3.(1)2a2+3a b+b2(2)404.(1)23a b,4(2)x-2,-2.55.-5x y,-136.增加了(0.5a+2)吨2.2整式的加减(3)1.(1)a-b(2)2-6x(3)-x2+3x(4)-6x2+32.(1)错误,-3a-3b(2)错误,3x+24(3)正确(4)错误,2b-3a+13.B4.(1)2a-2(2)2(3)7(4)8x-55.(1)-2a+5b(2)-152x-46.(1)10(a+2)+a=11a+20(2)由题意可得,新的两位数是10a+a+2=11a+2,它与原两位数的和是11a+20+11a+2=22(a+1),故新的两位数与原两位数的和能被22整除2.2整式的加减(4)1.(1)+ (2)-2.4a+63.(1)2y(2)-12a+4b(3)4a2-b24.0.568ˑ60%a+0.288ˑ40%a-0.538a=0.3408a+0.1152a-0.538a= -0.082a<0,能节省电费5.94x+94y6.(120000+2000a)元*7.602.2整式的加减(5)1.(1)80%x(2)-y2.5x-6考答参案3.(1)4x -3,-1 (2)12a 2b -6a b 2,-6 4.12y +5,2y -6,52y -15.(1)(4x 2+14x )米(2)当x =7时,2(x 2+5x +x 2+4x )=4x 2+18x =196+126=322(米)6.20复习题1.(1)B (2)C (3)D 2.(1)12x 3y +3x 2y -7(答案不唯一) (2)2a +4.5b (3)-183.(1)-2x 2y -6 (2)-10x 2y (3)2x -6 4.-x +212,4125.(1)15a -15 (2)3285台6.-7a 2+397.13,16,3n +1*8.设原来两位数的十位数字为a ,个位数字为b ,则原来两位数为10a +b ,交换后新的两位数为10b +a .因为(10a +b )-(10b +a )=10a +b -10b -a =9a -9b=9(a -b ),所以这个结果一定能被9整除第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程(1)1.C 2.A 3.2(x +x +25)=3104.(1)2a +1=6 (2)12x +3=5 (3)-13a =10 (4)50%x -6=-35.设这种药品的原价为a 元,则(1-10%)a =14.56.(1)乐乐一共能写出6个等式,分别是3x +2=8,12x -3=8,x 2+2=8,3x +2=12x -3,3x +2=x 2+2,12x -3=x 2+2 (2)3个3.1.1 一元一次方程(2)1.2y =4(答案不唯一) 2.(1)2,解 (2)② 3.(1)不是 (2)是4.填表略,x =8 5.设经过x 小时后,水池中还剩下11吨水,则20-1.5x =116.(1)2(x +6)=5x (2)x =43.1.2 等式的性质(1)1.(1)8 (2)-1 2.(1)3,减x (2)2,乘以-2 3.B 4.C数学作业本七年级上义务教育教材5.C6.加2y ,x 有可能是0*7.不能从等式(2a -1)x =3a +5中得到x =3a +52a -1,理由:2a -1的值可能为0;能从x =3a +52a -1中得到(2a -1)x =3a +5,理由:在等式两边同时乘以(2a -1)3.1.2 等式的性质(2)1.(1)-1 (2)-3 (3)-2 2.C 3.加6,除以3,133 4.①③④5.(1)x =6 (2)x =-12 (3)x =2 (4)x =126.设这个班有x 名学生,则4x +35=215,解得x =453.2 解一元一次方程(一) 合并同类项与移项(1)1.(1)-2x =8 (2)5y =5,12.1.5x m 2,1.8x m 2,第一天修剪的面积+第二天修剪的面积+第三天修剪的面积=50m 2,x +1.5x +1.8x =503.2x +2ˑ1.2x =6604.(1)x =5 (2)t =2 (3)x =-8 (4)y =105.设硝酸钾㊁硫黄㊁木炭的质量分别是15x k g ,2x k g ,3x k g,则15x +2x +3x =400,解得x =20.因此硝酸钾需要300k g ,硫黄需要40k g ,木炭需要60k g6.设乒乓球拍的单价为x 元,则x +1.5x +4x =130,解得x =20.因此篮球㊁羽毛球拍和乒乓球拍的单价分别是80元㊁30元㊁20元3.2 解一元一次方程(一) 合并同类项与移项(2)1.C 2.20 3.32,-64,128 4.(1)x =-5 (2)x =-1725.设3月份的利润是x 万元,则x +2x +3x =42,解得x =76.(1)设十字框中间的那个数为x ,则x -2+x +x +2+x -12+x +12=215,解得x =43.这五个数分别是41,43,45,31,55(2)设十字框中间的那个数为x ,则x -2+x +x +2+x -12+x +12=305,解得x =61,而61位于第一列,故这五个数的和不能为3053.2 解一元一次方程(一) 合并同类项与移项(3)1.C 2.D 3.4x ,3x +2,4x =3x +24.(1)y =-2 (2)x =1 (3)x =2 (4)x =-35.设有x 个小朋友,则5x +8=6x ,解得x =8.因此有8个小朋友,48颗巧克力考答参案6.如果每人做6个,那么比计划多8个.这个手工小组有10名同学3.2 解一元一次方程(一) 合并同类项与移项(4)1.A 2.D 3.3x =x +5.4,解得x =2.74.(1)5x -8=2x +4,解得x =4 (2)13y +9=2y -6,解得y =95.设甲所带的钱是7x 元,乙所带的钱是6x 元,则7x -50=6x -30,解得x =20.甲所带的钱是140元,乙所带的钱是120元6.设乙书架上原来有x 本书,则52x -90=x +90,解得x =120.甲书架上原来有300本,乙书架上原来有120本*7.(a -c )x =d -b ,因为a ʂc ,即a -c ʂ0,所以x =d -ba -c3.3 解一元一次方程(二) 去括号与去分母(1)1.A 2.去括号,移项,合并同类项,系数化为13.x =85 4.(1)x =-52(2)x =0 (3)y =-12 (4)x =6.55.设甲商品的进货单价是x 元,则4(x +1)+3[2(3-x )-1]=17,解得x =1,所以甲商品的零售单价为2元,乙商品的零售单价为3元3.3 解一元一次方程(二) 去括号与去分母(2)1.D 2.(1)32 (2)93.设抽调的人数为x 人,则32+x =2(28-x ),解得x =84.(1)x =43 (2)x =14(3)y =65.设乙每小时走x 千米,则3(x +1)+3x =21,解得x =3,即甲每小时走4千米,乙每小时走3千米6.设船从开始掉头航行到追上救生艇的时间为x 秒,则(5+3)x =(5-3)ˑ10ˑ60+3ˑ(10ˑ60+x ),解得x =6003.3 解一元一次方程(二) 去括号与去分母(3)1.12,去分母,等式的性质2 2.-2 3.B 4.(1)x =-7 (2)x =-355.30千克6.设5月1日接待游客x 万人次,则x +53(x +x -6)+x -6=176,解得x =36数学作业本七年级上义务教育教材3.3 解一元一次方程(二) 去括号与去分母(4)1.D 2.133.略4.(1)x =-9 (2)x =05.(1)x =-2 (2)y =166.设火车的长度为x 米,则1000+x 60=1000-x 40,解得x =200.1000+20060=20,所以火车的长度为200米,过桥的速度为20米/秒3.4 实际问题与一元一次方程(1)1.30-x ,150x =100(30-x ) 2.200x =2ˑ50(60-x )3.D4.设挖土的有x 人,则5x =3(48-x ),解得x =18.安排18人挖土,30人运土5.设x 名工人生产桌面,则30(55-x )=4ˑ20x ,解得x =15.分配15名工人生产桌面,40名工人生产桌脚6.设第二天安排x 人制作小花,则18(25+x )=16(25+50-x )ˑ2,解得x =39.第二天安排39人制作小花,11人制作花篮3.4 实际问题与一元一次方程(2)1.B 2.B 3.90 4.5天5.设先整理的人员有x 人,则x 60+2(x +15)60=1,解得x =106.设经过x 小时后,其中一支的长度为另一支的一半,则21-16x=1-18x ,解得x =4.83.4 实际问题与一元一次方程(3)1.450,50x 2.130 3.30千克4.设进价为x 元,则x (1+45%)ˑ80%-x =270,解得x =1687.55.盈利8元6.设顾客在元旦当天累计购物x 元,则300+0.8(x -300)=200+0.85(x -200),解得x =6003.4 实际问题与一元一次方程(4)1.20分,8 2.3x +(8-x -1)=17 3.C4.(1)设成人票售出x 张,则8x +5(1000-x )=6920,解得x =640(2)设成人票售出x 张,则8x +5(1000-x )=7290,解得x =22903.因为票数考答参案不可能为分数,所以所得票款不可能是7290元5.设(1)班有x 人,因为(1)班的人数大于10人,但不到40人,所以(2)班人数在41~80人范围内,则10x +9(85-x )=85ˑ8+120,解得x =35.(1)班有35人,(2)班有50人6.(1)负一场得1分 (2)设胜m 场,总积分=3m +4-m =4+2m(3)设一个队胜了x 场,则3x =2(4-x ),解得x =85.因为x 的值是整数,所以x =85不合实际,由此判定该队的胜场总积分不能等于它的负场总积分的2倍3.4 实际问题与一元一次方程(5)1.14,10+2(x -3) 2.100+0.8ˑ10x =10x 3.设该中学需要x 件仪器时两种方案的费用相同,则10x =5x +120,解得x =244.(1)60+0.2(x -200),0.25x(2)列方程:60+0.2(x -200)=0.25x ,解得x =400.所以当x =400时,两处收费相等(3)当300<x <350时,去图书馆复印更省钱5.设第一次寄物品x 千克.当x ɤ10时,则3(24-x )+5=50,解得x =9.两次所寄的物品的质量分别为9千克与15千克;当x >10时,则2x -20+3(24-x )+5=50,解得x =7(舍去)复习题1.(1)A (2)D2.(1)103a (2)1 (3)33.(1)x =-43 (2)y =-17 (3)t =-516(4)x =1 4.85.766.数学竞赛有46名学生获奖,演讲比赛有30名学生获奖7.设‘汉语成语大词典“的标价为x 元,则50%x +60%(80-x )=45,解得x =30,80-x =50.‘汉语成语大词典“的标价为30元,‘中华上下五千年“的标价为50元8.(1)x +1,x +7,x +8(2)x +x +1+x +7+x +8=416,解得x =100(3)列方程:x +x +1+x +7+x +8=3096,解得x =770.因为770是表中第110行的最后一个数,所以框住的4个数之和不可能为3096义务教育教材数学作业本七年级上第四章 几何图形初步4.1几何图形4.1.1立体图形与平面图形(1)1.形状,大小2.①②,③④3.① 棱柱 ② 圆柱 ③ 球 ④ 圆锥 ⑤ 棱锥4.圆㊁三角形㊁正方形等5.④,⑤,①②⑥,⑦,③6.略4.1.1立体图形与平面图形(2)1.圆,长方形,长方形2.球或正方体(写出一种即可)3.B4.左图是从正面或左面看立体图形得到的,右图是从上面看立体图形得到的5.D6.丁,甲,丙,乙4.1.1立体图形与平面图形(3)1.① 五棱柱 ② 圆柱 ③ 圆锥2.B3.B4.B5.6.4.1.2点㊁线㊁面㊁体1.①②③,④⑤⑥2.面,线,点3.① 乙,② 甲,③ 丙4.点动成线,线动成面,面动成体5.9,16,96.4.2直线㊁射线㊁线段(1)1.2,两点确定一条直线2.C考答参案3.4.(1)A ,C ;B ,D (2)b ;a (3)a ;b5.5,2,射线A D ㊁射线A B ,1,直线B D (A B ,A D 均可)6.(1) (2) (3)(4)4.2 直线㊁射线㊁线段(2)1.B 2.略 3.C D =1 4.①②④ 5.略6.①当点C 在线段A B 上时,AM =3c m ;②当点C 在线段A B 的延长线上时,AM =7c m4.2 直线㊁射线㊁线段(3)1.D 2.①A ②A ③A ④B 3.D 4.6c m 5.9c m6.(1)(2)因为A D =A C =8,所以A D =8;同理,B E =B C =6.因此D E =A D +B E -A B =8+6-12=24.3 角4.3.1 角1.公共端点,射线,绕着它的端点旋转2.(1)60,160,10,15,36 (2)>3.B4.以点B 为顶点的角有3个,分别为øA B D ,øA B C ,øD B C ;可用一个字母表示的角有2个,分别为øA ,øC5.B6.略义务教育教材数学作业本七年级上4.3.2角的比较与运算(1)1.A2.(1)A O D,C O D,A O B,B O C(2)63.D4.105ʎ5.图略,øA O C=75ʎ或15ʎ6.60ʎ4.3.2角的比较与运算(2)1.(1)12ʎ31'48ᵡ(2)56.42ʎ2.363.(1)69ʎ38'37ᵡ(2)40ʎ35'(3)71ʎ39'(4)21ʎ32'36ᵡ4.66ʎ30'5.22.56.由折叠得,F G平分øB F E,所以øG F E=12øB F E.因为F H平分øE F C,所以øE F H=12øE F C.因为øB F C是平角,所以øB F E+øE F C=180ʎ.所以øG F E+øE F H=90ʎ.所以øG F H=90ʎ4.3.3余角和补角(1)1.36ʎ,126ʎ2.(1)等角的补角相等(2)同角的余角相等3.øA C E,øB C F;øA C F,øB C E4.(1)A (2)B5.65ʎ6.48ʎ4.3.3余角和补角(2)1.略2.北偏西15ʎ,南偏东55ʎ3.B4.略5.邮局,商店,学校6.略4.4课题学习设计制作长方体形状的包装纸盒略复习题1.略2.51ʎ30'3.4.44.A5.C6.A7.øB C D,øA C D8.6c m 9.28ʎ10.1条㊁4条或6条11.(1)因为O F平分øA O C,所以øC O F=12øA O C=12ˑ30ʎ=15ʎ.因为øB O C=øA O B-øA O C=90ʎ-30ʎ=60ʎ,O E平分øB O C,所以øE O C=12øB O C=30ʎ.所以øE O F=øC O F+øE O C=45ʎ(2)因为O F平分øA O C,所以øC O F=12øA O C.同理øE O C=12øB O C,考答参案所以øE O F =øC O F +øE O C =12øA O C +12øB O C =12øA O B =12α(3)23α总复习题1.ʃ32.按原价的九折出售或降价10%3.2,两点确定一条直线4.23 5.ø1>ø2>ø3 6.1.5ˑ1087.C 8.D 9.B 10.(1)1823(2)-10 (3)-9 (4)-8311.(1)x =12(2)x =212.6x 2-92x -1,3213.小李的图画得不对,正确的画法略14.M P +MN =M P +M Q +Q N =M P +M Q +P Q =M Q +M Q =2M Q =2ˑ6=12(c m )15.(1)øA O C =øB O D ,同角的补角相等 (2)50ʎ16.(1)ȵ |a |=|c |,且由图知a ,c 异号, ʑa +c =0.又ȵ |a +c |+|b |=2, ʑ |b |=2. ȵ b 为负数, ʑ b =-2(2)a >-b >b >c17.设每台投影仪的进价为x 元,则(x +35%x )ˑ0.9-50-x =208,解得x =120018.(1)设旅游团中有x 名成人,则60x +60ˑ0.5(12-x )=600,解得x =8,12-x =4.旅游团中有8名成人,4名未成年人(2)按方案①购买门票,所需费用为60ˑ0.6ˑ12=432(元);按方案②购买门票,所需费用为60ˑ0.5ˑ16=480(元).因为432元<480元,所以小李采用方案①买票更省钱19.(1)øA O C =100ʎ或60ʎ (2)øM O N =40ʎ20.(1)m =25 (2)n =4或n =-4 (3)两个方程的解分别为-2和221.7或122.(1)义务教育教材数学作业本七年级上(2)在圆内画直线条数把圆最多分成的份数探索规律121+1241+1+2371+1+2+34111+1+2+3+45161+1+2+3+4+56221+1+2+3+4+5+6(3)n2+n+22(或1+1+2+3+ +n)期末综合练习1.C2.B3.C4.D5.A6.C7.B8.D9.C 10.C11.-1312.x+1=0(答案不唯一)13.18ʎ55'14.两点之间,线段最短15.0.716.-2017.-1或-518.3.5c m 19.如-p+2020,-5352p等(答案不唯一)20.-101021.(1)9(2)322.原式=x2-x+1,其中x=-1,求值为323.(1)略(2)50ʎ24.(1)360元(2)若在甲㊁乙商场购买,则付款额为450元;若在丙商场购买,则付款额为435元,故李先生选择丙商场购买最实惠25.(1)20,1.5t+9(2)当0ɤt<6时,t=3.6s;当6<tɤ18时,t=907s(3)3s,4.2s,12s,967s。
第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。
第一章 有理数(寒假作业)一、单选题1.为了驰援上海人民抗击新冠肺炎疫情,柳州多家爱心企业仅用半天时间共筹集到了220000包柳州螺蛳粉,通过专列统一运往上海,用科学记数法将数据220000表示为( ) A .0.22×106B .2.2×106C .22×104D .2.2×1052.利用分配律计算(−213)×3时,正确的方案可以是( ) A .(−2+13)×3B .−(2+13)×3C .(2−13)×3D .(−3−23)×33.在解决数学实际问题时,常常用到数形结合思想,比如:|x +1|的几何意义是数轴上表示数x 的点与表示数−1的点的距离,|x −2|的几何意义是数轴上表示数x 的点与表示数2的点的距离.当|x +1|+|x −2|取得最小值时,x 的取值范围是( ) A .x ≤−1B .x ≤−1或x ≥2C .−1≤x ≤2D .x ≥24.计算−25−(−35)的结果为( ) A .−1B .1C .−15D .155.2022的相反数是( ) A .2022B .−2022C .12022D .−120226.下列说法中,正确的是( )A .2与−2互为倒数B .2与12互为相反数 C .0的相反数是0D .2的绝对值是−27.在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了( )A .1335天B .516天C .435天D .54天8.若有理数a 、b 满足等式│b -a │-│a +b │=2b ,则有理数数a 、b 在数轴上的位置可能是( )A.B.C.D.9.对于有理数x,y,若xy <0,则|xy|xy+y|y|+|x|x的值是().A.−3B.−1C.1D.310.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为−5,b,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.则数轴上点B所对应的数b为()A.3B.−1C.−2D.−311.北京与柏林的时差为7小时,例如,北京时间14:00,同一时刻的柏林时间是7:00.小丽和小红分别在北京和柏林,她们相约在各自当地时间8:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.9:30B.11:30C.13:30D.15:3012.如图,A,B,C,D是数轴上四个点,A点表示数为10,E点表示的数为10100,AB= BC=CD=DE,则数1099所对应的点在线段()上.A.AB B.BC C.CD D.DE二、多选题13.已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断,错误的是()A.a<c<b B.﹣a<b C.a+b>0D.c﹣a>0 14.下列说法正确的是()A.14174万这个数用科学记数法表示(精确到百万位)为1.42×108B.88.9万亿用科学记数法表示为8.89×1013C.数据1.002×1011可以表示为10020亿D.数据0.50精确到百分位15.下列说法中,正确的是()A.若a≠b,则a2≠b2B.若a>|b|,则a>bC.若|a|=|b|,则a=b或a=-b D.若|a|>|b|,则a>b16.a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()A.|a+b|=|a|﹣|b|B.﹣b<a<﹣a<b C.a+b>0D.|﹣b|<|﹣a| 17.有理数a,b,c在数轴上对应的点如图所示,则下列各式中错误的是()A.ab>bc B.|a−b|=a−b C.−a<−b<c D.−a−c<b−c三、填空题18.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的算式是(+2)+(−2),根据这种表示法,可推算出图2所表示的算式是_______.19.若a<0,且|a|=4,则a+1=________.20.一个数由四舍五入精确到千分位后得到的数是1.270,那么这个数最小可以取________.21.定义:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,例如:[2.3]=2,(2.3)=3,[−2.3]=−3,(−2.3)=−2.则[1.7]+(−1.7)=___________.22.数轴上的三个点,若其中一个点与其它两个点的距离满足2倍关系,则称该点是其它两个点的“友好点”,这三点满足“友好关系”.已知点A、B表示的数分别为﹣2、1,点C为数轴上一动点.(1)当点C在线段AB上,点A是B、C两点的“友好点”时,点C表示的数为_______;(2)若点C从点B出发,沿BA方向运动到点M,在运动过程中有4个时刻使A、B、C 三点满足“友好关系”,设点M 表示的数为m ,则m 的范围是_______. 23.若a ,b 互为相反数,则(a +b ﹣1)2016=_____.四、解答题24.计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1111×1111=_________. (1)你发现了什么?(2)你能直接写出111111111×111111111=的结果吗?25.由乘方的定义可知:a n =a ×a ×a ×⋅⋅⋅×a (n 个a 相乘).观察下列算式回答问题:22×32=(2×2)×(3×3)=4×9=36=(2×3)2 23×33=(2×2×2)×(3×3×3)=8×27=216=(2×3)325×35=(2×2×2×2×2)×(3×3×3×3×3)=32×243=7776=(2×3)5 (1)52×62=_________; (2)m 2×n 2=_________; (3)计算:(−2)2021×(−12)2022.26.2021年国庆档电影《长津湖》以抗美援朝为背景,讲述了中国人民志愿军在极端严酷惨烈的环境下,凭借钢铁意志最终取得了长津湖战役的胜利,该电影也再次扻起了全民爱国热潮,国安民才安,有国才有家!据猫眼数据,截止10月8日,《长津湖》累计票房超过60亿,成为2021年全球票房冠军!该电影9月30日在莱芜的票房为6.7万元,接下来国庆假期7天的票房变化情况如下表(正数表示比前一天增加的票房,负数表示比前一天减少的票房).(1)国庆假期7天中,10月4日的票房收入是______万元; (2)国庆假期7天中,票房收入最多的一天是10月______日;(3)国庆假期7天中,求票房收入最多的一天比最少的一天多多少万元?27.问题探索:如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为 cm . (2)图中点A 所表示的数是 ,点B 所表示的数是 . 实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我就115岁啦! ”请问妙妙现在多少岁了? 28.计算.(1)(1+13)÷(13−1)×38(2)−10+8÷(−2)2−(−4)×(−3) (3)−14−16×[2−(−3)2]29.如图,在数轴上,点A 、B 分别表示数2、﹣2x +6.(1)若x =﹣2,则点A 、B 间的距离是多少? (2)若点B 在点A 的右侧: ① 求x 的取值范围;① 表示数﹣x +4的点应落在( )(填序号) A .点A 左边 B .线段AB 上 C .点B 右边30.如图,一个点从数轴上的原点开始,先向左移动3cm 到达A 点,再向右移动4cm 到达B 点,然后再向右移动72cm 到达C 点,数轴上一个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置; (2)把点C 到点A 的距离记为CA ,则CA =______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ? (4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动.设移动时间为t 秒,试探索:BA −CB 的值是否会随着t 的变化而改变?若变化,请说明理由,若无变化,请直接写出BA −CB 的值.参考答案:1.D2.B3.C4.D5.B6.C7.B8.D9.B10.C11.D12.A13.ABC14.ABD15.BC16.BC17.BCD18.(+3)+(−6)19.-320.1.269521.022.−0.5−5<m≤−3.523.124.(1)n位(各位数字都是1)的数自乘,得到(2n-1)位的数,最中间位的数字为n,它的两边位上的数字依次减1,第一位和最后一位是1(2)1234567898765432125.(1)(5×6)2;(2)(mn)2;(3)−1226.(1)24.2(2)5(3)票房收入最多的一天比最少的一天多14.4万元27.(1)8;(2)14,22;(3)15岁28.(1)−34(2)-20(3)1629.(1)8(2)B30.(1)略(2)152(3)经过32或72秒后点A 到点C 的距离为3cm(4)BA −CB 的值不会随着t 的变化而变化,BA −CB =12。
5.4 平移(一)◆典型例题【例1】如图5-123,△ABC沿射线XY的方向平移一定距离后成为△DEF,找出图中存在的平行且相等的线段和相等的角.图5-123【解析】根据平移的概念找出对应点,再由平移的性质找出对应的线段和角.【答案】点A、B、C的对应点分别为点D、E、F.所以AD∥CF∥BE,AD=CF=BE.∠CAB=∠FDE,∠ACB=∠DFE,∠CBA=∠FED.【例2】用平移的方法说明怎样得出平行四边形的面积公式计算S=ah.【解析】过A、D作平行四边形的高,由图可知将△DEF向右平移到△CDN处,即可将平行四边形转化为矩形.根据图形平移的性质:平移前后图形的形状和大小都不会改变,因而图形的而积不变.本例是平移方法在几何中的典型应用.【答案】如图5-124,过A作AM⊥BC于M,过D作DN⊥BC于N,将△ABM沿BC 方向向右平移a个单位到△CDN的位置,因△CDN和△ABM的形状和大小相同,因而图形的面积不变.所以S平行四边形=S矩形=ah,图5-124【例3】如图5-125,把正方形ABCD的对角线分成n段,以每一段为对角线作正方形.设正方形ABCD的周长为a,求这n个小正方形的周长之和.图5-125【解析】因为小正方形的个数和边长不确定,不能直接求出每个小正方形的周长,注意到小正方形的边与大正方形的边对应平行,因此可运用平移的知识,将每个小正方形的边平移到大正方形ABCD的边上,运用整体思想不难求出所有小正方形周长之和.【答案】如图5-125,将每个小正方形的边按箭头所示的方向平移到大正方形的边上,正好将大正方形的边没有缝隙的覆盖.因此,所有小正方形周长之和为a.◆课前热身1.在平面内,将一个图形沿某个方向___________一定的距离,这样的图形运动称为________平移,平移不改变图形的___________和___________.2.图形的平移是由___________和___________决定的.◆课上作业3.经过平移,___________、___________分别相等,对应点所连的线段___________.4.如图5-126,△ABC平移到△DEF,图中相等的线段有___________,相等的角有___________,平行的线段有___________图5-126 图5-1275.把一个三角形沿东南方向平移了 3 cm,则AB边上的中点P沿______方向平移了_______cm.6.如图5-127,△ABC是由四个形状大小一样的三角形拼成的,则可以看成是△ADF平移得到的小三角形是___________.◆课下作业一、填空题7.如图5-128,△EFG是由△ABC平移得到的,如果∠ABC=90°,AB=4 cm,BC=2 cm,则FG=___________,∠EFG=___________.图5-128.列现象:①火车在笔直的轨道上匀速行驶;②商场电梯上上下下地运动;③滑雪运动员在平坦的雪地上滑行;④健身时做呼啦圈运动;⑤急刹车时车在地面上的运动,其中不属于平移的是___________.9.如图5-129,将字母“V”向右平移___________格会得到字母“W”.图5-129 图5-13010.如图5-130,直角三角形AOB的周长为100,在其内部有五个小直角三角形,则这五个小直角三角形的周长之和为___________.二、选择题11.下列各组图形(图5-131),可以经过平移变换由一个图形得到另一个图形的是( )图5-13112.如图5-132,直角三角形ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( )图5-132A.三角形AB C与三角形DEF重合B.∠DEF=90°C.AC=DFD.EC=CF三、解答题13.观察下面网格小的图形,解答下列问题:图5-132(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形参考答案◆课前热身1.在平面内,将一个图形沿某个方向___________一定的距离,这样的图形运动称为________平移,平移不改变图形的___________和___________.答案:平移;形状;大小2.图形的平移是由___________和___________决定的.答案:方向;距离◆课上作业3.经过平移,___________、___________分别相等,对应点所连的线段___________.答案:对应线段;对应角;平行(或在一条直线上)4.如图5-126,△ABC平移到△DEF,图中相等的线段有___________,相等的角有___________,平行的线段有___________图5-126答案:BA=ED,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠C=∠F;BA∥ED,BC∥EF,AC∥DF5.把一个三角形沿东南方向平移了 3 cm,则AB边上的中点P沿______方向平移了_______cm.答案:东南;36.如图5-127,△ABC是由四个形状大小一样的三角形拼成的,则可以看成是△ADF平移得到的小三角形是___________.图5-127答案:△DBE、△FEC◆课下作业一、填空题7.如图5-128,△EFG是由△ABC平移得到的,如果∠ABC=90°,AB=4 cm,BC=2 cm,则FG=___________,∠EFG=___________.图5-12答案:2cm;90°8.列现象:①火车在笔直的轨道上匀速行驶;②商场电梯上上下下地运动;③滑雪运动员在平坦的雪地上滑行;④健身时做呼啦圈运动;⑤急刹车时车在地面上的运动,其中不属于平移的是___________.答案:④9.如图5-129,将字母“V”向右平移___________格会得到字母“W”.图5-129答案:210.如图5-130,直角三角形AOB的周长为100,在其内部有五个小直角三角形,则这五个小直角三角形的周长之和为___________.图5-130答案:100二、选择题11.下列各组图形(图5-131),可以经过平移变换由一个图形得到另一个图形的是( )图5-131答案:A12.如图5-132,直角三角形ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( )图5-132A.三角形AB C与三角形DEF重合B.∠DEF=90°C.AC=DFD.EC=CF答案:D三、解答题13.观察下面网格小的图形,解答下列问题:图5-132(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形答案:第13题图。
初一数学寒假作业班级:__________________姓名:__________________学做好孩子争做好学生假期生活要规律,早起早睡不挑食;寒假学习计划全,读写记背勤演练;力所能及做家务,安全勤快莫淘气。
珍惜时间自主学,待客访友莫贪玩。
减省节约不攀比,不惹是非结友谊。
勤学善问贵有恒,日久天长铸非凡!猴年顶呱呱 每日轻松做一做(1)完成日期 1月23日 家长检查1. 把下列各数填在相应的集合里:2.5 , 32-, -0.35 , 0 , -(-1) , 2)2(- , 722 , 2- , 2007)1(- ……整数集合: … 负数集合: … 2.判断正误,对的画“√”,错的画“×”:(1)一个数的绝对值一定不是负数; ( ) (2)一个数的相反数一定是负数; ( ) (3)两个数的和一定大于每一个加数; ( )(4)若b a ,ab 与则0>都是正数; ( )(5)一个非零数的绝对值等于它的相反数,那么这个数一定是负数。
( ) 3. 计算题(1)33)6(1726--+- (2))415(8.0)31(92142-÷⎥⎦⎤⎢⎣⎡--⨯-⨯(3) )12116545()36(--⨯- (4)142312-+=-y y4.列方程解应用题:学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?5、下图是用大小一样的正方体搭成的某个几何体的俯视图和主视图, (1)这样的几何体是否唯一?(2)若不唯一,那么搭这样的几何体最少要几块小正方体?最多要几块小正方体?猴年顶呱呱 每日轻松做一做(2)完成日期 1月24日 家长检查1.下列方程是一元一次方程的是( )A 、x+2y=9 B.x 2-3x=1 C.11=x D.x x 3121=- 2.方程13521=--x x ,去分母和去括号后得( ) A 、3x -2x+10=1 B 、3x -2x -10=1 C 、3x -2x -10=6 D 、3x -2x+10=6 3.如果关于x 的方程01231=+m x是一元一次方程,则m 的值为( )A 、31B 、3C 、 -3D 、不存在 4.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为 元;5.在右边的日历中,任意圈出一竖列上相邻的三个数, 设中间一个数为a ,则这三个数之和为:(用含a 的代数式表示) ;6.时钟5点整时,时针与分针之间的夹角是; ;7.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=︒36,则∠AOB 是__ ______;8.先化简,后求值:233(4333)(4)a a a a a +-+--+,其中a =-29.列方程解应用题:小芳把2004年春节压岁钱存入银行,3年后如果不扣除利息税她可从银行取回2180元,银行的年利率是3 %,问她存了多少压岁钱?如果扣除利息税,那么3年后她从银行只能取回多少元?10.列方程解应用题:甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?日 一 二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31B AC D7题猴年顶呱呱 每日轻松做一做(3)完成日期 1月25日 家长检查1.如果关于x 的方程012=+mx是一元一次方程,则m 的值为( )A 、1-B 、1C 、1±D 、不能确定 2.下列说法错误..的是( ) A 、长方体、正方体都是棱柱 B 、六棱柱有六条棱、六个侧面、侧面为长方形C 、三棱柱的侧面是三角形D 、球体的三种视图均为同样大小的图形 3.下列各对数中,数值相等的是 ( )A 、23+与22+B 、32-与3)2(-C 、23-与2)3(-D 、223⨯与2)23(⨯ 4. -42的值是( ) A 、-16 B 、16 C 、8 D 、-85.若|a|=a ,则a 的取值范围是( ) A 、a>0 B 、a<0 C 、a ≤0 D 、a ≥0 6.5.0-的相反数是 ,倒数是 ,绝对值是 ; 7.五棱柱有 个顶点,有 条棱,有 个面; 8.若23b a m与nab 32是同类项,则__________,==n m ; 9.初一(8)班共有学生54人,其中男生有30人,女生24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 (填“大”或“小”) 10.设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数?11.先化简,后求值: ]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m 。
人教版初一数学作业
5年。
在单变量和单变量方程1的整个章节中复习并巩固(改进) 。
已知方程
是关于X的一元和一元方程,那么m的值是()。
a。
+-1 b . 1c-1d . 0或1
2。
众所周知,这是方程的解。
那么关于y的方程的解是()。
a.y = 1
b.y =-1
c.y = 0d。
这个方程没有解
3。
已知。
那么
等于()。
a .
b .
c .
d .
4。
6月1日,XXXX,一列100米长的火车每秒钟在银行存一元钱。
如果年利率为q且保持不变,每年到期的存款本金和利息将自动转换为新的一年期定期存款。
到XXXX 6月1日,甲方不再在银行存款,但将提取存款的全部本金和利息。
那么取回的金额是()元。
45233
a . a(1+q)
b . a(1+q)
c . a(1+q)+a(1+q)+a(1+q)
d . a+AQ
5。
两位数,十位是x,十位是y。
如果前十名和前十名被交换,两个数字和原始数字之间的差是()的倍数,是b.2的倍数,是c.9的倍数。
不确定度
6。
学友书店推出图书销售折扣计划:①一次性购书不超过100元
的,不享受折扣;(2)XXXX年、1-3年、3-5年、5-8年一次性购书超过100元但不超过。
贷款利率分别为5.85%、5.95%、6.03%和6.21%。
50%的贷款利息由政府补贴。
一所大学的新生准备借钱6年。
他估计在6年内他最多可以还清4倍于他儿子在XXXX的年龄,3倍于他儿子在3年内的年龄,那么他现在的年龄是_ _ _ _ _。
我儿子现在的年龄是_ _ _ _ _ _岁。
3。
解决
13。
使用替换法求解以下方程:
(1) (2)
14。
小明在解方程时遇到了困难。
你能根据他的解决过程帮他找出原因吗?并得到原方程组的解。
解方程组
解:从②开始,y = 1-6x3
被代入②,6x+(1-6x) = 1(由于x消去而不能继续)
15.m的值是多少,方程组
的解是相互相反的数?
3。
二元二次方程(群)的相关概念和巩固(改进)1。
选择题
1。
在下面的方程中,属于二元一次方程的是()
a。
xy-7 = 1b。
2x-1 = 3y+1c。
4x-5y = 3x-5y d.
2。
下列方程是二元一次方程是()
a .
b .
c .
d .
3。
要为解建立二元二次方程,不正确的是()
a . 3x-4y = 5
b .
c . x+2y =-3
d .
4。
方程的解是()
a .
b .
c .
d .
5。
已知二元一次方程a .适用于②b .适用于①c .适用于①和②d .适用于①和②
6。
两个方程式
是方程式集合①的解②是方程式集合
的解,下面的陈述是正确的:()
不一定是方程式系统的解,但是方程式系统
的公共解是()
a .
b .
c .
d .
2,以及填空题
2从x+2y = 4,由y表示的x的公式是x = _ _ _ _用x表示的y的公式是y = _ _ _ _ _ _ .
8。
在二元一次方程中,如果有,则
9。
如果有,则值为_ _ _ _ _ _ _ _ .
10。
if 11。
众所周知,
是二元一次方程
,而
的解,则
的值是_ _ _ _ _ _ _ _ _。
_ _ _ _ _ _ _ _ _ _ _。
12。
如果方程ax-2y = 4的解是
3,并且回答问题
,那么A的值是_ _ _ _ _ _ .
13。
作为二元一次方程的解,试着写出一个合格的二元一次方程组。
14。
根据下列陈述,设置适当的未知数,并列出二元一次方程或方程组。
(1) A比B小7倍;
(2)摩托车的速度是卡车的两倍,它们的速度之和是XXXX年龄之和的54倍,并且知道父亲的年龄是小明的3倍并且不到2岁,那么他父亲的年龄是_ _ _ _岁。
10。
a和b都在400米长的环形跑道上跑步。
众所周知,a每秒跑9米,b每秒跑7米。
(1)当他们同时用背走路时,他们在_ _ _ _ _ _秒内第一次相遇;(2)当两个人同时朝同一个方向行走时,他们在_ _ _ _ _ _秒内第一次相遇。
11。
某项工作在4天内完成,B项在6天内完成。
如果甲先工作一天,那么甲和乙合作完成工作。
如果A总共工作了X天,B工作了_
_ _ _ _ _ _ _,由此可以列出等式_ _ _ _ _ _ _ _ .
12。
当会计王结账时,他发现现金少了153.9元。
在审计时,发现支出的小数点是错误的。
会计王发现错误的支出实际上是元。
3。
回答
13。
甲和乙相距216公里。
甲和乙分别在甲和乙中。
如果甲以每小时15公里的速度骑行,乙以每小时12公里的速度骑行
(1)甲和乙同时出发,并相互离开。
几个小时后,他们相距351公里。
(2)甲和乙走向对方。
三个小时后,甲开始了,乙开始了,并问乙他们几个小时后见面。
(3)甲和乙走向对方。
为了让他们在AB的中点相遇,B必须在A之前几个小时开始?
(4)甲和乙同时出发,朝对方走去。
甲到达乙,乙到达甲并立即返回。
他们几小时后见面了。
会议地点离A有多远?
14。
甲、乙类厂房第一季度完成固定资产投资238亿元,共承接产业转移示范区建设1XXXX年,可记录为
199 11。
图纸上零件的尺寸是12。
当
_ _ _ _ _ _ _时,等式
(单位:mm)表示该零件的加工要求最大不超过_ _ _ _ _,最小不超过_ _ _ _ .。
最大值为_ _ _ _ _ _ _ _ .
13。
如图所示,有理数
_ _ _ _ _ _ _ _ 0;
对应于数轴上的两点a和b,并判断以下各种符号:_ _ _ _ _ _ _ _ _ 0;0;
_ _ _ _ _ _ _ _ _ 0.
14。
如果已知满足,则代数表达式为_ _ _ _ _ _ .
15。
一个空气探测球的气象观测数据显示,海拔每升高1公里,气温就会下降6℃左右。
如果地面温度为21℃,那么海拔高度的温度为-39℃。
那么这里的高度是_ _ _ _ _ _千米。
16 .遵守下面的公式:然后用你得到的规则填空:
3,回答问题
,
.
,
,
,
,
,请计算(1)
(2)
(3)
18。
跳蚤第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位。
根据这条规则,当跳蚤跳
100次并落下时,找出距离(单位)
19。
已知三个互不相等的有理数,可以用1,a+b,A和0,B的形式表示,X的
的绝对值为2,计算值为。
XXXX是每人每天365天。
如果每个人每顿饭节省一粒米,一年能节省多少公斤米?(科学记数法)
(3)如果我们把一年省下来的米卖成钱,每公斤2元能卖多少?(用科学符号表示)对于因贫困而失学的儿童,学费按每人每年500元计算。
出售的钱能为多少失学儿童提供一年的教育?(5)经过以上计算,你有什么想法和建议?
要点一,彩色图形
1。
几何分类
要点解读:几何分类时,不同的分类标准有不同的分类结果。
2。
三维图形与平面图形的相互转换(1)三维图形的平面展开图:
平面图形可以通过一定方式展开三维图形得到,相应的三维图形可以通过一定方式折叠平面图形得到。
通过展开和折叠,三维图形和平面图形可以有机结合。
重点提示:
①您应该非常熟悉一些常见三维图形的展开图,如立方体的11个展开图、三棱柱、圆柱体的展开图等。
②不同的几何形体发展成不同的平面图形,相同的几何形体沿着不同的边缘被切割以获得不同的平面图形。
那么消除障碍的方法就是
接触真实的物体,拓展想象力,建立“模型”和整体观念。
动手练习。
(2)来自不同方向:
解释要点:
①能判断简单物体的三种视图(直棱柱、圆柱体、圆锥体、球体)。
②能根据这三个视图描述基本几何或物理原型。
(3)几何图形
的组成元素和关系由点、线和表面组成。
点动形成直线,直线相交形成点;该线移动形成一个表面,该表面与该表面相交形成一条线;身体由表面组成。